
1/57

An Introduction to
Satisfiability Modulo Theories

Philipp Rümmer

University of Regensburg
Uppsala University

February 11, 2025

2/57

Outline
● From theory ...

● From DPLL to DPLL(T)
● Slides courtesy of Alberto Griggio

● … to practice
● SMT-LIB and some common theories
● https://microsoft.github.io/z3guide/
● https://cvc5.github.io/app/
● https://eldarica.org/princess/

https://microsoft.github.io/z3guide/
https://cvc5.github.io/app/
https://eldarica.org/princess/

3/57

Typical Applications of SMT
● Deductive program verification

● Correctness of contracts, invariants
● Testing, symbolic execution

● Path feasibility
● Bounded model checking

● Reachability of errors within k steps
● Model checking

● Computation of finite-state abstraction
of programs

4/57

Broader Applications

i = 0;
x = j;
while (i < 50) {
 i++;
 x++;
}
if (j == 0)
 assert (x >= 50);

9/57

SAT and SMT
Def.: SAT Solver
Input: Propositional formula C

in n variables
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

Def.: SAT Modulo Theories Solver
Input: First-order formula C

in n variables and theories T1, …, Tm
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

10/57

SAT and SMT
Def.: SAT Solver
Input: Propositional formula C

in n variables
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

Def.: SAT Modulo Theories Solver
Input: First-order formula C

in n variables and theories T1, …, Tm
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

Also called a
solution

11/57

Theories

● A theory is like a library:
● Data-types
● Operations on those data-types

● Various examples later

Definition (theory)
A (first-order) theory is specified by a signature of
operations (sorts, functions, predicates), and a class of
intended interpretations of the symbols in .

12/57

We know how to …

Solve Boolean formulas efficiently:
● DPLL, CDCL
● Implemented in SAT solvers

Solve theory constraints efficiently:
● Linear arithmetic: LP, ILP, MIP
● Finite domains: CP, local search
● etc.

13/57

We know how to …

Solve Boolean formulas efficiently:
● DPLL, CDCL
● Implemented in SAT solvers

Solve theory constraints efficiently:
● Linear arithmetic: LP, ILP, MIP
● Finite domains: CP, local search
● etc.

???

14/57

Example!
● How can we solve this formula?

15/57

Eager SMT
● Wide range of data-types can directly

be encoded in propositional logic:
● Bit-vectors/machine arithmetic
● Equality logic
● Integer arithmetic (how?)

● Approach pioneered by UCLID (2004)
● Today mostly used for bit-vectors

16/57

Lazy, Offline SMT
● Construct a Boolean skeleton of a

formula, and solve it using SAT

● UNSAT → Finished!
● SAT → Check consistency of

 assigned theory literals
→ Produce a model or

refine skeleton

17/57

Lazy, Offline SMT
Satisfying assignment

Conflict clauses SAT

Formula

Theory Solver(s)

UNSAT

SAT Solver
Boolean Skeleton

18/57

Lazy, Online SMT
● Tightly interleave/integrate

Boolean and theory reasoning
● SAT solver informs theory solvers each

time a literal is asserted
→ incremental theory solving

● Theory solver informs SAT solver when
there is a conflict

● + Some further refinements
● Formalised in the DPLL(T) algorithm

[Nieuwenhuis, Oliveras, Tinelli, 2006]

19/57

The DPLL(T) Loop
Inform about literals
Assert literals (decision/propagation)
Check conjunction of asserted literals
Backtrack

Conflict sets
Implied literals

Formula

Theory Solver(s)

SAT/UNSAT

DPLL(T) Solver
Boolean Skeleton

20/57

On to the other slide set ...

