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Outline

* From theory ...

 From DPLL to DPLL(T)
 Slides courtesy of Alberto Griggio

... to practice

« SMT-LIB and some common theories
e https://microsoft.github.io/z3guide/
e https://cvch.github.io/app/

* https://eldarica.org/princess/
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Typical Applications of SMT

Deductive program verification
* Correctness of contracts, invariants
Testing, symbolic execution
* Path feasibility
Bounded model checking
 Reachability of errors within k steps
Model checking

 Computation of finite-state abstraction
of programs
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Broader Applications

X
’{‘:%7 \2".

(z>3.0Vy < 2.0)A

(x=yVa#y—10)A .
y < 1.0 g
1L o= 0
X =737
while (i1 < 50) {
LAt 7
X++;
}
if (3 == 0)

assert (x >= 50);
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SAT and SMT

Def.: SAT Solver

Input: Propositional formula C
In n variables
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

Def.: SAT Modulo Theories Solver

Input: First-order formula C
in n variables and theories T, ..., T
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]
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SAT and SMT

Def.: SAT Solver

Input: Propositional formula C
In n variables
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

Also called a

] solution
Def.: SAT Modulo Theories Solver
Input: First-order formula C
in n variables and theories T, ..., T
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]
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Theories

Definition (theory)

A (first-order) theory T is specified by a signature X of
operations (sorts, functions, predicates), and a class St of
Intended interpretations of the symbols in Y.

* A theory is like a library:

 Data-types
 Operations on those data-types

* Various examples later
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We know how to ...

Solve Boolean formulas efficiently:
 DPLL, CDCL
* Implemented in SAT solvers

Solve theory constraints efficiently:

e Linear arithmetic: LP, ILP, MIP
 Finite domains: CP, local search
e etc.
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We know how to ...
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Example!

- How can we solve this formula?
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Eager SMT

* Wide range of data-types can directly
be encoded in propositional logic:

» Bit-vectors/machine arithmetic
« Equality logic
* Integer arithmetic (how?)

 Approach pioneered by UCLID (2004)
 Today mostly used for bit-vectors
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Lazy, Offline SMT

e Construct a Boolean skeleton of a
formula, and solve it using SAT

 UNSAT -
 SAT -
ﬁ

Finished!

Check consistency of
assigned theory literals
Produce a model or
refine skeleton
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Lazyr Offline SMT

Formula Satisfying assignment
SAT Solver

Th |
Boolean Skeleton eory Solver(s)

72 N

UNSAT Conflict clauses SAT
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Lazy, Online SMT

» Tightly interleave/integrate
Boolean and theory reasoning

 SAT solver informs theory solvers each
time a literal is asserted
- incremental theory solving

 Theory solver informs SAT solver when
there is a conflict

e + Some further refinements
* Formalised in the DPLL(T) algorithm

[Nieuwenhuis, Oliveras, Tinelli, 2006]
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The DPLL(T) Loop

Inform about literals

Assert literals (decision/propagation)
Formula Check conjunction of asserted literals

Backtrack

N\ — —

DPLL(T) Solver
Boolean Skeleton

/ — _

SAT/UNSAT Conflict sets
Implied literals

Theory Solver(s)
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On to the other slide set ...
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Some SMT solvers

e /3

* CVCS

« MathSAT

* Yices

e OpenSMT

* Bitwuzla
 SMTInterpol
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SMT in Uppsala / Regensburg

Norn

Princess

---------

TRAU

Sloth

ePrincess

Z3-TRAU
TRAU+
Ostrich SeCo
UppSAT

mcBV
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SMT in Uppsala / Regensburg
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SMT in Uppsala / Regensburg
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SMT in Uppsala / Regensburg
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SMT in Uppsala / Regensburg
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The SMT-LIB Standard

Version 2.6

Clark Barrett Pascal Fontaine Cesare Tinelli

Release: 2017-07-18



SMT-LIB

 Standardised interface for SMT solvers,
supported by most tools

* Rich set of features, many theories

 Comes with a large library of
benchmarks; annual competition
SMT-COMP

* http://www.smtlib.org
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SMT-LIB Version 2.7

 Released February 5 2025!

e Some new features:

* Polymorphic sorts and functions
 Higher-order logic syntax, lambdas
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Example 1

20—z >2Vp
3r —2z2>060V —p
22 —4y >0V p

y—2zF6V-p
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In SMT-LIB

(set-logic QF LIA)

declare-const p Bool)
declare-const x Int)
declare-const y Int)
declare-const z Int)

