An Introduction to
Satisfiability Modulo Theories

Philipp RUmmer

University of Regensburg
Uppsala University

February 11, 2025

1/57

Outline

* From theory ...

 From DPLL to DPLL(T)
 Slides courtesy of Alberto Griggio

... to practice

« SMT-LIB and some common theories
e https://microsoft.github.io/z3guide/
e https://cvch.github.io/app/

* https://eldarica.org/princess/
2/57

https://microsoft.github.io/z3guide/
https://cvc5.github.io/app/
https://eldarica.org/princess/

Typical Applications of SMT

Deductive program verification
* Correctness of contracts, invariants
Testing, symbolic execution
* Path feasibility
Bounded model checking
 Reachability of errors within k steps
Model checking

 Computation of finite-state abstraction
of programs

3/57

Broader Applications

X
’{‘:%7 \2".

(z>3.0Vy < 2.0)A

(x=yVa#y—10)A .
y < 1.0 g
1L o= 0
X =737
while (i1 < 50) {
LAt 7
X++;
}
if (3 == 0)

assert (x >= 50);

4/57

SAT and SMT

Def.: SAT Solver

Input: Propositional formula C
In n variables
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

Def.: SAT Modulo Theories Solver

Input: First-order formula C
in n variables and theories T, ..., T
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]
9/57

SAT and SMT

Def.: SAT Solver

Input: Propositional formula C
In n variables
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]

Also called a

] solution
Def.: SAT Modulo Theories Solver
Input: First-order formula C
in n variables and theories T, ..., T
Output: C sat + satisfying assignment (model)

C unsat [+ Proof]
10/57

Theories

Definition (theory)

A (first-order) theory T is specified by a signature X of
operations (sorts, functions, predicates), and a class St of
Intended interpretations of the symbols in Y.

* A theory is like a library:

 Data-types
 Operations on those data-types

* Various examples later

11/57

We know how to ...

Solve Boolean formulas efficiently:
 DPLL, CDCL
* Implemented in SAT solvers

Solve theory constraints efficiently:

e Linear arithmetic: LP, ILP, MIP
 Finite domains: CP, local search
e etc.

12/57

We know how to ...

Solve Boolean formulas efficiently:
 DPLL, CDCL
* Implemented in SAT solvers

Solve theory constraints efficiently:

e Linear arithmetic: LP, ILP, MIP
 Finite domains: CP, local search
e etc.

13/57

Example!

- How can we solve this formula?

14/57

Eager SMT

* Wide range of data-types can directly
be encoded in propositional logic:

» Bit-vectors/machine arithmetic
« Equality logic
* Integer arithmetic (how?)

 Approach pioneered by UCLID (2004)
 Today mostly used for bit-vectors

15/57

Lazy, Offline SMT

e Construct a Boolean skeleton of a
formula, and solve it using SAT

 UNSAT -
 SAT -
ﬁ

Finished!

Check consistency of
assigned theory literals
Produce a model or
refine skeleton

16/57

Lazyr Offline SMT

Formula Satisfying assignment
SAT Solver

Th |
Boolean Skeleton eory Solver(s)

72 N

UNSAT Conflict clauses SAT

17/57

Lazy, Online SMT

» Tightly interleave/integrate
Boolean and theory reasoning

 SAT solver informs theory solvers each
time a literal is asserted
- incremental theory solving

 Theory solver informs SAT solver when
there is a conflict

e + Some further refinements
* Formalised in the DPLL(T) algorithm

[Nieuwenhuis, Oliveras, Tinelli, 2006]
18/57

The DPLL(T) Loop

Inform about literals

Assert literals (decision/propagation)
Formula Check conjunction of asserted literals

Backtrack

N\ — —

DPLL(T) Solver
Boolean Skeleton

/ — _

SAT/UNSAT Conflict sets
Implied literals

Theory Solver(s)

19/57

On to the other slide set ...

20/57

Some SMT solvers

e /3

* CVCS

« MathSAT

* Yices

e OpenSMT

* Bitwuzla
 SMTInterpol

21/57

SMT in Uppsala / Regensburg

Norn

Princess

TRAU

Sloth

ePrincess

Z3-TRAU
TRAU+
Ostrich SeCo
UppSAT

mcBV

17 /40

SMT in Uppsala / Regensburg

Norn

-
General-purpose

Princess

N

o ar a» a» a» a» a» a» o

TRAU

Sloth

ePrincess

Z3-TRAU
TRAU+
Ostrich SeCo
UppSAT

mcBV

17 /40

SMT in Uppsala / Regensburg

a2 .)

