Introduction to SAT

History, Algorithms, Practical considerations

Daniel Le Berre!

CNRS - Université d'Artois

SAT-SMT summer school
Semmering, Austria, July 10-12, 2014

!Contains material provided by Joao Marques Silva, Armin Biere, Takehide
Soh

% 1/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Introduction to SAT
A bit of history (DP, DPLL)

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

Nearby SAT
MaxSat
Pseudo-Boolean Optimization
MUS

SAT in practice: working with CNF

% 2/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Disclaimer

HANDBOOK

o: of satisfiability
°
°

» Not a complete view of the
subject

» Limited to one branch of SAT
research (CDCL solvers)

» From an Al background point of
view

» From a SAT solver designer

® @ Editors:
@ Armin Biere
@ Marijn Heule
Hans van Maaren
@ TobyWalsh

» For a broader picture of the
area, see the handbook edited in
2009 by the community

10S

% 3/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Disclaimer: continued

» The best solvers for practical SAT solving in the 90’s were
based on local search or randomized DPLL

> Since then, the best performing solvers are based on the
Conflict Driven Clause Learning architecture.

» The current challenge is to create a new kind of solvers
targeting parallel architectures ...

% 4/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Introduction to SAT

% 5/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Context: SAT receives much attention since a decade

Why are we all here today?

» Most companies doing software or hardware verification are
now using SAT solvers.
» SAT technology indirectly reaches our everyday life:

» Intel core 17 processor designed with the help of SAT solvers
[Kaivola et al, CAV 2009]

» Windows 7 device drivers verified using SAT related technology
(Z3, SMT solver) [De Moura and Bjorner, [JCAR 2010]

» The Eclipse open platform uses SAT technology for solving
dependencies between components [Le Berre and Rapicault,
IWOCE 2009]

» Many SAT solvers are available from academia or the industry.
» SAT solvers can be used as a black box with a simple
input/ouput language (DIMACS).

» The consequence of a new kind of SAT solver designed in
2001 (Chaff)

The SAT problem: theoretical point of view

Definition
Input: A set of clauses C built from a propositional language with

n variables.
Output: Is there an assignment of the n variables that satisfies all

those clauses?

@ 7/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The SAT problem: theoretical point of view

Definition
Input: A set of clauses C built from a propositional language with
n variables.
Output: Is there an assignment of the n variables that satisfies all
those clauses?)

Example

Ci={-aVb,-bVcl=(maVb)A(=bVc)=(a +b).(b +c)

G=0GU{a,~c}=CGAaN—c

For (3, the answer is yes, for C, the answer is no

GE-(an—-c)=-aVc

@ 7/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The SAT problem solver: practical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.

Output: If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

% 8/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The SAT problem solver: practical point of view

Definition
Input: A set of clauses C built from a propositional language with

n variables.
Output: If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of

C which cannot be satisfied.

Example

Ci={-aVb-bVcl=(-aVb)A(=bVc)=(a +b).(b+c)

G=0GU{a,~c}=CGANaN—c

For Ci, one answer is {a, b, c}, for C, the answer is G,

% 8/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

SAT is important in theory ...

» Canonical NP-Complete problem [Cook, 1971]
» Threshold phenomenon on randomly generated k-SAT
instances [Mitchell,Selman,Levesque, 1992]

Proportion des différentes propagations pour un DP MOMS
600000 110
100
500000 %

400000

300000

% d'instances satisfiables

200000

Nombre de noeuds développés

100000

, ©

© D P N DO O D5 A DS A D PO A
o BV 2oV TP T PP 07N Tl o7 g AP ALY Pl et

[E=AUTRES COUNITAIRES EEmIPURS SATISFIABILITE | = Il

. : F£clauses _
Example. 1 to 9 ratio Zvariables for k=3 UNIVERSITE D’ARTOIS

9/117

http://www.cnrs.fr/
http://www.univ-artois.fr/

. in practice: Computer Aided Verification Award 2009

awarded to

Conor F. Madigan _
Sharad Malik CA\"’::'m'd
Joao Marques-Silva

Matthew Moskewicz
Karem Sakallah
Lintao Zhang

Ying Zhao

for

fundamental contributions to the Authors of GRASP SAT solver
development of high-performance Authors of CHAFF SAT solver

Boolean satisfiability solvers.