(
(
(
(

(assert (or (> (- (* 2 y) z) 2) p))
(assert (or (> (- (* 3 x) z) 6) (not p)))
(assert (or (> (- (* 2 z) (* 4y)) 5) p))
(assert (or (not (> (- vy z) 6)) (not p)))
(check-sat)
(get-model)

Permalink:
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Important SMT-LIB commands

* (set-logic QF BV)
(set-option ..)

e (declare-const b ( BitVec 8))

(declare-fun £ ((x ( BitVec 2))) Bool)
e (assert (= b #b10100011))
e (check-sat)
e (get-value (b)), (get—-model)
e (get-unsat-core)

e (push 1), (pop 1)

e (reset), (exit)
33/57



Important SMT-LIB commands

N
(’fZB,andrnany

e (set-logic QF BV) solvers don't
(set-option ..) —~_ care ... 44/
e (declare-const b ( BitVec 8))
(declare-fun £ ((x ( BitVec 2))) Bool)

e (assert (= b #b10100011))

e (check-sat)

e (get-value (b)), (get—-model)
e (get-unsat-core)

* (push 1), (pop 1)

e (reset), (exit)
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Important SMT-LIB commands

N
(’fZ3,andrnany

e (set-logic QF BV) solvers don't
(set-option ..) —~_ care ... 44/
e (declare-const b ( BitVec 8))
(declare-fun £ ((x ( BitVec 2))) Bool)

e (assert (= b #b10100011))

““In CP or MIP, this
would be called
assume 0or

e (check-sat)

e (get-value (b)), (get—-model)

constraint B,

e (get-unsat-core)

e (push 1), (pop 1)

e (reset), (exit)
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General SMT-LIB constructors

e (and ..), (or ..), (not ..), (=> ..)

(ite (= b c) #bl01l #b01l1)

(let ((a #b001l) (b #b010)) (= a b))

e (exists ((x ( BitVec 2))) (= #bl01 x))
(
(!

l (= b ¢) :named X)
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Example 2
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Example 2

 Every 32bit number x that is a power of

2 has the property that
X & (x — 1) ==

(and vice versa)
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Quantifying Satisfaction?

 SAT/SMT solvers check satisfiability:

olr,y, z| is sat <  dx,y.z. ¢|x,y, 2] is sat

 How to prove a universal property?

Va,y.z. ¢lx,y, 2| is valid?
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Quantifying Satisfaction?

 SAT/SMT solvers check satisfiability:

olr,y, z| is sat <  dx,y.z. ¢|x,y, 2] is sat

 How to prove a universal property?

Va,y.z. ¢lx,y, 2| is valid?

Va,y.z. ¢lx,y, 2| is valid
—Vx,y.z. ¢p|lx,y, 2| is unsat

dz,y.2. =¢lx,y, 2| is unsat

111

—¢|x,y, 2] is unsat .



In SMT-LIB

(set-logic QF BV)

(declare-const e ( BitVec 32))
(declare-const x ( BitVec 32))

(assert (= x (bvshl #x00000001 e)))
(assert (not (= (bvand x (bvsub x #x00000001)) #x00000000)))

(check-sat)

Permalink
https://eldarica.org/princess/?ex=perma%2F 1644322914 843217432 41157


https://eldarica.org/princess/?ex=perma%2F1644322914_843217432

Main SMT-LIB Bit-vector ops.

http://smtlib.cs.uiowa.edu/logics-all.shtmI|#QF BV

( BitVec 8)

#01010, #xff2a, ( bv4z 32)
(= (concat #b1010 #b0011l) #b10100011)

(= (( extract 1 3) #b10100011) #b01O0O)

Unary: bvnot, bvneg

Binary: bvand, bvor, bvadd, bvsub, bvmul,
bvudiv, bvurem, bvshl, bvlshr

(bvult #b0100 #b0110)
And many more derived operators ...
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Example 3: Programs

int x, vy;

X
Y

I
X
X

assert(y > 0);
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Example 3: Programs

int x, vy;

X = X * xX;
vy = x + 1;

assert(y > 0);

;peciﬁcj

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_  BitVec 32))
(declare-const x1 (_  BitVec 32))
(declare-const yl (_  BitVec 32))
(assert (= x1 (bvmul x0 x0)))

(assert (= yl (bvadd x1 (  bvl 32))))
(assert (not (bvsgt yl (  bv0 32))))

(check-sat) ‘§§:S;\\\\
(get-model) )
Signed |

Lcompa rison | 44/57




Example 3: Programs

int x, vy;

;peciﬁcj

X = X * xX; (set-option :pp.bv-literals false)

y = x + 1; (declare-const x0 ( BitVec 32))
(declare-const y0 (_  BitVec 32))

assert(y > 0); (declare-const x1 (_ BitVec 32))
(declare-const yl (_  BitVec 32))
(assert (= x1 (bvmul x0 x0)))
(assert (= yl (bvadd x1 (  bvl 32))))
(assert (not (bvsgt yl (  bv0 32))))
(check-sat) ‘§§:S;\\\\
(get-model) .