String TRAU Z3-TRAU

solvers

Norn TRAU+
Sloth Ostrich SeCo
_ > y,
Princess
ePrincess UppSAT

o ar a» a» a» a» a» a» o

mcBV 17/ 40

SMT in Uppsala / Regensburg

TRAU Z3-TRAU
Norn TRAU+
Sloth Ostrich SeCo
~ _ N
: First-order
Princess
ePrincess UppSAT
_ y,
r- ———————— Y
: Z3 |

mcBV 17/ 40

SMT in Uppsala / Regensburg

Norn

Princess

- a» a» a» a» a» o

TRAU Z3-TRAU
TRAU+
Sloth Ostrich SeCo
()
Low-level
ePrincess m?Chlne . UppSAT
arithmetic
mcBV 17J:
_

SMT in Uppsala / Regensburg

TRAU Z3-TRAU
4 N
. —— Sequence
orn i solvers
Sloth Ostrich SeCo
o _J
Princess
ePrincess UppSAT
r- ———————— Y
: Z3 !

mcBV 17/ 40

The SMT-LIB Standard

Version 2.6

Clark Barrett Pascal Fontaine Cesare Tinelli

Release: 2017-07-18

SMT-LIB

 Standardised interface for SMT solvers,
supported by most tools

* Rich set of features, many theories

 Comes with a large library of
benchmarks; annual competition
SMT-COMP

* http://www.smtlib.org

29/57

http://www.smtlib.org/

SMT-LIB Version 2.7

 Released February 5 2025!

e Some new features:

* Polymorphic sorts and functions
 Higher-order logic syntax, lambdas

30/57

Example 1

20—z >2Vp
3r —2z2>060V —p
22 —4y >0V p

y—2zF6V-p

31/57

In SMT-LIB

(set-logic QF LIA)

declare-const p Bool)
declare-const x Int)
declare-const y Int)
declare-const z Int)

(
(
(
(

(assert (or (> (- (* 2 y) z) 2) p))
(assert (or (> (- (* 3 x) z) 6) (not p)))
(assert (or (> (- (* 2 z) (* 4y)) 5) p))
(assert (or (not (> (- vy z) 6)) (not p)))
(check-sat)
(get-model)

Permalink:

https://eldarica.org/princess/?ex=perma%2F 1644243468 187318180

32/57

https://eldarica.org/princess/?ex=perma%2F1644243468_187318180

Important SMT-LIB commands

* (set-logic QF BV)
(set-option ..)

e (declare-const b (BitVec 8))

(declare-fun £ ((x (BitVec 2))) Bool)
e (assert (= b #b10100011))
e (check-sat)
e (get-value (b)), (get—-model)
e (get-unsat-core)

e (push 1), (pop 1)

e (reset), (exit)
33/57

Important SMT-LIB commands

N
(’fZB,andrnany

e (set-logic QF BV) solvers don't
(set-option ..) —~_ care ... 44/
e (declare-const b (BitVec 8))
(declare-fun £ ((x (BitVec 2))) Bool)

e (assert (= b #b10100011))

e (check-sat)

e (get-value (b)), (get—-model)
e (get-unsat-core)

* (push 1), (pop 1)

e (reset), (exit)
34/57

Important SMT-LIB commands

N
(’fZ3,andrnany

e (set-logic QF BV) solvers don't
(set-option ..) —~_ care ... 44/
e (declare-const b (BitVec 8))
(declare-fun £ ((x (BitVec 2))) Bool)

e (assert (= b #b10100011))

““In CP or MIP, this
would be called
assume 0or

e (check-sat)

e (get-value (b)), (get—-model)

constraint B,

e (get-unsat-core)

e (push 1), (pop 1)

e (reset), (exit)

35/57

General SMT-LIB constructors

e (and ..), (or ..), (not ..), (=> ..)