% 10/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

2014 most influential paper in the first 20 years

awarded to

A. Biere
A. Cimatti
E. Clarke
Y. Zhu

for

Symbolic Model Checking without
BDDs

% 11/117

AWARD

Most influential paper
in the first 20 years of TACAS

‘Symbalic Madel Checking without BDDs"

April Bth 2014, Grenoble |
it AT Dl
4 S
T iF i =8
4 ¢

The Steering Committee of TACAS

4

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Evolution of the performance of some SAT solvers

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
1200

T T T T T L T T
Limmat (2002) 2 - ’ 0@ %
Zehaff (2002) a Ld a ¥ e L
Berkmin (2002)
O Forklift (2003)
B Sicge (2003)
1000 | Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
800 - Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 3.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Glucose 2.1 (2012)
ngc.lin% S87F (2012)
(2013)

<4

me (in seconds)

SO00BG0Oe

Glucose
400 - Lingeling agw (2013)

[1] 20 40 60 &0 100 120 140 160 180 200
Number of problems solved

l/

12/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Where can we find SAT technology today?

» Formal methods:

» Hardware model checking; Software model checking;
Termination analysis of term-rewrite systems; Test pattern
generation (testing of software & hardware); etc.

Artificial intelligence:

» Planning; Knowledge representation; Games (n-queens,

sudoku, social golfers, etc.)
Bioinformatics:

» Haplotype inference; Pedigree checking; Analysis of Genetic

Regulatory Networks ; etc.
» Design automation:

» Equivalence checking; Delay computation; Fault diagnosis;

Noise analysis; etc.
Security:
» Cryptanalysis; Inversion attacks on hash functions; etc.

% 13/117 UNIVERSITE D’ARTOIS

v

v

v

http://www.cnrs.fr/
http://www.univ-artois.fr/

Where can we find SAT technology today? Il

» Computationally hard problems:
» Graph coloring; Traveling salesperson; etc.

v

Mathematical problems:
» van der Waerden numbers; Quasigroup open problems; etc.

» Core engine for other solvers: 0-1 ILP/Pseudo Boolean; QBF;
#SAT; SMT; MAXSAT,; ...

Integrated into theorem provers: HOL; Isabelle; ...

v

v

Integrated into widely used software:

» Suse 10.1 dependency manager based on a custom SAT solver.
» Eclipse provisioning system based on a Pseudo Boolean solver.
» Eiffel language uses Z3 to check contracts.

% 14/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

A bit of history (DP, DPLL)

% 15/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Formulas

» Boolean formula ¢ is defined over a set of propositional
variables xi, ..., Xp, using the standard propositional
connectives —, A\, \/, —, <>, parentheses and T (trivially true
formula) and L (trivially false formula).

» The domain of propositional variables is { True, False}
> Example: Y"(Xl X3) = ((X1 A\ X2) V X3) A (1Xo V X3)

v

A formula ¢ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

» Example: o(x, ..., x3) =

v

A formula ¢ in disjunctive normal form (DNF) is a disjunction
of conjunctions (terms) of literals
» Example:

v

Can encode any Boolean formula into Normal Form

% 16/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Formulas

» Boolean formula ¢ is defined over a set of propositional
variables xi, ..., Xp, using the standard propositional
connectives —, A\, \/, —, <>, parentheses and T (trivially true
formula) and L (trivially false formula).

» The domain of propositional variables is { True, False}
> Example: Y"(Xl X3) = ((X1 A\ X2) V X3) A (1Xo V X3)

» A formula ¢ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

» Example: o(x, ..., x3) = (—x1 Vx3) A (2 Vx3)A(—x V x3)
» A formula ¢ in disjunctive normal form (DNF) is a disjunction
of conjunctions (terms) of literals
» Example:
o(x1, ...y x3) =
» Can encode any Boolean formula into Normal Form

% 16/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Formulas

» Boolean formula ¢ is defined over a set of propositional
variables xi, ..., Xp, using the standard propositional
connectives —, A\, \/, —, <>, parentheses and T (trivially true
formula) and L (trivially false formula).

» The domain of propositional variables is { True, False}
> Example: Y"(Xl X3) = ((X1 A\ X2) V X3) A (1Xo V X3)

» A formula ¢ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

» Example: o(x, ..., x3) = (—x1 Vx3) A (2 Vx3)A(—x V x3)
» A formula ¢ in disjunctive normal form (DNF) is a disjunction
of conjunctions (terms) of literals
» Example:
o(x1, .-, x3) = (—x1 Axa Axz) V(x3 A—x) VX3
» Can encode any Boolean formula into Normal Form

% 16/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The resolution principle and classical simplification rules

John Alan Robinson, " A Machine-Oriented Logic Based on the Resolution
Principle”, Communications of the ACM, 5:23-41, 1965.

