
Introduction to SAT
History, Algorithms, Practical considerations

Daniel Le Berre1

CNRS - Université d’Artois

SAT-SMT summer school
Semmering, Austria, July 10-12, 2014

1Contains material provided by Joao Marques Silva, Armin Biere, Takehide
Soh

1/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Agenda

Introduction to SAT

A bit of history (DP, DPLL)

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

Nearby SAT
MaxSat
Pseudo-Boolean Optimization
MUS

SAT in practice: working with CNF

2/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Disclaimer

I Not a complete view of the
subject

I Limited to one branch of SAT
research (CDCL solvers)

I From an AI background point of
view

I From a SAT solver designer

I For a broader picture of the
area, see the handbook edited in
2009 by the community

3/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Disclaimer: continued

I The best solvers for practical SAT solving in the 90’s were
based on local search or randomized DPLL

I Since then, the best performing solvers are based on the
Conflict Driven Clause Learning architecture.

I The current challenge is to create a new kind of solvers
targeting parallel architectures ...

4/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Agenda

Introduction to SAT

A bit of history (DP, DPLL)

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

Nearby SAT
MaxSat
Pseudo-Boolean Optimization
MUS

SAT in practice: working with CNF

5/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Context: SAT receives much attention since a decade
Why are we all here today?

I Most companies doing software or hardware verification are
now using SAT solvers.

I SAT technology indirectly reaches our everyday life:
I Intel core I7 processor designed with the help of SAT solvers

[Kaivola et al, CAV 2009]
I Windows 7 device drivers verified using SAT related technology

(Z3, SMT solver) [De Moura and Bjorner, IJCAR 2010]
I The Eclipse open platform uses SAT technology for solving

dependencies between components [Le Berre and Rapicault,
IWOCE 2009]

I Many SAT solvers are available from academia or the industry.

I SAT solvers can be used as a black box with a simple
input/ouput language (DIMACS).

I The consequence of a new kind of SAT solver designed in
2001 (Chaff)



The SAT problem: theoretical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: Is there an assignment of the n variables that satisfies all
those clauses?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

7/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The SAT problem: theoretical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: Is there an assignment of the n variables that satisfies all
those clauses?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

7/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The SAT problem solver: practical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, one answer is {a, b, c}, for C2 the answer is C2

8/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The SAT problem solver: practical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, one answer is {a, b, c}, for C2 the answer is C2

8/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


SAT is important in theory ...

I Canonical NP-Complete problem [Cook, 1971]
I Threshold phenomenon on randomly generated k-SAT

instances [Mitchell,Selman,Levesque, 1992]

Example: 1 to 9 ratio #clauses
#variables for k = 3

9/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


... in practice: Computer Aided Verification Award 2009

awarded to

Conor F. Madigan
Sharad Malik
Joao Marques-Silva
Matthew Moskewicz
Karem Sakallah
Lintao Zhang
Ying Zhao

for

fundamental contributions to the
development of high-performance
Boolean satisfiability solvers.

Authors of GRASP SAT solver
Authors of CHAFF SAT solver

10/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


... TACAS 2014 most influential paper in the first 20 years

awarded to

A. Biere
A. Cimatti
E. Clarke
Y. Zhu

for

Symbolic Model Checking without
BDDs

11/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Evolution of the performance of some SAT solvers

12/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Where can we find SAT technology today?

I Formal methods:
I Hardware model checking; Software model checking;

Termination analysis of term-rewrite systems; Test pattern
generation (testing of software & hardware); etc.

I Artificial intelligence:
I Planning; Knowledge representation; Games (n-queens,

sudoku, social golfers, etc.)
I Bioinformatics:

I Haplotype inference; Pedigree checking; Analysis of Genetic
Regulatory Networks ; etc.

I Design automation:
I Equivalence checking; Delay computation; Fault diagnosis;

Noise analysis; etc.
I Security:

I Cryptanalysis; Inversion attacks on hash functions; etc.

13/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Where can we find SAT technology today? II

I Computationally hard problems:
I Graph coloring; Traveling salesperson; etc.

I Mathematical problems:
I van der Waerden numbers; Quasigroup open problems; etc.

I Core engine for other solvers: 0-1 ILP/Pseudo Boolean; QBF;
#SAT; SMT; MAXSAT; ...

I Integrated into theorem provers: HOL; Isabelle; ...
I Integrated into widely used software:

I Suse 10.1 dependency manager based on a custom SAT solver.
I Eclipse provisioning system based on a Pseudo Boolean solver.
I Eiffel language uses Z3 to check contracts.

14/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Agenda

Introduction to SAT

A bit of history (DP, DPLL)

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

Nearby SAT
MaxSat
Pseudo-Boolean Optimization
MUS

SAT in practice: working with CNF

15/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Formulas

I Boolean formula ϕ is defined over a set of propositional
variables x1, . . . , xn, using the standard propositional
connectives ¬, ∧, ∨, →, ↔, parentheses and > (trivially true
formula) and ⊥ (trivially false formula).

I The domain of propositional variables is {True,False}
I Example: ϕ(x1, . . . , x3) = ((¬x1 ∧ x2) ∨ x3) ∧ (¬x2 ∨ x3)

I A formula ϕ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

I Example: ϕ(x1, . . . , x3) ≡
I A formula ϕ in disjunctive normal form (DNF) is a disjunction

of conjunctions (terms) of literals
I Example:
ϕ(x1, . . . , x3) ≡

I Can encode any Boolean formula into Normal Form

16/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Formulas

I Boolean formula ϕ is defined over a set of propositional
variables x1, . . . , xn, using the standard propositional
connectives ¬, ∧, ∨, →, ↔, parentheses and > (trivially true
formula) and ⊥ (trivially false formula).

I The domain of propositional variables is {True,False}
I Example: ϕ(x1, . . . , x3) = ((¬x1 ∧ x2) ∨ x3) ∧ (¬x2 ∨ x3)

I A formula ϕ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

I Example: ϕ(x1, . . . , x3) ≡ (¬x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x3)

I A formula ϕ in disjunctive normal form (DNF) is a disjunction
of conjunctions (terms) of literals

I Example:
ϕ(x1, . . . , x3) ≡

I Can encode any Boolean formula into Normal Form

16/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Formulas

I Boolean formula ϕ is defined over a set of propositional
variables x1, . . . , xn, using the standard propositional
connectives ¬, ∧, ∨, →, ↔, parentheses and > (trivially true
formula) and ⊥ (trivially false formula).

I The domain of propositional variables is {True,False}
I Example: ϕ(x1, . . . , x3) = ((¬x1 ∧ x2) ∨ x3) ∧ (¬x2 ∨ x3)

I A formula ϕ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

I Example: ϕ(x1, . . . , x3) ≡ (¬x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x3)

I A formula ϕ in disjunctive normal form (DNF) is a disjunction
of conjunctions (terms) of literals

I Example:
ϕ(x1, . . . , x3) ≡ (¬x1 ∧ x2 ∧ x3) ∨ (x3 ∧ ¬x2) ∨ x3

I Can encode any Boolean formula into Normal Form

16/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The resolution principle and classical simplification rules
John Alan Robinson, ”A Machine-Oriented Logic Based on the Resolution
Principle”, Communications of the ACM, 5:23-41, 1965.

resolution:
x1 ∨ x2 ∨ x3 x1 ∨ ¬x2 ∨ x4

x1 ∨ x1 ∨ x3 ∨ x4

merging:
x1 ∨ x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

subsumption:
α ∨ β α

α

17/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The resolution principle and classical simplification rules
John Alan Robinson, ”A Machine-Oriented Logic Based on the Resolution
Principle”, Communications of the ACM, 5:23-41, 1965.

resolution:
x1 ∨ x2 ∨ x3 x1 ∨ ¬x2 ∨ x4

x1 ∨ x1 ∨ x3 ∨ x4

merging:
x1 ∨ x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

subsumption:
α ∨ β α

α

What happens if we apply resolution between ¬x1 ∨ x2 ∨ x3 and
x1 ∨ ¬x2 ∨ x4?

