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Outline
● From theory ...

● From DPLL to DPLL(T)
● Slides courtesy of Alberto Griggio

● … to practice
● SMT-LIB and some common theories
● https://microsoft.github.io/z3guide/  
● https://cvc5.github.io/app/ 
● https://eldarica.org/princess/

https://microsoft.github.io/z3guide/
https://cvc5.github.io/app/
https://eldarica.org/princess/
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Typical Applications of SMT
● Deductive program verification

● Correctness of contracts, invariants
● Testing, symbolic execution

● Path feasibility
● Bounded model checking

● Reachability of errors within k steps
● Model checking

● Computation of finite-state abstraction 
of programs
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Broader Applications

i = 0;
x = j;
while (i < 50) {
   i++;
   x++;
}
if (j == 0)
   assert (x >= 50);
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SAT and SMT
Def.: SAT Solver
Input: Propositional formula C

in n variables
Output: C sat  + satisfying assignment (model)

C unsat [+ Proof]

Def.: SAT Modulo Theories Solver
Input: First-order formula C

in n variables and theories T1, …, Tm
Output: C sat  + satisfying assignment (model)

C unsat [+ Proof]
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SAT and SMT
Def.: SAT Solver
Input: Propositional formula C

in n variables
Output: C sat  + satisfying assignment (model)

C unsat [+ Proof]

Def.: SAT Modulo Theories Solver
Input: First-order formula C

in n variables and theories T1, …, Tm
Output: C sat  + satisfying assignment (model)

C unsat [+ Proof]

Also called a
solution
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Theories

● A theory is like a library:
● Data-types
● Operations on those data-types

● Various examples later

Definition (theory)
A (first-order) theory     is specified by a signature       of 
operations (sorts, functions, predicates), and a class      of 
intended interpretations of the symbols in     .
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We know how to …

Solve Boolean formulas efficiently:
● DPLL, CDCL
● Implemented in SAT solvers

Solve theory constraints efficiently:
● Linear arithmetic: LP, ILP, MIP
● Finite domains: CP, local search
● etc.
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We know how to …

Solve Boolean formulas efficiently:
● DPLL, CDCL
● Implemented in SAT solvers

Solve theory constraints efficiently:
● Linear arithmetic: LP, ILP, MIP
● Finite domains: CP, local search
● etc.

???
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Example!
● How can we solve this formula?
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Eager SMT
● Wide range of data-types can directly 

be encoded in propositional logic:
● Bit-vectors/machine arithmetic
● Equality logic
● Integer arithmetic (how?)

● Approach pioneered by UCLID (2004)
● Today mostly used for bit-vectors
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Lazy, Offline SMT
● Construct a Boolean skeleton of a 

formula, and solve it using SAT

● UNSAT → Finished!
● SAT → Check consistency of

 assigned theory literals
→ Produce a model or

refine skeleton
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Lazy, Offline SMT
Satisfying assignment

Conflict clauses SAT

Formula

Theory Solver(s)

UNSAT

SAT Solver
Boolean Skeleton
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Lazy, Online SMT
● Tightly interleave/integrate

Boolean and theory reasoning
● SAT solver informs theory solvers each 

time a literal is asserted
→ incremental theory solving

● Theory solver informs SAT solver when 
there is a conflict

● + Some further refinements
● Formalised in the DPLL(T) algorithm

[Nieuwenhuis, Oliveras, Tinelli, 2006]
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The DPLL(T) Loop
Inform about literals
Assert literals (decision/propagation)
Check conjunction of asserted literals
Backtrack

Conflict sets
Implied literals

Formula

Theory Solver(s)

SAT/UNSAT

DPLL(T) Solver
Boolean Skeleton
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On to the other slide set ...
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Some SMT solvers
● Z3
● cvc5
● MathSAT
● Yices
● OpenSMT
● Bitwuzla
● SMTInterpol
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SMT-LIB
● Standardised interface for SMT solvers, 

supported by most tools
● Rich set of features, many theories
● Comes with a large library of 

benchmarks; annual competition
SMT-COMP

● http://www.smtlib.org

http://www.smtlib.org/


30/57

SMT-LIB Version 2.7
● Released February 5 2025!