. x1V x2 VX3 X1V X2 V Xxq
resolution:
x1VXx1Vx3Vxy
. x1Vxy Vx3Vxge
merging:
x1 Vx3Vxy
. a Vv «
subsumption: B o

% 17/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The resolution principle and classical simplification rules

John Alan Robinson, " A Machine-Oriented Logic Based on the Resolution
Principle”, Communications of the ACM, 5:23-41, 1965.

. x1V X2 VX3 x1V —xo VXxq
resolution:
x1Vx1Vx3Vxy
. x1Vx1 Vx3Vxe
merging:
x1 Vx3VXxy
. a Vv a
subsumption: B
«

What happens if we apply resolution between —x3 V x» V x3 and
X1V X0 V x4?

% 17/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The resolution principle and classical simplification rules

John Alan Robinson, " A Machine-Oriented Logic Based on the Resolution
Principle”, Communications of the ACM, 5:23-41, 1965.

. x1V x2 VX3 X1V X2 V Xxg
resolution:
x1VXx1Vx3Vxy
. x1Vx1 Vx3Vxg
merging:
X1 Vx3Vxg
. a Vv «
subsumption: B o

What happens if we apply resolution between —x3 V x2 V x3 and
x1V —xo V x4?
A tautology: xo V —xo V x3V X.

% 17/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Applying resolution to decide satisfiability

v

Apply resolution between clauses with exactly one opposite
literal

v

possible outcome:

> a new clause is derived: remove subsumed clauses
> the resolvent is subsumed by an existing clause

v

until empty clause derived or no new clause derived

v

Main issues of the approach:

» In which order should the resolution steps be performed?
» huge memory consumption!

% 18/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The Davis and Putnam procedure: basic idea

Davis, Martin; Putnam, Hillary (1960). "A Computing Procedure for Quantification
Theory”. Journal of the ACM 7 (3): 201-215.

Resolution used for variable elimination: (AV x) A (BV —x) AR is
satisfiable iff (A V B) A R is satisfiable.

> lteratively apply the following steps:
> Select variable x
» Apply resolution between every pair of clauses of the form
(xVa)and (—xV B)
» Remove all clauses containing either x or —x
» Terminate when either the empty clause or the empty formula
is derived

Proof system: ordered resolution

% 19/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Variable elimination — An Example

(x1 V2 Vaxg)A(—x1 Ve Voxs) A V) AV xa) A(xgV—xa) F

% 20/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Variable elimination — An Example

(x1 V2 Vaxg)A(—x1 Ve Voxs) A V) AV xa) A(xgV—xa) F

(X2 \/“X?,)/\(XQ \/X3)/\(X3\/X4)/\(X3\/“X4) =

% 20/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Variable elimination — An Example

(x1 V2 Vaxg)A(—x1 Ve Voxs) A V) AV xa) A(xgV—xa) F

(X2 \/“X?,)/\(XQ \/X3)/\(X3\/X4)/\(X3\/“X4) =

% 20/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Variable elimination — An Example

(X1 Vx V ﬁX3) A (—x1 VxoV jX3) N (Xz vV X3) N (X3 \ X4) A (X3 \ ﬁX4) =
(X2 \/“X?,)/\(XQ \/X3)/\(X3\/X4)/\(X3\/“X4) =

(x3V xa)A 3V —xq) F

% 20/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Variable elimination — An Example

(x1 V2 Vaxg)A(—x1 Ve Voxs) A V) AV xa) A(xgV—xa) F

(X2 V “X3) A (Xy V X3) AN (X3 \ X4) N (X3 V ‘|X4) =
(x3V xa)A 3V —xq) E
X3 E

% 20/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Variable elimination — An Example

(x1 V2 Vaxg)A(—x1 Ve Voxs) A V) AV xa) A(xgV—xa) F

(=2 V=x3)A(x2 Vx3)A(x3V xa) A (X3 V —xag) =
(x3V xa)A 3V —xq) F
X3 E
T

» Formula is SAT

% 20/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The Davis and Putnam procedure: the refinements

Add specific cases to order variable elimination steps

> lteratively apply the following steps:

> Apply the pure literal rule and unit propagation

> Select variable x

» Apply resolution between every pair of clauses of the form
(xVa)and (—xV 3)
Remove all clauses containing either x or —=x

v

» Terminate when either the empty clause or the empty formula
is derived

% 21/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Pure Literals

> A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula

» Example:
== Vx)A(x3 V-x)A(xsV—x5) A (x5 V —xq)
» —x3 and x3 are pure literals

» Pure literal rule: first, eliminate pure literals because no
resolvent is produced!

> applying a variable elimination step on a pure literal strictly
reduces the number of clauses!