17/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The resolution principle and classical simplification rules
John Alan Robinson, ”A Machine-Oriented Logic Based on the Resolution
Principle”, Communications of the ACM, 5:23-41, 1965.

resolution:
x1 ∨ x2 ∨ x3 x1 ∨ ¬x2 ∨ x4

x1 ∨ x1 ∨ x3 ∨ x4

merging:
x1 ∨ x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

subsumption:
α ∨ β α

α

What happens if we apply resolution between ¬x1 ∨ x2 ∨ x3 and
x1 ∨ ¬x2 ∨ x4?
A tautology: x2 ∨ ¬x2 ∨ x3 ∨ x4.

17/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Applying resolution to decide satisfiability

I Apply resolution between clauses with exactly one opposite
literal

I possible outcome:
I a new clause is derived: remove subsumed clauses
I the resolvent is subsumed by an existing clause

I until empty clause derived or no new clause derived
I Main issues of the approach:

I In which order should the resolution steps be performed?
I huge memory consumption!

18/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The Davis and Putnam procedure: basic idea
Davis, Martin; Putnam, Hillary (1960). ”A Computing Procedure for Quantification
Theory”. Journal of the ACM 7 (3): 201-215.

Resolution used for variable elimination: (A ∨ x) ∧ (B ∨ ¬x) ∧ R is
satisfiable iff (A ∨ B) ∧ R is satisfiable.

I Iteratively apply the following steps:
I Select variable x
I Apply resolution between every pair of clauses of the form

(x ∨ α) and (¬x ∨ β)
I Remove all clauses containing either x or ¬x

I Terminate when either the empty clause or the empty formula
is derived

Proof system: ordered resolution

19/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Variable elimination – An Example

( x1 ∨ ¬x2 ∨ ¬x3) ∧ ( ¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

( ¬x2 ∨ ¬x3) ∧ ( x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

(x3 ∨ x4 ) ∧ (x3 ∨ ¬x4 ) �

x3 �

>

I Formula is SAT

20/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Variable elimination – An Example

( x1 ∨ ¬x2 ∨ ¬x3) ∧ ( ¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

( ¬x2 ∨ ¬x3) ∧ ( x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

(x3 ∨ x4 ) ∧ (x3 ∨ ¬x4 ) �

x3 �

>

I Formula is SAT

20/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Variable elimination – An Example

( x1 ∨ ¬x2 ∨ ¬x3) ∧ ( ¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

( ¬x2 ∨ ¬x3) ∧ ( x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

(x3 ∨ x4 ) ∧ (x3 ∨ ¬x4 ) �

x3 �

>

I Formula is SAT

20/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Variable elimination – An Example

( x1 ∨ ¬x2 ∨ ¬x3) ∧ ( ¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

( ¬x2 ∨ ¬x3) ∧ ( x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

(x3 ∨ x4 ) ∧ (x3 ∨ ¬x4 ) �

x3 �

>

I Formula is SAT

20/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Variable elimination – An Example

( x1 ∨ ¬x2 ∨ ¬x3) ∧ ( ¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

( ¬x2 ∨ ¬x3) ∧ ( x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

(x3 ∨ x4 ) ∧ (x3 ∨ ¬x4 ) �

x3 �

>

I Formula is SAT

20/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Variable elimination – An Example

( x1 ∨ ¬x2 ∨ ¬x3) ∧ ( ¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

( ¬x2 ∨ ¬x3) ∧ ( x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ ¬x4) �

(x3 ∨ x4 ) ∧ (x3 ∨ ¬x4 ) �

x3 �

>

I Formula is SAT

20/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The Davis and Putnam procedure: the refinements

Add specific cases to order variable elimination steps

I Iteratively apply the following steps:
I Apply the pure literal rule and unit propagation
I Select variable x
I Apply resolution between every pair of clauses of the form

(x ∨ α) and (¬x ∨ β)
I Remove all clauses containing either x or ¬x

I Terminate when either the empty clause or the empty formula
is derived

21/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Pure Literals

I A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula

I Example:
ϕ = ( ¬x1 ∨ x2) ∧ ( x3 ∨ ¬x2) ∧ (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)

I ¬x1 and x3 are pure literals

I Pure literal rule: first, eliminate pure literals because no
resolvent is produced!

I applying a variable elimination step on a pure literal strictly
reduces the number of clauses!

22/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation

I Unit clause: a clause with only one literal

I Specific case of resolution: only shorten clauses.

unit resolution:
x1 ∨ x2 ∨ x3 ¬x2

x1 ∨ x3

I Since clauses are shortened, new unit clauses may appear.
Empty clauses also!

I Unit propagation: apply unit resolution while new unit clauses
are produced.

23/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


DP60: The limits

I The approach runs easily out of memory.

I Even recent attempts using a ROBDD representation [Simon
and Chatalic 2000] do not scale well.

I The solution: using backtrack search!

24/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


DLL62: Preliminary definitions

I Propositional variables can be assigned value False or True
I In some contexts variables may be unassigned

I A clause is satisfied if at least one of its literals is assigned
value True

(x1 ∨ ¬x2 ∨ ¬x3)

I A clause is unsatisfied if all of its literals are assigned value
False (also called a conflict clause)

(x1 ∨ ¬x2 ∨ ¬x3)

I A clause is unit if it contains one single unassigned literal and
all other literals are assigned value False

(x1 ∨ ¬x2 ∨ ¬x3)

I A formula is satisfied if all of its clauses are satisfied
I A formula is unsatisfied if at least one of its clauses is

unsatisfied

25/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


DLL62: space efficient DP60
Davis, Martin; Logemann, George, and Loveland, Donald (1962). ”A Machine
Program for Theorem Proving”. Communications of the ACM 5 (7): 394-397.

I Standard backtrack search
I DPLL(F):

I Apply unit propagation
I If conflict identified, return UNSAT
I Apply the pure literal rule
I If F is satisfied (and possibly empty), return SAT
I Select unassigned variable x

I If DPLL(F ∧ x)=SAT return SAT
I return DPLL(F ∧ ¬x)

Proof system: tree resolution

26/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Pure Literals in backtrack search

I Pure literal rule:
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

I Example:
ϕ = ( ¬x1 ∨ x2) ∧ ( x3 ∨ ¬x2) ∧ (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)

I The resulting formula becomes:
ϕ¬x1,x3 = (x4 ∨ ¬x5) ∧ (x5 ∨ ¬x4)

I if ` is a pure literal in ϕ, then ϕ` ⊂ ϕ
I Preserve satisfiability, not logical equivalency!