● Some new features:
● Polymorphic sorts and functions
● Higher-order logic syntax, lambdas
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Example 1
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In SMT-LIB
(set-logic QF_LIA)

(declare-const p Bool)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)

(assert (or (> (- (* 2 y) z) 2)       p))
(assert (or (> (- (* 3 x) z) 6)       (not p)))
(assert (or (> (- (* 2 z) (* 4 y)) 5) p))
(assert (or (not (> (- y z) 6))       (not p)))

(check-sat)
(get-model)

Permalink:
https://eldarica.org/princess/?ex=perma%2F1644243468_187318180

https://eldarica.org/princess/?ex=perma%2F1644243468_187318180
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Important SMT-LIB commands
● (set-logic QF_BV)
(set-option …)

● (declare-const b (_ BitVec 8))
(declare-fun f ((x (_ BitVec 2))) Bool)

● (assert (= b #b10100011))
● (check-sat)
● (get-value (b)), (get-model)
● (get-unsat-core)
● (push 1), (pop 1)
● (reset), (exit)
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● (reset), (exit)

Z3, and many 
solvers don't 

care ...
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Important SMT-LIB commands
● (set-logic QF_BV)
(set-option …)

● (declare-const b (_ BitVec 8))
(declare-fun f ((x (_ BitVec 2))) Bool)

● (assert (= b #b10100011))
● (check-sat)
● (get-value (b)), (get-model)
● (get-unsat-core)
● (push 1), (pop 1)
● (reset), (exit)

Z3, and many 
solvers don't 

care ...

In CP or MIP, this
would be called

assume or 
constraint



36/57

General SMT-LIB constructors
● (and …), (or …), (not …), (=> …)
● (= b c)
● (ite (= b c) #b101 #b011)
● (let ((a #b001) (b #b010)) (= a b))
● (exists ((x (_ BitVec 2))) (= #b101 x))
(forall …)

● (! (= b c) :named X)
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Example 2
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Example 2
● Every 32bit number x that is a power of 

2 has the property that
x & (x – 1) == 0

(and vice versa)
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Quantifying Satisfaction?
● SAT/SMT solvers check satisfiability:

● How to prove a universal property?
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Quantifying Satisfaction?
● SAT/SMT solvers check satisfiability:

● How to prove a universal property?
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In SMT-LIB

(set-logic QF_BV)

(declare-const e (_ BitVec 32))
(declare-const x (_ BitVec 32))

(assert (= x (bvshl #x00000001 e)))
(assert (not (= (bvand x (bvsub x #x00000001)) #x00000000)))

(check-sat)

Permalink
https://eldarica.org/princess/?ex=perma%2F1644322914_843217432

https://eldarica.org/princess/?ex=perma%2F1644322914_843217432
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Main SMT-LIB Bit-vector ops.
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV

● (_ BitVec 8)
● #b1010, #xff2a, (_ bv42 32)
● (= (concat #b1010 #b0011) #b10100011)
● (= ((_ extract 1 3) #b10100011) #b010)
● Unary: bvnot, bvneg
● Binary: bvand, bvor, bvadd, bvsub, bvmul,

bvudiv, bvurem, bvshl, bvlshr
● (bvult #b0100 #b0110)
● And many more derived operators ...

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV
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Example 3: Programs
int x, y;

x = x * x;
y = x + 1;

assert(y > 0);
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Example 3: Programs
int x, y;

x = x * x;
y = x + 1;

assert(y > 0);

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_ BitVec 32))

(declare-const x1 (_ BitVec 32))
(declare-const y1 (_ BitVec 32))

(assert (= x1 (bvmul x0 x0)))
(assert (= y1 (bvadd x1 (_ bv1 32))))

(assert (not (bvsgt y1 (_ bv0 32))))

(check-sat)
(get-model)

Z3-specific

Signed 
comparison
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Example 3: Programs
int x, y;

x = x * x;
y = x + 1;

assert(y > 0);

(set-option :pp.bv-literals false)

(declare-const x0 (_ BitVec 32))
(declare-const y0 (_ BitVec 32))

(declare-const x1 (_ BitVec 32))
(declare-const y1 (_ BitVec 32))

(assert (= x1 (bvmul x0 x0)))
(assert (= y1 (bvadd x1 (_ bv1 32))))

(assert (not (bvsgt y1 (_ bv0 32))))

(check-sat)
(get-model)

Z3-specific

Permalink:
https://eldarica.org/princess/?ex=perma%2F1644243605_1707959413 

Signed 
comparison

https://eldarica.org/princess/?ex=perma%2F1644243605_1707959413


46/57

Modelling of
Program Variables

● An SMT-LIB constant represents a 
single value

● Just like mathematical variables
● Program variables

can be reassigned … how
to model computations?

● Main idea: every assignment creates a 
new “version” of a variable

● x0/y0 vs. x1/y1 in example
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Modelling of
Program Variables

● An SMT-LIB constant represents a 
single value

● Just like mathematical variables
● Program variables

can be reassigned … how
to model computations?