21/57

Some SMT solvers
● Z3
● cvc5
● MathSAT
● Yices
● OpenSMT
● Bitwuzla
● SMTInterpol

SMT in Uppsala / Regensburg

Princess

Z3

UppSAT

mcBV

Norn

ePrincess

Ostrich

TRAU

Sloth

Z3-TRAU

TRAU+

SeCo

17 / 40

SMT in Uppsala / Regensburg

Princess

Z3

UppSAT

mcBV

Norn

ePrincess

General-purpose Ostrich

TRAU

Sloth

Z3-TRAU

TRAU+

SeCo

17 / 40

SMT in Uppsala / Regensburg

Princess

Z3

UppSAT

mcBV

Norn

ePrincess

Ostrich

TRAU

Sloth

Z3-TRAU

TRAU+

String
solvers

SeCo

17 / 40

SMT in Uppsala / Regensburg

Princess

Z3

UppSAT

mcBV

Norn

ePrincess

Ostrich

TRAU

Sloth

Z3-TRAU

TRAU+

First-order
SeCo

17 / 40

SMT in Uppsala / Regensburg

Princess

Z3

UppSAT

mcBV

Norn

ePrincess
Low-level
machine
arithmetic

Ostrich

TRAU

Sloth

Z3-TRAU

TRAU+

SeCo

17 / 40

SMT in Uppsala / Regensburg

Princess

Z3

UppSAT

mcBV

Norn

ePrincess

Ostrich

TRAU

Sloth

Z3-TRAU

TRAU+

SeCo

Sequence
solvers

17 / 40

28/57

29/57

SMT-LIB
● Standardised interface for SMT solvers,

supported by most tools
● Rich set of features, many theories
● Comes with a large library of

benchmarks; annual competition
SMT-COMP

● http://www.smtlib.org

http://www.smtlib.org/

30/57

SMT-LIB Version 2.7
● Released February 5 2025!

● Some new features:
● Polymorphic sorts and functions
● Higher-order logic syntax, lambdas

31/57

Example 1

32/57

In SMT-LIB
(set-logic QF_LIA)

(declare-const p Bool)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)

(assert (or (> (- (* 2 y) z) 2) p))
(assert (or (> (- (* 3 x) z) 6) (not p)))
(assert (or (> (- (* 2 z) (* 4 y)) 5) p))
(assert (or (not (> (- y z) 6)) (not p)))

(check-sat)
(get-model)

Permalink:
https://eldarica.org/princess/?ex=perma%2F1644243468_187318180

https://eldarica.org/princess/?ex=perma%2F1644243468_187318180

33/57

Important SMT-LIB commands
● (set-logic QF_BV)
(set-option …)

● (declare-const b (_ BitVec 8))
(declare-fun f ((x (_ BitVec 2))) Bool)

● (assert (= b #b10100011))
● (check-sat)
● (get-value (b)), (get-model)
● (get-unsat-core)
● (push 1), (pop 1)
● (reset), (exit)

34/57

Important SMT-LIB commands
● (set-logic QF_BV)
(set-option …)

● (declare-const b (_ BitVec 8))
(declare-fun f ((x (_ BitVec 2))) Bool)

● (assert (= b #b10100011))
● (check-sat)
● (get-value (b)), (get-model)
● (get-unsat-core)
● (push 1), (pop 1)
● (reset), (exit)

Z3, and many
solvers don't

care ...

35/57

Important SMT-LIB commands
● (set-logic QF_BV)
(set-option …)

● (declare-const b (_ BitVec 8))
(declare-fun f ((x (_ BitVec 2))) Bool)

● (assert (= b #b10100011))
● (check-sat)
● (get-value (b)), (get-model)
● (get-unsat-core)
● (push 1), (pop 1)
● (reset), (exit)

Z3, and many
solvers don't

care ...

In CP or MIP, this
would be called

assume or
constraint

36/57

General SMT-LIB constructors
● (and …), (or …), (not …), (=> …)
● (= b c)
● (ite (= b c) #b101 #b011)
● (let ((a #b001) (b #b010)) (= a b))
● (exists ((x (_ BitVec 2))) (= #b101 x))
(forall …)

● (! (= b c) :named X)

37/57

Example 2

38/57

Example 2
● Every 32bit number x that is a power of

2 has the property that
x & (x – 1) == 0

(and vice versa)

39/57

Quantifying Satisfaction?
● SAT/SMT solvers check satisfiability:

● How to prove a universal property?

40/57

Quantifying Satisfaction?
● SAT/SMT solvers check satisfiability:

● How to prove a universal property?