27/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation in backtrack search

I Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

I Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be
assigned value False

I Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

28/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation in backtrack search

I Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

I Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be
assigned value False

I Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

28/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation in backtrack search

I Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

I Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be
assigned value False

I Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

28/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation in backtrack search

I Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

I Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be
assigned value False

I Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

28/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation in backtrack search

I Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

I Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be
assigned value False

I Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

28/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation in backtrack search

I Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

I Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be
assigned value False

I Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

28/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit Propagation in backtrack search

I Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

I Example: for unit clause (x1 ∨ ¬x2 ∨ ¬x3), x3 must be
assigned value False

I Unit propagation
Iterated application of the unit clause rule

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

Unit propagation can satisfy clauses but can also falsify clauses
(i.e. conflicts)

28/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

a

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

conflict

a

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

b

a

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

a

c

b

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

conflict

a

c

b

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e) b

conflict

a

c

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


An Example of DPLL

ϕ = (a ∨ ¬b ∨ d) ∧ (a ∨ ¬b ∨ e) ∧
(¬b ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬b) ∧
(a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ ¬d) ∧
(a ∨ b ∨ ¬c ∨ e) ∧ (a ∨ b ∨ ¬c ∨ ¬e)

29/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


DP, DLL or DPLL ?

I DPLL = DP + DLL

I Acknowledge the principles in DP60 and their memory
efficient implementation in DP62

I DPLL commonly used to denote complete solvers for SAT: no
longer true for modern complete SAT solvers.

I The focus of researchers in the 90’s was mainly to improve the
heuristics to select the variables to branch on on randomly
generated formulas.

I Introduction of non chronological backtracking and learning to
solve structured/real world formulas

30/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments
I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False

I Assign a = False and imply assignments
I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments

I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments

I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments
I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied

I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments
I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥

I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments
I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments
I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )

I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Learning

I During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

I Assume decisions c = False and f = False
I Assign a = False and imply assignments
I A conflict is reached: (¬d ∨ ¬e ∨ f ) is unsatisfied
I ϕ ∧ ¬a ∧ ¬c ∧ ¬f ⇒ ⊥
I ϕ⇒ a ∨ c ∨ f

I Learn new clause (a ∨ c ∨ f )
I Next time will propagate a: reveals a missing propagation!

31/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g,b,d, e

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e ) ∧ (¬d ∨ ¬e ∨ f )∧
(a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Learned: (a ∨ c ∨ f )

(¬d ∨ ¬e ∨ f )

32/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g,b, d ,e

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d ) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f )∧
(a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Learned: (a ∨ c ∨ f )

(¬b ∨ ¬d ∨ f )

32/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g, b ,d,e

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f )∧
(a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b ) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Learned: (a ∨ c ∨ f )

( ¬b ∨ c ∨ f )

32/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g ,b,d,e

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f )∧
(a ∨ c ∨ f ) ∧ (¬a ∨ g ) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Learned: (a ∨ c ∨ f )

( ¬g ∨ c ∨ f )

32/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a : g,b,d,e

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f )∧
(a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Learned: ( a ∨ c ∨ f )

( ¬a ∨ c ∨ f )

32/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g,b,d,e

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f )∧
(a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

Learned: ( a ∨ c ∨ f )

(c ∨ f )

32/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Implementation of NCB and Learning for SAT

I Two approaches developed independently in two different
research communities:
GRASP/EDA by Marques-Silva and Sakallah (1996)

I Resolution graph seen as a circuit
I Conflict analysis thought as detecting faults in a

circuit
I Other sophisticated conflict analysis methods

based on truth maintenance systems
RELSAT/CSP by Bayardo and Schrag (1997)

I Introduction of CSP based techniques into a
SAT solver

I Conflict Directed Backjumping aka non
chronological backtracking [Prosser 93]

I Size based and relevance based learning schemes
I Main difference: in GRASP’s framework, the conflict analysis

drives the search, while in RELSAT it is the heuristics (more
later).

33/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Agenda

Introduction to SAT

A bit of history (DP, DPLL)

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

Nearby SAT
MaxSat
Pseudo-Boolean Optimization
MUS

SAT in practice: working with CNF

34/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


GRASP architecture
João P. Marques Silva, Karem A. Sakallah: GRAPS: A Search Algorithm for
Propositional Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)

35/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Role of the boolean propagator

I Perform unit propagation on the set of clauses.

I Detect conflicts

I Backtrack according to a specific clause provided by the
conflict analyzer

36/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict analyzer

I Must produce a clause that becomes a unit clause after
backtracking (asserting clause)

I Introduction of the notion of Unique Implication Point (UIP),
as a reference to Unique Sensitization Points in ATPG.

I Find a literal that need to be propagated before reaching a
conflict

I Based on the notion of decision level, i.e. the number of
assumptions made so far.

I Syntactical: apply resolution until only one literal from current
decision level appears in the clause.

I Decision variables are always UIP: at least one UIP exists for
each conflict!

I Backtracking level computed as the lowest decision level of
the literals of the clause

37/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict graph for assumption a=False

ϕ = ( a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f ) . . .

38/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict graph after learning a ∨ c ∨ f and backjumping

ϕ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e) ∧ (¬d ∨ ¬e ∨ f )∧
(a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬h ∨ j) ∧ (¬i ∨ k)

39/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Some remarks about UIPs

I There are many possibilities to derive a clause using UIP

I RELSAT can be seen as applying Decision UIP

I Decision UIP always flip the decision variable truth value: the
search is thus driven by the heuristics.

I Using other UIP scheme, the value of any of the literal
propagated at the current decision level may be flipped. The
search is thus driven by the conflict analysis.

I Generic name for GRASP approach: Conflict Driven Clause
Learning (CDCL) solver [Ryan 2004].

40/117

file://aim-50-cdcl-search-example.jpg
file://aim-50-cdcl-search-example.jpg
http://www.cnrs.fr/
http://www.univ-artois.fr/


Decision heuristics

I Pick an unassigned variable

I Many sophisticated decision heuristics available in the
literature for random formulas (MOMS, JW, etc).

I GRASP uses dynamic largest individual sum (DLIS): select the
literal with the maximum occurrences in unresolved clauses.

I Sophisticated heuristics require an exact representation of the
state of the CNF after unit propagation!

41/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Putting everything together: the CDCL approach

42/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


From GRASP to CHAFF

I Some key insights in the design of SAT solvers were discovered
when trying to solve real problems by translation into SAT.

I Huge interest on SAT after the introduction of Bounded
Model Checking [Biere et al 99] from the EDA community.

I The design of SAT solver becomes more pragmatic

43/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Application 1: Planning as satisfiability
Henry A. Kautz, Bart Selman: Planning as Satisfiability. ECAI 1992: 359-363

I Input: a set of actions, an initial state and a goal state

I Output: a sequence of actions to reach the goal state from
the initial state

I One of the first application of SAT in Artificial Intelligence

I A key application for the adoption of SAT in EDA later on

I The instances are supposed to be SAT

I Those instances are too big for complete solvers based on
DPLL

44/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


1992 - Planning As Satisfiability

PAS(S , I ,T ,G , k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

G (si )

où :

S the set of possible states si

I the initial state

T transitions between states

G goal state

k bound

If the formula is satisfiable, then there is a plan of length at most k .

45/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Greedy SAT (Local Search Scheme for SAT)

f u n c t i o n GSAT(CNF c , i n t m a x t r i e s , i n t m a x f l i p s ) {
// DIVERSIFICATION STEP
f o r ( i n t i =0; i< m a x t r i e s ; i ++) {

m = randomAssignment ( ) ;
// INTENSIFICATION STEP
f o r ( i n t j =0; j<m a x f l i p s ; j ++) {

i f (m s a t i s f i e s c )
r e t u r n SAT ;

f l i p (m) ;
}

}
r e t u r n UNKNOWN;

}

46/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Lessons learned from GSAT

I The decision procedure is very simple to implement and very
fast!

I Efficiency depends on which literal to flip, and the values of
the parameters.

I Problem with local minima: use of Random Walks!