(ite (= b c) #bl01l #b01l1)

(let ((a #b001l) (b #b010)) (= a b))

e (exists ((x (BitVec 2))) (= #bl01 x))
(
(!

l (= b ¢) :named X)

36/57

Example 2

37157

Example 2

 Every 32bit number x that is a power of

2 has the property that
X & (x — 1) ==

(and vice versa)

38/57

Quantifying Satisfaction?

 SAT/SMT solvers check satisfiability:

olr,y, z| is sat < dx,y.z. ¢|x,y, 2] is sat

 How to prove a universal property?

Va,y.z. ¢lx,y, 2| is valid?

39/57

Quantifying Satisfaction?

 SAT/SMT solvers check satisfiability:

olr,y, z| is sat < dx,y.z. ¢|x,y, 2] is sat

 How to prove a universal property?

Va,y.z. ¢lx,y, 2| is valid?

Va,y.z. ¢lx,y, 2| is valid
—Vx,y.z. ¢p|lx,y, 2| is unsat

dz,y.2. =¢lx,y, 2| is unsat

111

—¢|x,y, 2] is unsat .

In SMT-LIB

(set-logic QF BV)

(declare-const e (BitVec 32))
(declare-const x (BitVec 32))

(assert (= x (bvshl #x00000001 e)))
(assert (not (= (bvand x (bvsub x #x00000001)) #x00000000)))

(check-sat)

Permalink
https://eldarica.org/princess/?ex=perma%2F 1644322914 843217432 41157

https://eldarica.org/princess/?ex=perma%2F1644322914_843217432

Main SMT-LIB Bit-vector ops.

http://smtlib.cs.uiowa.edu/logics-all.shtmI|#QF BV

(BitVec 8)

#01010, #xff2a, (bv4z 32)
(= (concat #b1010 #b0011l) #b10100011)

(= ((extract 1 3) #b10100011) #b01O0O)

Unary: bvnot, bvneg

Binary: bvand, bvor, bvadd, bvsub, bvmul,
bvudiv, bvurem, bvshl, bvlshr

(bvult #b0100 #b0110)
And many more derived operators ...

42/57

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV

Example 3: Programs

int x, vy;

X
Y

I
X
X

assert(y > 0);

43/57

Example 3: Programs

int x, vy;

X = X * xX;
vy = x + 1;

assert(y > 0);

;peciﬁcj

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_ BitVec 32))
(declare-const x1 (_ BitVec 32))
(declare-const yl (_ BitVec 32))
(assert (= x1 (bvmul x0 x0)))

(assert (= yl (bvadd x1 (bvl 32))))
(assert (not (bvsgt yl (bv0 32))))

(check-sat) ‘§§:S;\\\\
(get-model))
Signed |

Lcompa rison | 44/57

Example 3: Programs

int x, vy;

;peciﬁcj

X = X * xX; (set-option :pp.bv-literals false)

y = x + 1; (declare-const x0 (BitVec 32))
(declare-const y0 (_ BitVec 32))

assert(y > 0); (declare-const x1 (_ BitVec 32))
(declare-const yl (_ BitVec 32))
(assert (= x1 (bvmul x0 x0)))
(assert (= yl (bvadd x1 (bvl 32))))
(assert (not (bvsgt yl (bv0 32))))
(check-sat) ‘§§:S;\\\\
(get-model) .

Signed |

Permalink:
https://eldarica.org/princess/?ex=perma%2F 1644243

comparison 45/57

https://eldarica.org/princess/?ex=perma%2F1644243605_1707959413

Modelling of
Program Variables

* An SMT-LIB constant represents a
single value

 Just like mathematical variables

* Program variables
can be reassigned ... how
to model computations?

 Main idea: every assignment creates a
new “version” of a variable

 x0/y0 VS. x1/y1 In example
46/57

Modelling of
Program Variables

* An SMT-LIB constant represents a
single value

 Just like mathematical variables

« Program variables " Incompilers, this
. Is called
Can be reaSSIQned hOW “Single Static Assignment”

/

to model computations? Vform (SSA)

 Main idea: every assignment creates a
new “version” of a variable

 x0/y0 VS. x1/y1 In example

47/57

Example 4: Conditionals

int x, vy;

1f (x > 0)

Yy = Xy
else
Yy = —Xy

assert(y >= 0);

48/57

Example 4: Conditionals

int x, Vy;

1f (x > 0)
Yy = Xy
else
Y = =Xy

assert(y >= 0);

49/57

Example 4: Conditionals

int x, vy;

1f (x > 0)
y = Xy
else
Y = —Xy

assert(y >= 0);

Permalink: 50/57
https://eldarica.org/princess/?ex=perma%2F1644243661 2074758304

https://eldarica.org/princess/?ex=perma%2F1644243661_2074758304

Alternative method:
path-wise exploration

int x, vy

X > '(x > 0)

assert(...)