1]

22/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation

Unit clause: a clause with only one literal

v

v

Specific case of resolution: only shorten clauses.

. . x1V X2 VX3 —1X2
unit resolution:

x1V X3

v

Since clauses are shortened, new unit clauses may appear.
Empty clauses also!

» Unit propagation: apply unit resolution while new unit clauses
are produced.

% 23/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

DP60: The limits

» The approach runs easily out of memory.

» Even recent attempts using a ROBDD representation [Simon
and Chatalic 2000] do not scale well.

» The solution: using backtrack search!

% 24/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

DLL62: Preliminary definitions

» Propositional variables can be assigned value False or True
> In some contexts variables may be unassigned

v

A clause is satisfied if at least one of its literals is assigned
value True

(X1 vV 1X2 \ _\X3)
A clause is unsatisfied if all of its literals are assigned value
False (also called a conflict clause)

(1 V0 V —x3)

v

v

A clause is unit if it contains one single unassigned literal and
all other literals are assigned value False
(X1 vV X2 V _\X3)

A formula is satisfied if all of its clauses are satisfied

v

A formula is unsatisfied if at least one of its clauses is
unsatisfied

% 25/117 UNIVERSITE D’ARTOIS

v

http://www.cnrs.fr/
http://www.univ-artois.fr/

DLL62: space efficient DP60

Davis, Martin; Logemann, George, and Loveland, Donald (1962). " A Machine
Program for Theorem Proving”. Communications of the ACM 5 (7): 394-397.

» Standard backtrack search

» DPLL(F):

Apply unit propagation

If conflict identified, return UNSAT

Apply the pure literal rule

If F is satisfied (and possibly empty), return SAT
Select unassigned variable x

> If DPLL(F A x)=SAT return SAT
> return DPLL(F A —x)

vVvy vy VvYyYy

Proof system: tree resolution

% 26/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Pure Literals in backtrack search

» Pure literal rule:
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

» Example:
=020 Vo)A (X3 V-x2)A(xaV—x5)A (x5 V —xq)

» The resulting formula becomes:
P-xi,x3 — (X4 V “X5) A (X5 V ‘\X4)

» if £ is a pure literal in @, then ¢y C ¢

» Preserve satisfiability, not logical equivalency!

% 27/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation in backtrack search

> Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

» Example: for unit clause (x; V —x2 V —x3), x3 must be
assigned value False

> Unit propagation
Iterated application of the unit clause rule

(x1 V-0V -3)A(=x1 V-3 Vxa)A(=x1 Vxo Vxg)

% 28/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation in backtrack search

> Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

» Example: for unit clause (x; V —x2 V —x3), x3 must be
assigned value False

> Unit propagation
Iterated application of the unit clause rule

(X1 V —xo V ﬁX};) AN (ﬁXl V —x3 V X4) A (ﬁXl V —xo V X4)

% 28/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation in backtrack search

> Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

» Example: for unit clause (x; V —x2 V —x3), x3 must be
assigned value False

> Unit propagation
Iterated application of the unit clause rule

(a Vo Vos) A (xa Voos V) A (5xa Ve Voxg)

% 28/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation in backtrack search

> Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

» Example: for unit clause (x; V —x2 V —x3), x3 must be
assigned value False

> Unit propagation
Iterated application of the unit clause rule

(a Vo Vos) A (xa Voos V) A (5xa Ve Voxg)

(X1 V —xo V ﬁX3) A (—\Xl V —x3 V X4) A (—|X1 V —xo V —|X4)

% 28/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation in backtrack search

> Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

» Example: for unit clause (x; V —x2 V —x3), x3 must be
assigned value False

> Unit propagation
Iterated application of the unit clause rule

(a Vo Vos) A (xa Voos V) A (5xa Ve Voxg)

(X1 V —xo V ﬁX3) A (ﬁXl V —x3 V X4) VAN (ﬁX1 V —xo V —|X4)

% 28/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation in backtrack search

> Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

» Example: for unit clause (x; V —x2 V —x3), x3 must be
assigned value False

> Unit propagation
Iterated application of the unit clause rule

(a Vo Vos) A (xa Voos V) A (5xa Ve Voxg)

(a Vo Vaos) A (xa Voos Vo) A (5xa Ve Vooixg)

% 28/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit Propagation in backtrack search

> Unit clause rule in backtrack search:
Given a unit clause, its only unassigned literal must be
assigned value True for the clause to be satisfied

» Example: for unit clause (x; V —x2 V —x3), x3 must be
assigned value False

> Unit propagation
Iterated application of the unit clause rule

(a Vo Vos) A (xa Voos V) A (5xa Ve Voxg)