I Main drawback: incomplete, cannot answer UNSAT!

I Lesson 1: An agile (fast) SAT solver sometimes better than a
clever one!

47/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Application 2: Quasigroup (Latin Square) open problems

I S a set and * a binary operator. |S | is the order of the group.
I a*b=c has a unique solution when fixing any pair of variables.
I equivalent to fill in a |S | × |S | square with elements of S

unique in each row and column.
I Looking for the existence of QG of a given order with

additional constraints, e.g.:

QG1 x ∗ y = u, z ∗ w = u, v ∗ y = x , v ∗ w = z ⇒
x = z , y = w

QG2 x ∗ y = u, z ∗ w = u, y ∗ v = x ,w ∗ v = z ⇒
x = z , y = w

I First open QG problems solved by MGTP (Fujita, Slaney,
Benett 93)

I QG2(12) solved by DDPP in 1993.
I QG1(12), QG2(14),QG2(15) solved by SATO in 1996.

48/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


SATO head/tail lazy data structure
Zhang, H., Stickel, M.: Implementing Davis-Putnam’s method . It appeared as a
Technical Report, The University of Iowa, 1994

I CNF resulting for QG problems have a huge amount of
clauses: 10K to 150K!

I Encoding of real problems into SAT can lead to very large
clauses

I Truth value propagation cost in eager data structure depends
on the number of propagation to perform, thus on the size of
the clauses

I How to limit the cost of numerous and long clauses during
propagation?

I Answer: use a lazy data structure to detect only unit
propagation and falsified literals.

49/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The Head/Tail data structure

initially put a head (resp. tail) pointer to the first (resp. last)
element of the clause

during propagation move heads or tails pointing to the negation of
the propagated literal. Easy identification of unit and
falsified clauses.

during backtracking move back the pointers to their previous
location

50/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit propagation with Adjacency lists

51/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Unit propagation with Head /Tail

52/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Pro and Cons of the H/T data structure

advantage reduces the cost of unit propagation

drawback the solver has no longer a complete picture of the
reduced CNF!

Lesson 2: data structure matters !

53/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


High variability of SAT solvers runtime!
Heavy-tailed Distributions in Combinatorial Search. Carla Gomes, Bart Selman,
and Nuno Crato. In Principles and Practices of Constraint Programming, (CP-97)
Lecture Notes in Computer Science 1330, pp 121-135, Linz, Austria., 1997.
Springer-Verlag

I SAT solvers exhibits on some problems a high runtime
variability

I Decision heuristics need to break ties, often randomly
I The solver are sensible to syntactical input changes:

I Shuffled industrial benchmarks harder than original ones for
most solvers

I The “lisa syndrome” during the SAT 2003 competition

I An explanation: Heavy tailed distribution

54/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Example of variability: SAT4J GreedySolver on QGH

55/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Example of variability: SAT4J GreedySolver on QGH

56/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Heavy Tailed distribution

I Introduced by the economist Pareto in the context of income
distribution

I Widely used in many areas: stock market analysis, weather
forecast, earthquake prediction, time delays on the WWW.

I Those distributions have infinite mean and infinite variance

I Some SAT solvers exhibit an Heavy Tailed distribution on
Quasigroup Completion with Holes problems.

I What does it mean in practice ?
I In rare occasion, the solver can get trapped on a very long run
I while most of the time the run could be short

I the solution: restarts!

57/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Restarting in SAT solvers

I Stop the search after a given number of
conflicts/decisions/propagation is achieved (cutoff).

I Start again the search [with increased cutoff to be complete]

I Requires some variability in the solver behavior between two
runs

I Problem: how to choose the cutoff value?

I In theory, an optimal strategy exists [Luby 93].

I Lesson 3: introduce restarts to make the solver more robusts

58/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The killer app: Bounded Model Checking
A. Biere, A. Cimatti, E. Clarke, M. Fujita, Y. Zhu. Symbolic Model Checking using
SAT procedures instead of BDDs. In Proc. ACM Design Automation Conf.
(DAC’99), ACM 1999.

BMC (S , I ,T , p, k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

¬p(si )

where :

S the set of possible states si
I the initial state

T transitions between states

p is an invariant property

k a bound

If the formula is satisfiable, then there is a counter-example
reachable within k steps.

59/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


SAT vs BDD model checking

I Some model checking problems out of reach of BDD checkers
can be solved thanks to a reduction to SAT

I The behavior of SAT solvers is less dependent of the form of
the input than BDD solvers

I But the SAT solvers are not powerful enough yet for industrial
use...

60/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The breakthrough: Chaff
Chaff: Engineering an Efficient SAT Solver by M. Moskewicz, C. Madigan, Y.
Zhao, L. Zhang, S. Malik, 39th Design Automation Conference (DAC 2001), Las
Vegas, June 2001.

I 2 order of magnitude speedup on unsat instances compared to
existing approaches on BMC (Velev) benchmarks.

I Immediate speedup for SAT based tools: BlackBox
“Supercharged with Chaff”

I Based on careful analysis of GRASP internals
I 3 key features:

I New lazy data structure: Watched literals
I New adaptative heuristic: Variable State Independent

Decaying Sum
I New conflict analysis approach: First UIP

I Taking into account randomization

61/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The watched literals data structure

initially watch two arbitrary literals in the clause

during propagation move watchers pointers in clauses containing
the negation of the propagated literal.

during backtracking do nothing!

advantage cost free data structure when backtracking

issue pointers can move in both directions.

62/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Variable State Independent Decaying Sum

I compatible with Lazy Data Structures

I each literal has a score

I score based on the number of occurrences of the literals in the
formula

I score updated whenever a new clause is learned

I pick the unassigned literal with the highest score, tie broken
randomly

I regularly (every 256 conflicts), divided the scores by a
constant (2)

63/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


New Learning Scheme: First UIP
Efficient Conflict Driven Learning in a Boolean Satisfiability Solver by L. Zhang, C.
Madigan, M. Moskewicz, S. Malik, Proceedings of ICCAD 2001, San Jose, CA,
Nov. 2001

I The idea is to quickly compute a reason for the conflict

I Stop the resolution process as soon as an UIP is detected

I First UIP Shown to be optimal in terms of backtrack level
compared to the other possible UIPs [Audemard et al 08].

64/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Chaff: a highly coupled set of features

I Learning does not degrade solver performance because the use
of the watched literals

I The VSIDS heuristics does not need a complete picture of the
reduced formula, i.e. is compatible with the lazy data
structure.

I VSIDS take advantage of the conflict analysis to spot
important literals.

I VSIDS provides different orders of literals at each restart

I VSIDS adapt itself to the instance!

65/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The reason of the success?

I Better engineering (level 2 cache awareness)?

I Better tradeoff between speed and intelligence?

I Instance-based auto adaptation?

I ...

66/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The reason of the success?

I Better engineering (level 2 cache awareness)?

I Better tradeoff between speed and intelligence?

I Instance-based auto adaptation?

I ...

66/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The reason of the success?

I Better engineering (level 2 cache awareness)?

I Better tradeoff between speed and intelligence?

I Instance-based auto adaptation?

I ...

66/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The reason of the success?

I Better engineering (level 2 cache awareness)?

I Better tradeoff between speed and intelligence?

I Instance-based auto adaptation?

I ...

66/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The reason of the success?

I Better engineering (level 2 cache awareness)?

I Better tradeoff between speed and intelligence?

I Instance-based auto adaptation?

I ...

All those reasons are correct. There is a more fundamental reason
too ...

66/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


CDCL has a better proof system than DPLL!
Proof theory strikes back!