Signed |
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Modelling of
Program Variables

* An SMT-LIB constant represents a
single value

 Just like mathematical variables

* Program variables
can be reassigned ... how
to model computations?

 Main idea: every assignment creates a
new “version” of a variable

 x0/y0 VS. x1/y1 In example
46/57



Modelling of
Program Variables

* An SMT-LIB constant represents a
single value

 Just like mathematical variables

« Program variables " Incompilers, this
. Is called
Can be reaSSIQned hOW “Single Static Assignment”

/

to model computations? Vform (SSA)

 Main idea: every assignment creates a
new “version” of a variable

 x0/y0 VS. x1/y1 In example
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Example 4: Conditionals

int x, vy;

1f (x > 0)

Yy = Xy
else
Yy = —Xy

assert(y >= 0);
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Example 4: Conditionals

int x, Vy;

1f (x > 0)
Yy = Xy
else
Y = =Xy

assert(y >= 0);
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Example 4: Conditionals

int x, vy;

1f (x > 0)
y = Xy
else
Y = —Xy

assert(y >= 0);

Permalink: 50/57
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Alternative method:
path-wise exploration

int x, vy

X > '(x > 0)

assert(...)

51/57



Alternative method:
path-wise exploration

 Each query
smaller, but
possibly x > (x> 0)
exponentially
many paths

int x, y

* Learning similar to
CDCL can be used
to avoid analysing
all paths

assert(...)
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The assertion stack

* Holds both assertions and declarations,
but no options

* Important for incremental use of solver

e (push n) — add n new frames to
the stack

e (pop n) — pop n frames from
the stack
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Typical Architecture

-

\_

Verifier,
model
checker,
etc.

~

J

Queries

Answer
(model, proof)

~

\

~

SAT/SMT
solver

J
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Example 5: Functions

* Every monotonic function

f:40,1} —{0,1}
IS idempotent:

fof=f
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In SMT-LIB

(declare-fun f (Int) Int)

(assert (forall ((x Int))
(=> (and (<= 0 x) (< x 2))
(and (<= 0 (f x)) (< (f x) 2)))))
(assert (<= (f 0) (f 1)))

(assert (not (forall ((x Int))
(== (and (<= 0 x) (< x 2))
(= (f (f x)) (f x))))))

(check-sat)

Permalink:
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Example 6

* N-queens problem using SMT

g8 b c d e T g9 5

8 8
7 7
6 6
5 5
[ 4

3

= N W A

a b cd e f g h

The only symmetrical solution
to the eight queens puzzle (up
to rotation and reflection) [Wikipedia]
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In SMT-LIB

(define-fun N () Int 4)

(declare-const g0 Int)
(declare-const gl Int)
(declare-const g2 Int)
(declare-const g3 Int)

(assert (and (>= g0 0) (< g0 N)))
(assert (and (>= gl 0) (< ql N)))
(assert (and (>= g2 0) (< g2 N)))
(assert (and (>= g3 0) (< g3 N)))

(assert (distinct g0 gl g2 g3))
(assert (distinct (+ g0 0) (+ gql1 1) (+ g2 2) (+ q3
(assert (distinct (- g0 0) (- 91 1) (- 92 2) (- g3

(check-sat)

Permalink:
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Conclusions

 Most important idea in this lecture:
Lazy encoding of formulas to SAT

e SMT solvers are ...

* Usually optimised for verification:
Good at proving unsat

* Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

» Side-effect: restricted set of operators:
Capture decidable domains

* Good at propositional reasoning .



Compare to
relaxations

* Most important idea in this le<ture:
Lazy encoding of formulas to SAT

e SMT solvers are ...

* Usually optimised for verification:
Good at proving unsat

* Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

» Side-effect: restricted set of operators:
Capture decidable domains

* Good at propositional reasoning



Outlook

* Various further topics:
 More theories: ADTs, floats, strings, etc.
 Handling of quantifiers
« MaxSAT/MaxSMT
 Optimising SMT
* Python API of SMT solvers:

* Jupyter notebook: https://shorturl.at/bWaPb

e More lecture slides:

* http://ssa-school-2016.it.uu.se/
e https://sat-smt-ar-school.qgitlab.io/www/2022/ 61/57
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