41/57

In SMT-LIB

(set-logic QF_BV)

(declare-const e (_ BitVec 32))
(declare-const x (_ BitVec 32))

(assert (= x (bvshl #x00000001 e)))
(assert (not (= (bvand x (bvsub x #x00000001)) #x00000000)))

(check-sat)

Permalink
https://eldarica.org/princess/?ex=perma%2F1644322914_843217432

https://eldarica.org/princess/?ex=perma%2F1644322914_843217432

42/57

Main SMT-LIB Bit-vector ops.
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV

● (_ BitVec 8)
● #b1010, #xff2a, (_ bv42 32)
● (= (concat #b1010 #b0011) #b10100011)
● (= ((_ extract 1 3) #b10100011) #b010)
● Unary: bvnot, bvneg
● Binary: bvand, bvor, bvadd, bvsub, bvmul,

bvudiv, bvurem, bvshl, bvlshr
● (bvult #b0100 #b0110)
● And many more derived operators ...

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV

43/57

Example 3: Programs
int x, y;

x = x * x;
y = x + 1;

assert(y > 0);

44/57

Example 3: Programs
int x, y;

x = x * x;
y = x + 1;

assert(y > 0);

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_ BitVec 32))

(declare-const x1 (_ BitVec 32))
(declare-const y1 (_ BitVec 32))

(assert (= x1 (bvmul x0 x0)))
(assert (= y1 (bvadd x1 (_ bv1 32))))

(assert (not (bvsgt y1 (_ bv0 32))))

(check-sat)
(get-model)

Z3-specific

Signed
comparison

45/57

Example 3: Programs
int x, y;

x = x * x;
y = x + 1;

assert(y > 0);

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_ BitVec 32))

(declare-const x1 (_ BitVec 32))
(declare-const y1 (_ BitVec 32))

(assert (= x1 (bvmul x0 x0)))
(assert (= y1 (bvadd x1 (_ bv1 32))))

(assert (not (bvsgt y1 (_ bv0 32))))

(check-sat)
(get-model)

Z3-specific

Permalink:
https://eldarica.org/princess/?ex=perma%2F1644243605_1707959413

Signed
comparison

https://eldarica.org/princess/?ex=perma%2F1644243605_1707959413

46/57

Modelling of
Program Variables

● An SMT-LIB constant represents a
single value

● Just like mathematical variables
● Program variables

can be reassigned … how
to model computations?

● Main idea: every assignment creates a
new “version” of a variable

● x0/y0 vs. x1/y1 in example

47/57

Modelling of
Program Variables

● An SMT-LIB constant represents a
single value

● Just like mathematical variables
● Program variables

can be reassigned … how
to model computations?

● Main idea: every assignment creates a
new “version” of a variable

● x0/y0 vs. x1/y1 in example

In compilers, this
is called

“Single Static Assignment”
form (SSA)

48/57

Example 4: Conditionals
int x, y;

if (x > 0)
 y = x;
else
 y = -x;

assert(y >= 0);

49/57

Example 4: Conditionals
int x, y;

if (x > 0)
 y = x;
else
 y = -x;

assert(y >= 0);

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_ BitVec 32))
(declare-const y1a (_ BitVec 32))
(declare-const y1b (_ BitVec 32))
(declare-const y2 (_ BitVec 32))
(declare-const b Bool)

(assert (= b (bvsgt x0 (_ bv0 32))))
(assert (=> b (= y1a x0)))
(assert (=> (not b) (= y1b (bvneg x0))))
(assert (= y2 (ite b y1a y1b)))

(assert (not (bvsge y2 (_ bv0 32))))

(check-sat)
(get-model)

50/57

Example 4: Conditionals
int x, y;

if (x > 0)
 y = x;
else
 y = -x;

assert(y >= 0);

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_ BitVec 32))
(declare-const y1a (_ BitVec 32))
(declare-const y1b (_ BitVec 32))
(declare-const y2 (_ BitVec 32))
(declare-const b Bool)

(assert (= b (bvsgt x0 (_ bv0 32))))
(assert (=> b (= y1a x0)))
(assert (=> (not b) (= y1b (bvneg x0))))
(assert (= y2 (ite b y1a y1b)))

(assert (not (bvsge y2 (_ bv0 32))))

(check-sat)
(get-model)

Permalink:
https://eldarica.org/princess/?ex=perma%2F1644243661_2074758304

https://eldarica.org/princess/?ex=perma%2F1644243661_2074758304

51/57

Alternative method:
path-wise exploration

int x, y

x > 0 !(x > 0)

y = -xy = x

assert(...)