I ... thanks to many others before ...
I Bonet, M. L., & Galesi, N. (2001). Optimality of size-width

tradeoffs for resolution. Computational Complexity, 10(4),
261-276.

I Beame, P., Kautz, H., and Sabharwal, A. Towards understanding
and harnessing the potential of clause learning. JAIR 22 (2004),
319-351.

I Van Gelder, A. Pool resolution and its relation to regular
resolution and dpll with clause learning. In LPAR’05 (2005), pp.
580-594.

I Hertel, P., Bacchus, F., Pitassi, T., and Van Gelder, A. Clause
learning can effectively p-simulate general propositional
resolution. In Proc. of AAAI-08 (2008), pp. 283-290.

I Knot Pipatsrisawat and Adnan Darwiche. On the power of
clause-learning sat solvers as resolution engines. Artif. Intell.,
175(2) :512–525, 2011

I Albert Atserias, Johannes Klaus Fichte, and Marc Thurley.
Clause-learning algorithms with many restarts and bounded-width
resolution. J. Artif. Intell. Res. (JAIR), 40 :353–373, 2011

67/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


CDCL has a better proof system than DPLL!
Proof theory strikes back!

Definition

p-simulation Proof system S p-simulates proof system T , if, for
every unsatisfiable formula ϕ, the shortest refutation proof of ϕ in
S is at most polynomially longer than the shortest refutation proof
of ϕ in T.

68/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


CDCL has a better proof system than DPLL!
Proof theory strikes back!

Definition

p-simulation Proof system S p-simulates proof system T , if, for
every unsatisfiable formula ϕ, the shortest refutation proof of ϕ in
S is at most polynomially longer than the shortest refutation proof
of ϕ in T.

Theorem 1 [Pipatsrisawat, Darwiche 09]. CLR with any asserting
learning scheme p-simulates general resolution.

68/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Since Chaff ...

I The international SAT competition/SAT race is organized
every year

I A huge number of CDCL solvers have been developed, and
made available to the community

I SAT has integrated the engineer toolbox to solve
combinatorial problems

I Many papers published on the design of efficient SAT solvers

I ... but a big part of the knowledge still lies in source code!

69/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Since Chaff ...

I The international SAT competition/SAT race is organized
every year

I A huge number of CDCL solvers have been developed, and
made available to the community

I SAT has integrated the engineer toolbox to solve
combinatorial problems

I Many papers published on the design of efficient SAT solvers

I ... but a big part of the knowledge still lies in source code!

69/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Minisat: the minimalist CDCL SAT solver
Niklas Eén, Niklas Sörensson: An Extensible SAT-solver. SAT 2003: 502-518

I very simple implementation of a Chaff-like solver

I resulting from the lessons learned from designing Satzoo (SAT
2003 Winner) and SATnick

I with implementation improvements (Watched Literals,
Heuristics, Priority Queue (2005), etc.)

I ready for generic constraints (cardinality, linear pseudo
boolean, etc.).

I published description of the design

Reduced the entry level required to experiment with CDCL SAT
solvers

70/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The watched literals data structure improved
[mChaff,vanGelder02,Minisat]

initially watch the two first literals in the clause

during propagation move falsified literal in second position.
Exchange it with an unassigned literal is any. Easy
identification of unit and falsified clauses.

during backtracking do nothing!

advantage cost free data structure when backtracking

71/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


The watched literals data structure improved
[mChaff,vanGelder02,Minisat]

initially watch the two first literals in the clause

during propagation move falsified literal in second position.
Exchange it with an unassigned literal is any. Easy
identification of unit and falsified clauses.

during backtracking do nothing!

advantage cost free data structure when backtracking

Moving literals instead of pointers in HT data structure also
provides cost free backtracking!

71/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Berkmin style heuristic
Evguenii I. Goldberg, Yakov Novikov: BerkMin: A Fast and Robust Sat-Solver.
DATE 2002: 142-149

Ideas:

I force the heuristic to satisfy recently learned clauses to be
more reactive than VSIDS

I sophisticated phase selection strategy based on an estimate of
the unit propagations to result from the selection (a la SATZ
[Li Anbulagan 97]).

I take into account literals met during the conflict analysis

Berkmin performed quite well during SAT 2002 (despite a stupid
bug) and it’s successor Forklift won in 2003.

72/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose
decisionLevel(f ) = x and
decisionLevel(c) = y with x > y .
Propagations deriving from a: g,b,d, e

Reasons of the propagations:

= (a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ e )

Conflicting clause (resolvent);

(¬d@x ∨ ¬e@x ∨ f @x)

73/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose
decisionLevel(f ) = x and
decisionLevel(c) = y with x > y .
Propagations deriving from a: g,b, d ,e

Reasons of the propagations:

= (a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b) ∧ (¬b ∨ c ∨ d )

Conflicting clause (resolvent);

(¬b@x ∨ ¬d@x ∨ f @x)

73/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose
decisionLevel(f ) = x and
decisionLevel(c) = y with x > y .
Propagations deriving from a: g, b ,d,e

Reasons of the propagations:

= (a ∨ c ∨ f ) ∧ (¬a ∨ g) ∧ (¬g ∨ b )

Conflicting clause (resolvent);

( ¬b@x ∨ c@y ∨ f @x)

73/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose
decisionLevel(f ) = x and
decisionLevel(c) = y with x > y .
Propagations deriving from a: g ,b,d,e

Reasons of the propagations:

= (a ∨ c ∨ f ) ∧ (¬a ∨ g )

Conflicting clause (resolvent);

( ¬g@x ∨ c@y ∨ f @x)

73/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose
decisionLevel(f ) = x and
decisionLevel(c) = y with x > y .
Propagations deriving from a : g,b,d,e

Reasons of the propagations:

= ( a ∨ c ∨ f )

Conflicting clause (resolvent);

( ¬a@x ∨ c@y ∨ f @x)

73/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose
decisionLevel(f ) = x and
decisionLevel(c) = y with x > y .
Propagations deriving from a: g,b,d,e

Reasons of the propagations:
Conflicting clause (resolvent);

(c@y ∨ f @x)

First UIP! only one literal at decision level x left.

73/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Conflict Clause minimization
Minisat 1.13, N. Sörensson, A. Biere. Minimizing Learned Clauses. In Proc. 12th
Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT’09), Lecture
Notes in Computer Science (LNCS) vol. 5584, pages 237-243, Springer 2009.

I Clauses generated using the 1st UIP scheme can be simplified

I Using simple direct self subsumption (direct dependencies
among the clause’s literals outside current decision level):

self subsumption:
x1@1 ∨ x2@1 ∨ x3@2 x1@1 ∨ ¬x2@1

x1@1 ∨ x3@2

I Using a chain of resolution steps

74/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Recursively Minimizing Learned Clause Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

30

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

! conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)

(d∨b∨ e)
(e∨g∨h) (d∨g∨ s∨h)

(e∨d∨g∨ s)
(b∨d∨g∨ s)

(d∨g∨ s)

SAT, SMT and Applications – LPNMR’09 Armin Biere – FMV – JKU Linz



Preprocessing
Niklas Eén, Armin Biere: Effective Preprocessing in SAT Through Variable and
Clause Elimination. SAT 2005: 61-75

I Variable elimination
I as in DP60 if the number of clauses does not increase
I by substitution if a definition such as x ↔ y1 ∨ ... ∨ yn or

x ↔ y1 ∧ ... ∧ yn is detected.
I Clause subsumption

I self subsumption
I classical subsumption

I SatELite: de-facto standard pre-processor since 2005
I Included in Minisat 2 (better integration with the SAT solver)
I Still used by SAT solver designers that do not want to

implement their own
I But also clause and variable addition
I preprocessing on the fly: in processing in

lingeling/cryptominisat

76/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Clause Minimization and Preprocessing @SAT COMP. 2005

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

14000

 w
lls

atv
1

 hs
at.