51/57

Alternative method:
path-wise exploration

 Each query
smaller, but
possibly x > (x> 0)
exponentially
many paths

int x, y

* Learning similar to
CDCL can be used
to avoid analysing
all paths

assert(...)

52/57

The assertion stack

* Holds both assertions and declarations,
but no options

* Important for incremental use of solver

e (push n) — add n new frames to
the stack

e (pop n) — pop n frames from
the stack

53/57

Typical Architecture

-

_

Verifier,
model
checker,
etc.

~

J

Queries

Answer
(model, proof)

~

\

~

SAT/SMT
solver

J

54/57

Example 5: Functions

* Every monotonic function

f:40,1} —{0,1}
IS idempotent:

fof=f

55/57

In SMT-LIB

(declare-fun f (Int) Int)

(assert (forall ((x Int))
(=> (and (<= 0 x) (< x 2))
(and (<= 0 (f x)) (< (f x) 2)))))
(assert (<= (f 0) (f 1)))

(assert (not (forall ((x Int))
(== (and (<= 0 x) (< x 2))
(= (f (f x)) (f x))))))

(check-sat)

Permalink:

https://eldarica.org/princess/?ex=perma%2F1668764094 519287413 S60¢

https://eldarica.org/princess/?ex=perma%2F1668764094_519287413

Example 6

* N-queens problem using SMT

g8 b c d e T g9 5

8 8
7 7
6 6
5 5
[4

3

= N W A

a b cd e f g h

The only symmetrical solution
to the eight queens puzzle (up
to rotation and reflection) [Wikipedia]

57157

In SMT-LIB

(define-fun N () Int 4)

(declare-const g0 Int)
(declare-const gl Int)
(declare-const g2 Int)
(declare-const g3 Int)

(assert (and (>= g0 0) (< g0 N)))
(assert (and (>= gl 0) (< ql N)))
(assert (and (>= g2 0) (< g2 N)))
(assert (and (>= g3 0) (< g3 N)))

(assert (distinct g0 gl g2 g3))
(assert (distinct (+ g0 0) (+ gql1 1) (+ g2 2) (+ q3
(assert (distinct (- g0 0) (- 91 1) (- 92 2) (- g3

(check-sat)

Permalink:

https://eldarica.org/princess/?ex=perma%2F1668764522_925741057 58/57

https://eldarica.org/princess/?ex=perma%2F1668764522_925741057

Conclusions

 Most important idea in this lecture:
Lazy encoding of formulas to SAT

e SMT solvers are ...

* Usually optimised for verification:
Good at proving unsat

* Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

» Side-effect: restricted set of operators:
Capture decidable domains

* Good at propositional reasoning .

Compare to
relaxations

* Most important idea in this le<ture:
Lazy encoding of formulas to SAT

e SMT solvers are ...

* Usually optimised for verification:
Good at proving unsat

* Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

» Side-effect: restricted set of operators:
Capture decidable domains

* Good at propositional reasoning

Outlook

* Various further topics:
 More theories: ADTs, floats, strings, etc.
 Handling of quantifiers
« MaxSAT/MaxSMT
 Optimising SMT
* Python API of SMT solvers:

* Jupyter notebook: https://shorturl.at/bWaPb

e More lecture slides:

* http://ssa-school-2016.it.uu.se/
e https://sat-smt-ar-school.qgitlab.io/www/2022/ 61/57

https://shorturl.at/bWaPb
http://ssa-school-2016.it.uu.se/
https://sat-smt-ar-school.gitlab.io/www/2022/

	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 17 (4)
	Slide: 17 (5)
	Slide: 17 (6)
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 24
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 26 (1)
	Slide: 26 (2)
	Slide: 27
	Slide: 28
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 29 (3)
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 33
	Slide: 34
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39 (1)
	Slide: 39 (2)
	Slide: 40