52/57

Alternative method:
path-wise exploration

int x, y

x > 0 !(x > 0)

y = -xy = x

assert(...)

● Each query
smaller, but
possibly
exponentially
many paths

● Learning similar to
CDCL can be used
to avoid analysing
all paths

53/57

The assertion stack
● Holds both assertions and declarations,

but no options
● Important for incremental use of solver
● (push n) → add n new frames to

the stack
● (pop n) → pop n frames from

the stack

54/57

Typical Architecture

Queries

Answer
(model, proof)

Verifier,
model

checker,
etc.

SAT/SMT
solver

55/57

Example 5: Functions
● Every monotonic function

is idempotent:

56/57

In SMT-LIB
(declare-fun f (Int) Int)

(assert (forall ((x Int))
 (=> (and (<= 0 x) (< x 2))
 (and (<= 0 (f x)) (< (f x) 2)))))
(assert (<= (f 0) (f 1)))

(assert (not (forall ((x Int))
 (=> (and (<= 0 x) (< x 2))
 (= (f (f x)) (f x))))))

(check-sat)

Permalink:
https://eldarica.org/princess/?ex=perma%2F1668764094_519287413

https://eldarica.org/princess/?ex=perma%2F1668764094_519287413

57/57

Example 6
● N-queens problem using SMT

[Wikipedia]

58/57

In SMT-LIB
(define-fun N () Int 4)

(declare-const q0 Int)
(declare-const q1 Int)
(declare-const q2 Int)
(declare-const q3 Int)

(assert (and (>= q0 0) (< q0 N)))
(assert (and (>= q1 0) (< q1 N)))
(assert (and (>= q2 0) (< q2 N)))
(assert (and (>= q3 0) (< q3 N)))

(assert (distinct q0 q1 q2 q3))
(assert (distinct (+ q0 0) (+ q1 1) (+ q2 2) (+ q3 3)))
(assert (distinct (- q0 0) (- q1 1) (- q2 2) (- q3 3)))

(check-sat)
Permalink:
https://eldarica.org/princess/?ex=perma%2F1668764522_925741057

https://eldarica.org/princess/?ex=perma%2F1668764522_925741057

59/57

Conclusions
● Most important idea in this lecture:

Lazy encoding of formulas to SAT
● SMT solvers are ...

● Usually optimised for verification:
Good at proving unsat

● Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

● Side-effect: restricted set of operators:
Capture decidable domains

● Good at propositional reasoning

60/57

Conclusions
● Most important idea in this lecture:

Lazy encoding of formulas to SAT
● SMT solvers are ...

● Usually optimised for verification:
Good at proving unsat

● Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

● Side-effect: restricted set of operators:
Capture decidable domains

● Good at propositional reasoning

Compare to
relaxations

61/57

Outlook
● Various further topics:

● More theories: ADTs, floats, strings, etc.
● Handling of quantifiers
● MaxSAT/MaxSMT
● Optimising SMT

● Python API of SMT solvers:
● Jupyter notebook: https://shorturl.at/bWaPb

● More lecture slides:
● http://ssa-school-2016.it.uu.se/
● https://sat-smt-ar-school.gitlab.io/www/2022/

https://shorturl.at/bWaPb
http://ssa-school-2016.it.uu.se/
https://sat-smt-ar-school.gitlab.io/www/2022/

	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 17 (4)
	Slide: 17 (5)
	Slide: 17 (6)
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 24
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 26 (1)
	Slide: 26 (2)
	Slide: 27
	Slide: 28
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 29 (3)
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 33
	Slide: 34
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39 (1)
	Slide: 39 (2)
	Slide: 40