5

 va
lls

t.s
h

 sa
t4j

.ja
r

 co
mps

at

 zc
ha

ff

 zc
ha

ff ra
nd

 cs
at

 H
aif

aS
at

 Je
rus

at1
.31

B

 m
ini

sa
t s
tat

ic

 S
atE

Lit
eG

TI

#Solved

C
PU

Ti
m

e 
ne

ed
ed

 (s
)

Second Stage:
All solvers on renamed Industrial benchmarks

wllsatv1 (92)
hsat.5 (153)
vallst.sh (154)
sat4j.jar (180)
compsat (189)
zchaff (197)
zchaffrand (226)
csat (231)
HaifaSat (242)
Jerusat1.31B (243)
minisatstatic (250)
SatELiteGTI (267)

77/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Efficiency of solvers incorporating inprocessing (Armin’s
solvers)

78/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Phase Saving
Knot Pipatsrisawat, Adnan Darwiche: A Lightweight Component Caching Scheme
for Satisfiability Solvers. SAT 2007: 294-299

I To concentrate on a single component, keep track of the
phase of assigned literals when restarting.

I Always branch first on the recorded phase when taking a
decision.

I A small change in the code of the solver, a big improvement
in practice (at least for pure SAT :))!

I Note: RSAT forgets the phase after a while ...

79/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Rapid Restarts
Jinbo Huang: The Effect of Restarts on the Efficiency of Clause Learning. IJCAI
2007: 2318-2323

I Restarts bounds usually grow slowly until being large enough
to ensure completeness

I Different restart strategies make huge differences depending of
the benchmarks

I Rapid Restarts strategies usually a good companion for Phase
Saving

80/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Armin Inner/Outer rapid restarts
Armin Biere: PicoSAT Essentials. JSAT 4(2-4): 75-97 (2008)

i n t i n n e r = 100 , o u t e r = 1 0 0 ;
i n t r e s t a r t s = 0 , c o n f l i c t s = 0 ;

f o r ( ; ; ) {
. . . // run SAT c o r e l o o p f o r i n n e r c o n f l i c t s

r e s t a r t s ++; c o n f l i c t s += i n n e r ;
i f ( i n n e r >= o u t e r ) {

o u t e r ∗= 1 . 1 ; i n n e r = 1 0 0 ;
e l s e

i n n e r ∗= 1 . 1 ;
}

81/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Luby series rapid restarts
Michael Luby, Alistair Sinclair, David Zuckerman: Optimal Speedup of Las Vegas
Algorithms. ISTCS 1993: 128-133

I Used in SATZ rand and Relsat rand within Blackbox
[Kautz,Selman 99]

I Used in Tinisat and RSAT in 2007 with factor 512.

82/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Comparison of a few different restarts strategies

83/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Effect of Rapid Restarts in SAT4J

Using the SAT Race 2006 benchmarks set (100 benchmarks), with
a timeout of 900 seconds per benchmark:

Configuration Total SAT UNSAT Time

MiniSAT 58 29 29 835

Luby (factor 32) 59 24 35 790
Luby (factor 512, no PS, no CCM) 48 19 29 947
Luby (factor 512, no CCM) 55 26 29 866
Luby scheme (factor 512) 61 29 32 788

Armin 61 27 34 790
Time is given in minutes, on a PIV 3GHz, 1.5GB of RAM, Java 6
VM under Mandriva Linux 2007.1.

84/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Adaptative restarts during the SAT 2009 competition

picosat A. Biere. Adaptive Restart Control for Conflict
Driven SAT Solvers. In Proc. 11th Intl. Conf. on
Theory and Applications of Satisfiability Testing
(SAT’08), Lecture Notes in Computer Science
(LNCS) vol. 4996, Springer 2008.

Minisat09z Carsten Sinz, Markus Iser: Problem-Sensitive Restart
Heuristics for the DPLL Procedure. SAT 2009:
356-362

Lysat Youssef Hamadi, Said Jabbour, and Lakhdar Sais.
ManySAT: a Parallel SAT Solver. Volume 6 (2009),
pages 245-262.

glucose Predicting Learnt Clauses Quality in Modern SAT
Solver G. Audemard, L. Simon, in Twenty-first
International Joint Conference on Artificial
Intelligence (IJCAI’09), july 2009.

85/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Glucose : agressive learned clause deletion strategies

I Learning a huge amount of clauses reduces the velocity of the
solver.

I It would be nice to keep only ”important” clauses inside the
solver.

I New measure proposed by Glucose: Literal Block Distance
(LBD)
count for each clause the number of different decision level in
that clause
x1@1 ∨ x2@3 ∨ x3@1 ∨ x4@2 ∨ x5@1 LBD = 3

I Glucose 1, 2, 2.1, 3.0 : improvement and generalization of the
use of LBD inside the solver

86/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Minisat and Glucose

87/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Agenda

Introduction to SAT

A bit of history (DP, DPLL)

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

Nearby SAT
MaxSat
Pseudo-Boolean Optimization
MUS

SAT in practice: working with CNF

88/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Extending SAT 1: MaxSat MinUnsat

I Associate to each constraint (clause) a weight (penalty) wi

taken into account if the constraint is violated: Soft
constraints φ.

I Special weight (∞) for constraints that cannot be violated:
hard constraints α

I Find a model I of α that minimizes weight(I , φ) such that:
I weight(I , (ci ,wi )) = 0 if I satisfies ci , else wi .
I weight(I , φ) =

∑
wc∈φ weight(I ,wc)

Weight ∞ denomination

∞ yes Sat
k no MaxSat
k yes Partial MaxSat
N no Weighted MaxSat
N yes Weighted Partial MaxSat



Partial Max Sat Example: soccer game support

I am French, my family in law is German. Which team should I
support when visiting family in law?

I hard constraint: one should support exactly one team
(g ∨ f ,∞) ∧ (¬g ∨ ¬f ,∞)

I soft constraint: supporting Germany (penalty 1 if violated)
(g , 1)

I soft constraint: supporting France (penalty 10 if violated)
(f , 10)

90/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Extending SAT 2: Pseudo-Boolean problems

Linear Pseudo-Boolean constraint

−3x1 + 4x2 − 7x3 + x4 ≤ −5

I variables xi take their value in {0, 1}
I x1 = 1− x1

I coefficients and degree are integral constants

Pseudo-Boolean decision problem: NP-complete
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2
(c) x1 + x2 + x5 ≥ 1

Plus an objective function: Optimization problem, NP-hard

min : 4x2 + 2x3 + x5

91/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Solving Pseudo Boolean Optimization problems with a
SAT solver

I Pseudo-Boolean constraints express a boolean formula → that
formula can be expressed by a CNF

I One of the best Pseudo-Boolean solver in 2005 was Minisat+,
based on that idea: Niklas Eén, Niklas Sörensson: Translating
Pseudo-Boolean Constraints into SAT. JSAT 2(1-4): 1-26
(2006)

I Handling those constraints natively in a CDCL solver isn’t hard
either (Satire, Satzoo, Minisat, ...): simplifies the mapping
from domain constraints and model constraints, explanations.

I One can easily use a SAT solver to solve an optimization
problem using either linear or binary search on the objective
function.