● Main idea: every assignment creates a 
new “version” of a variable

● x0/y0 vs. x1/y1 in example

In compilers, this
is called

“Single Static Assignment”
form (SSA)
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Example 4: Conditionals
int x, y;

if (x > 0)
  y = x;
else
  y = -x;

assert(y >= 0);
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Example 4: Conditionals
int x, y;

if (x > 0)
  y = x;
else
  y = -x;

assert(y >= 0);

(set-option :pp.bv-literals false)

(declare-const x0  (_ BitVec 32))
(declare-const y0  (_ BitVec 32))
(declare-const y1a (_ BitVec 32))
(declare-const y1b (_ BitVec 32))
(declare-const y2  (_ BitVec 32))
(declare-const b   Bool)

(assert (= b (bvsgt x0 (_ bv0 32))))
(assert (=> b       (= y1a x0)))
(assert (=> (not b) (= y1b (bvneg x0))))
(assert (= y2 (ite b y1a y1b)))

(assert (not (bvsge y2 (_ bv0 32))))

(check-sat)
(get-model)
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Example 4: Conditionals
int x, y;

if (x > 0)
  y = x;
else
  y = -x;

assert(y >= 0);

(set-option :pp.bv-literals false)

(declare-const x0  (_ BitVec 32))
(declare-const y0  (_ BitVec 32))
(declare-const y1a (_ BitVec 32))
(declare-const y1b (_ BitVec 32))
(declare-const y2  (_ BitVec 32))
(declare-const b   Bool)

(assert (= b (bvsgt x0 (_ bv0 32))))
(assert (=> b       (= y1a x0)))
(assert (=> (not b) (= y1b (bvneg x0))))
(assert (= y2 (ite b y1a y1b)))

(assert (not (bvsge y2 (_ bv0 32))))

(check-sat)
(get-model)

Permalink:
https://eldarica.org/princess/?ex=perma%2F1644243661_2074758304

https://eldarica.org/princess/?ex=perma%2F1644243661_2074758304
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Alternative method:
path-wise exploration

int x, y

x > 0 !(x > 0)

y = -xy = x

assert(...)
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Alternative method:
path-wise exploration

int x, y

x > 0 !(x > 0)

y = -xy = x

assert(...)

● Each query 
smaller, but 
possibly 
exponentially 
many paths

● Learning similar to 
CDCL can be used 
to avoid analysing 
all paths
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The assertion stack
● Holds both assertions and declarations, 

but no options
● Important for incremental use of solver
● (push n) → add n new frames to

the stack
● (pop n) → pop n frames from

the stack
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Typical Architecture

Queries

Answer
(model, proof)

Verifier,
model

checker,
etc.

SAT/SMT
solver
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Example 5: Functions
● Every monotonic function

is idempotent:
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In SMT-LIB
(declare-fun f (Int) Int)

(assert (forall ((x Int))
            (=> (and (<= 0 x) (< x 2))
                (and (<= 0 (f x)) (< (f x) 2)))))
(assert (<= (f 0) (f 1)))

(assert (not (forall ((x Int))
            (=> (and (<= 0 x) (< x 2))
                (= (f (f x)) (f x))))))

(check-sat)

Permalink:
https://eldarica.org/princess/?ex=perma%2F1668764094_519287413 

https://eldarica.org/princess/?ex=perma%2F1668764094_519287413
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Example 6
● N-queens problem using SMT

[Wikipedia]
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In SMT-LIB
(define-fun N () Int 4)

(declare-const q0 Int)
(declare-const q1 Int)
(declare-const q2 Int)
(declare-const q3 Int)

(assert (and (>= q0 0) (< q0 N)))
(assert (and (>= q1 0) (< q1 N)))
(assert (and (>= q2 0) (< q2 N)))
(assert (and (>= q3 0) (< q3 N)))

(assert (distinct q0 q1 q2 q3))
(assert (distinct (+ q0 0) (+ q1 1) (+ q2 2) (+ q3 3)))
(assert (distinct (- q0 0) (- q1 1) (- q2 2) (- q3 3)))

(check-sat)
Permalink:
https://eldarica.org/princess/?ex=perma%2F1668764522_925741057 

https://eldarica.org/princess/?ex=perma%2F1668764522_925741057


59/57

Conclusions
● Most important idea in this lecture:

Lazy encoding of formulas to SAT
● SMT solvers are ...

● Usually optimised for verification:
Good at proving unsat

● Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

● Side-effect: restricted set of operators:
Capture decidable domains

● Good at propositional reasoning
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Conclusions
● Most important idea in this lecture:

Lazy encoding of formulas to SAT
● SMT solvers are ...

● Usually optimised for verification:
Good at proving unsat

● Able to handle infinite domains:
Arithmetic, arrays, strings, etc.

● Side-effect: restricted set of operators:
Capture decidable domains

● Good at propositional reasoning

Compare to 
relaxations
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Outlook
● Various further topics:

● More theories: ADTs, floats, strings, etc.
● Handling of quantifiers
● MaxSAT/MaxSMT
● Optimising SMT

● Python API of SMT solvers:
● Jupyter notebook: https://shorturl.at/bWaPb 

● More lecture slides:
● http://ssa-school-2016.it.uu.se/
● https://sat-smt-ar-school.gitlab.io/www/2022/ 

https://shorturl.at/bWaPb
http://ssa-school-2016.it.uu.se/
https://sat-smt-ar-school.gitlab.io/www/2022/
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