92/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization using strengthening (linear search)

input : A set of clauses, cardinalities and pseudo-boolean
constraints setOfConstraints and an objective function
objFct to minimize

output: a model of setOfConstraints, or unsat if the problem is
unsatisfiable.

answer ← isSatisfiable (setOfConstraints);
if answer is Unsat then

return Unsat
end
repeat

model ← answer;
answer ← isSatisfiable (setOfConstraints ∪

{objFct < objFct (model)});

until ( answer is Unsat);
return model;

93/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min: 4x2 + 2x3 + x5

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min: 4x2 + 2x3 + x5 <

Objective function value

5

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5 < 5

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min: 4x2 + 2x3 + x5 < 5

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min: 4x2 + 2x3 + x5 <

Objective function value

3 < 5

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5 < 3

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min: 4x2 + 2x3 + x5 < 3

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min: 4x2 + 2x3 + x5 <

Objective function value

1 < 3

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5 < 1

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5 < 1

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min: 4x2 + 2x3 + x5

The objective function value 1 is optimal for the formula.
x1, x2, x3, x4, x5 is an optimal solution.

94/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Extending SAT 3: Minimally Unsatisfiable Subformula

I Let C be an inconsistent set of clauses.

I C ′ ⊆ C is an unsat core of C iff C ′ is inconsistent.

I C ′ ⊆ C is a MUS of C iff C ′ is an unsat core of C and no
subset of C ′ is an unsat core of C .

I Computing a MUS (set of clauses) is equivalent to computing
the set of literals L such that:

1. L satisfies {ki ∨ Ci |Ci ∈ C}
2. L ∩ K is subset minimal

95/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Extending SAT 3: Minimally Unsatisfiable Subformula

I Let C be an inconsistent set of clauses.

I C ′ ⊆ C is an unsat core of C iff C ′ is inconsistent.

I C ′ ⊆ C is a MUS of C iff C ′ is an unsat core of C and no
subset of C ′ is an unsat core of C .

I Computing a MUS (set of clauses) is equivalent to computing
the set of literals L such that:

1. L satisfies {ki ∨ Ci |Ci ∈ C}
2. L ∩ K is subset minimal

95/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Solvers are available for those problems

Some competitive events are organized for those problems:

I Pseudo Boolean since 2005

I MAX-SAT since 2006

I MUS in 2011

I Certified Unsat track since 2005, successful in 2013!

As such, a common input format exists, together with a bunch of
solvers.

96/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Generalized use of selector variables
The minisat+ syndrom: is a SAT solver sufficient for all our needs?

Selector variable principle: satisfying the selector variable should
satisfy the selected constraint.

clause simply add a new variable∨
li ⇒ s ∨∨

li

cardinality add a new weighted variable∑
li ≥ d ⇒ d × s +

∑
li ≥ d

The new constraints is PB, no longer a cardinality!

pseudo add a new weighted variable∑
wi × li ≥ d ⇒ d × s +

∑
wi × li ≥ d

if the weights are positive, else use

(d +
∑

wi<0 |wi |)× s +
∑

wi × li ≥ d

97/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


From Weighted Partial Max SAT to PBO

Once cardinality constraints, pseudo boolean constraints and
objective functions are managed in a solver, one can easily build a
weighted partial Max SAT solver

I Add a selector variable si per soft clause Ci : si ∨ Ci

I Objective function: minimize
∑

si
I Partial MAX SAT: no selector variables for hard clauses

I Weighted MAXSAT: use a weighted sum instead of a sum.
Special case: do not add new variables for unit weighted
clauses wk lk
Ignore the constraint and add simply wk × lk to the objective
function.

98/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Selector variables + assumptions = explanation (MUS)

I Assumptions available from the beginning in Minisat 1.12
(incremental SAT)

I Add a new selector variable per constraint

I Check for satisfiability assuming that the selector variables are
falsified

I if UNSAT, analyze the final root conflict to keep only selector
variables involved in the inconsistency

I Apply a minimization algorithm afterward to compute a
minimal explanation

I Advantages:
I no changes needed in the SAT solver internals
I works for any kind of constraints!

I Approach used in Sat4j and Picosat

99/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


From Unsat Core computation to MaxSat: MSU
Z. Fu and S. Malik, On solving the partial MAX-SAT problem, in International
Conference on Theory and Applications of Satisfiability Testing, August 2006, pp.
252-265.

Recent advances in practical Max Sat solving rely on unsat core
computation [Fu and Malik 2006]:

I Compute one unsat core C ′ of the formula C

I Relax it by replacing C ′ by { ri ∨ Ci |Ci ∈ C ′}
I Add the constraint

∑
ri ≤ 1 to C

I Repeat until the formula is satisfiable

I If MinUnsat(C ) = k , requires k loops.

Many improvement since then (PM1, PM2, MsUncore, etc): works
for Weighted Max Sat, reduction of the number of relaxation
variables, etc.

100/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1 ¬x1

¬x6, x8 x6,¬x8 x2, x4 ¬x4, x5

x7, x5 ¬x7, x5 ¬x5, x3 ¬x3

Example CNF formula

101/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1 ¬x1

¬x6, x8 x6,¬x8 x2, x4 ¬x4, x5

x7, x5 ¬x7, x5 ¬x5, x3 ¬x3

Formula is UNSAT; Get unsat core

101/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1, b1 ¬x1, b2

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5 ¬x7, x5 ¬x5, x3, b5 ¬x3, b6

∑6
i=1 bi ≤ 1

Add blocking variables and AtMost1 constraint

101/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fu&Malik’s Algorithm: msu1.0

x6, x2 ¬x6, x2 ¬x2, x1, b1 ¬x1, b2

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5 ¬x7, x5 ¬x5, x3, b5 ¬x3, b6

∑6
i=1 bi ≤ 1

Formula is (again) UNSAT; Get unsat core

101/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fu&Malik’s Algorithm: msu1.0

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1, b9 ¬x1, b2, b10

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5, b13 ¬x3, b6, b14

∑6
i=1 bi ≤ 1

∑14
i=7 bi ≤ 1

Add new blocking variables and AtMost1 constraint

101/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fu&Malik’s Algorithm: msu1.0

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1, b9 ¬x1, b2, b10

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5, b13 ¬x3, b6, b14

∑6
i=1 bi ≤ 1

∑14
i=7 bi ≤ 1

Instance is now SAT

101/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Fu&Malik’s Algorithm: msu1.0

x6, x2, b7 ¬x6, x2, b8 ¬x2, x1, b1, b9 ¬x1, b2, b10

¬x6, x8 x6,¬x8 x2, x4, b3 ¬x4, x5, b4

x7, x5, b11 ¬x7, x5, b12 ¬x5, x3, b5, b13 ¬x3, b6, b14

∑6
i=1 bi ≤ 1

∑14
i=7 bi ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10

101/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Organization of msu1.0

[Fu&Malik’06]
I Clauses characterized as:

I Initial: derived from clauses in ϕ
I Auxiliary: added during execution of algorithm

I E.g. clauses from cardinality constraints

I While exist unsatisfiable cores
I Add fresh set B of blocking variables to non-auxiliary soft

clauses in core
I Add new AtMost1 constraint∑

bi∈B

bi ≤ 1

I At most 1 blocking variable from set B can take value 1

I MaxSAT solution is |ϕ| − I, where I is number of iterations

102/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Main interest of the approach

I Takes advantage of unsat core computation

I Works well in practice on real MAXSAT problems

I Completely orthogonal to “reasoning-based” MAX SAT
approaches.

103/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Agenda

Introduction to SAT

A bit of history (DP, DPLL)

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

Nearby SAT
MaxSat
Pseudo-Boolean Optimization
MUS

SAT in practice: working with CNF

104/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Real problems are not in CNF!

Using SAT technology is hard because

I Efficient encodings are not trivial

I Input format for solvers is not meant for end users

I Reasoning at the boolean level is error prone

Requires some abstraction

105/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Copris
http://bach.istc.kobe-u.ac.jp/copris/

I CSP DSL in Scala

I Front end to award winning Sugar
uses the Order Encoding for domain constraints

I Translates CSP into SAT (Dimacs) SMT (SMTLIB 2.0) or
CSP (XCSP 2.0, JSR331)

I All-in-one jar with Sat4j as default backend

106/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Scarab
http://kix.istc.kobe-u.ac.jp/ soh/scarab/

I CSP DSL in Scala

I Full Order Encoding in Scala
I Designed to work intimately with Sat4j

I Native constraints
I Incremental SAT
I Library of predefined solvers
I ...

I Everything runs in a JVM

107/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Designing Constraint Models in Scarab

Pandiagonal Latin Square PLS(n) is a problem of placing different
n numbers into n × n matrix such that each number is occurring
exactly once for each row, column, diagonally down right, and
diagonally up right.

I alldiff Model
I One uses alldiff constraint, which is one of the best known and

most studied global constraints in constraint programming.
I The constraint alldiff(a1, . . . , an) ensures that the values

assigned to the variable a1, . . . , an must be pairwise distinct.

I Boolean Cardinality Model
I One uses Boolean cardinality constraint.

108/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}

I alldiff in each row (5 rows)
I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)
I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)

I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)
I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)

I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)
I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)
I alldiff in each column (5 columns)

I alldiff in each pandiagonal (10 pandiagonals)
I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)
I alldiff in each column (5 columns)

I alldiff in each pandiagonal (10 pandiagonals)
I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)
I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)

I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)
I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)

I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)
I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)

I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)
I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)

I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

I xij ∈ {1, 2, 3, 4, 5}
I alldiff in each row (5 rows)
I alldiff in each column (5 columns)
I alldiff in each pandiagonal (10 pandiagonals)
I PLS(5) is satisfiable.

109/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Scarab Program for alldiff Model

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val n = args(0).toInt

6:

7: for (i <- 1 to n; j <- 1 to n) int(’x(i,j),1,n)

8: for (i <- 1 to n) {
9: add(alldiff((1 to n).map(j => ’x(i,j))))

10: add(alldiff((1 to n).map(j => ’x(j,i))))

11: add(alldiff((1 to n).map(j => ’x(j,(i+j-1)%n+1))))

12: add(alldiff((1 to n).map(j => ’x(j,(i+(j-1)*(n-1))%n+1))))

13: }
14:

15: if (find) println(solution)

110/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Implementing alldiff in Scarab

I In Scarab, all we have to do for implementing global
constraints is just decomposing them into simple arithmetic
constraints [Bessiere et al. ‘09].

In the case of alldiff(a1, . . . , an),

It is decomposed into pairwise not-equal constraints∧
1≤i<j≤n

(ai 6= aj)

.

I It is also known that some extra constraints improves
performance in computation.

111/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Extra Constraints for alldiff (a1, . . . , an)

I In Pandiagonal Latin Square PLS(n), all integer variables
a1, . . . , an have the same domain {1, . . . , n}.

I Then, we can add the following extra constraints.
I Permutation constraints:

n∧
i=1

n∨
j=1

(aj = i)

I It represents that one of a1, . . . , an must be assigned to i .

I Pigeon hole constraint:

¬
n∧

i=1

(ai < n) ∧ ¬
n∧

i=1

(ai > 1)

I It represents that mutually different n variables cannot be
assigned within the interval of the size n − 1.

112/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)

I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1

I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1

I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1
I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1

I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1
I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1

I for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1

I for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1

I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1

I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1

I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1

I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

I yijk ∈ {0, 1} yijk = 1 ⇔ k is placed at (i , j)

I for each value (5 values)
I for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
I for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
I for each pandiagonal (10 pandiagonals)

y11k + y22k + y33k + y44k + y55k = 1
I for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

113/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Scarab Program for Boolean Cardinality Model

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: for (i <- 1 to n; j <- 1 to n; num <- 1 to n)

6: int(’y(i,j,num),0,1)

7:

8: for (num <- 1 to n) {
9: for (i <- 1 to n) {

10: add(BC((1 to n).map(j => ’y(i,j,num)))===1)

11: add(BC((1 to n).map(j => ’y(j,i,num)))===1)

12: add(BC((1 to n).map(j => ’y(j,(i+j-1)%n+1,num))) === 1)

13: add(BC((1 to n).map(j => ’y(j,(i+(j-1)*(n-1))%n+1,num))) === 1)

14: }
15: }
16:

17: for (i <- 1 to n; j <- 1 to n)

18: add(BC((1 to n).map(k => ’y(i,j,k))) === 1)

19:

20: if (find) println(solution)

114/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


“Real” problems have to be encoded into a CNF

I Finding the right encoding is as important as finding the right
solver

I Good SAT encodings typically increase the number of variables

I Powerful SAT encodings are designed to favor unit
propagation

115/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


“Real” problems have to be encoded into a CNF

I Finding the right encoding is as important as finding the right
solver

I Good SAT encodings typically increase the number of variables

I Powerful SAT encodings are designed to favor unit
propagation

Example: solving pandiagonal latin square with Scarab

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

115/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


Encoding and solving times using different approaches

I Each approach encodes differently cardinality constraint
∑

xi ≤ 1
I Native means specific handling (no encoding)

n S/U
Pairwise Totalizer Seq. Counter Native BC

Enc. Sol. Enc. Sol. Enc. Sol. Enc. Sol.

7 S 0.772 0.007 0.088 0.003 0.336 0.012 0.042 0.001
8 U 0.392 0.045 0.134 0.016 0.325 0.026 0.044 0.012
9 U 0.696 0.038 0.191 0.048 0.369 0.063 0.048 0.019

10 U 1.204 0.046 0.258 0.175 0.475 0.137 0.054 0.024
11 S 2.702 0.149 0.341 0.180 0.635 0.109 0.063 0.023
12 U 6.165 0.150 0.443 0.633 0.876 0.731 0.080 0.137
14 U 34.345 3.719 0.712 12.521 1.567 10.806 0.104 3.856
15 U 80.502 221.028 0.890 415.011 2.026 262.875 0.126 215.593
16 U 185.215 190.803 1.096 T.O. 2.591 363.120 0.143 202.636

Total 727.978 >1032.739 647.078 423.004

116/117

http://www.cnrs.fr/
http://www.univ-artois.fr/


To bring back home

I Modern SAT solvers architecture is called CDCL

I CDCL 6= DPLL

I CDCL solvers designed for ”application benchmarks”

I See Christophe’s talk this afternoon for Parallel SAT solving

I See invited talk by Armin Biere at Pragmatics of SAT (VSL)
for lingeling (inprocessing) details

117/117

http://www.cnrs.fr/
http://www.univ-artois.fr/

	Introduction to SAT
	A bit of history (DP, DPLL)
	The CDCL framework (CDCL is not DPLL)
	Grasp
	From Grasp to Chaff
	Chaff
	Anatomy of a modern CDCL SAT solver

	Nearby SAT
	MaxSat
	Pseudo-Boolean Optimization
	MUS

	SAT in practice: working with CNF