(a Vo Vaos) A (g Voos Vo) A (5xa Voo Vooixg)

Unit propagation can satisfy clauses but can also falsify clauses
(i.e. conflicts)

% 28/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

¢ = (av-bVd)A(aV-bVe)A
(mbV —dV —e)A(—aV-b)A
(avbVveVvd)A(avbVvecV-d)A
(avbVv-cVve)A(aV bV -cV—e)

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

¢ = (av-bVd)A(aV-bVe)A
(=bV =d V =€) A (—aV —=b) A @
(aVbVeVd)A(aVbVeV-d)A
(avbVv-cVve)A(aV bV -cV—e)

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

¢ = (av-bVvVd)A(aV—-bVe)A

(mbV —dV—e)A(—aV-b)A @

(aVbVeVd)A(aVbVeV-d)A -

(avbVv-cVe)A(aVbV-cV—e) @
conflict

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

¢ = (av-bVd)A(aV—-bVe)A
(~bV —=dV—e)A(-aV -b)A @
(aVbVeVd)A(aVbVeV-d)A -
(avbVv-cVve)A(aVbV-cV—e) @
conflict

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

¢ = (av-bVd)A(aV—-bVe)A

(—bV —d V=€) A (=aV —b) A @

(aVbhbVeVd)A(aVhbVeV—d)A -

(avbVv-cVve)A(aVbV—cV—e) @
conflict 2

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

¢ = (av-bVd)A(aV—-bVe)A
(mbV-dV—e)A(—aV-b)A @
(aVbhbVeVd)A(aVhbVeV—d)A 4
(avbV-cVve)A(aVbV-cV—e) @
conflict 2

’

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

¢ = (av-bVd)A(aV-bVe)A
(~bV —d V —=e) A (2 V =b) A @\
(aVbVeVd)A(aVbVeV-d)A

(avbVv-cVve)A(aV bV -cV—e) @

conflict /

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

An Example of DPLL

o = (aV-bVd)A(aV-bVe)A (2
(—bV —dV=—e)A(—aV—b)A
(avbvevd)A(aVbVecVad)A ‘®

(avbV-cve)A(aVvbV-cV—e)

conflict / solution
,
,

/

% 29/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

DP, DLL or DPLL 7

» DPLL = DP + DLL

> Acknowledge the principles in DP60 and their memory
efficient implementation in DP62

» DPLL commonly used to denote complete solvers for SAT: no
longer true for modern complete SAT solvers.

> The focus of researchers in the 90's was mainly to improve the
heuristics to select the variables to branch on on randomly
generated formulas.

» Introduction of non chronological backtracking and learning to
solve structured/real world formulas

% 30/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (aVb)A(=bV c Vd)A(-bVe)A(-dV—-eV f)...

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (aVb)A(=bV c Vd)A(-bVe)A(-dV—-eV f)...

» Assume decisions ¢ — False and f = False

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (aVb)A(=bV c Vd)A(-bVe)A(-dV—-eV [)...

» Assume decisions ¢ = False and f = False
» Assign a2 = False and imply assignments

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (aVb)A(-bV c Vd)A(-bVe)A(-dV-eV f)...

» Assume decisions ¢ = False and f = False
» Assign a2 = False and imply assignments

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (a Vb)A(-bV c Vd)A(-bVe)A(~dV—-eV)...

» Assume decisions ¢ = False and f = False
» Assign a2 = False and imply assignments
» A conflict is reached: (—d V —e V f) is unsatisfied

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (a Vb)A(-bV c Vd)A(-bVe)A(~dV—-eV)...

Assume decisions ¢ = False and f = False

Assign a = False and imply assignments

A conflict is reached: (—d V —e V f) is unsatisfied
o A—-aA-cA-f = |

vV vy VvVYyy

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (a Vb)A(-bV c Vd)A(-bVe)A(~dV—-eV)...

Assume decisions ¢ = False and f = False

Assign a = False and imply assignments

A conflict is reached: (—d V —e V f) is unsatisfied
o A—-aA-cA-f = |

p=aVvcVf

vV vy vy VvVYyy

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (a Vb)A(-bV c Vd)A(-bVe)A(~dV—-eV)...

Assume decisions ¢ = False and f = False

Assign a = False and imply assignments

A conflict is reached: (—d V —e V f) is unsatisfied
o A—-aA-cA-f = |

p=aVvcVf

vV vy vy VvVYyy

v

Learn new clause (aV ¢V 1)

% 31/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Learning

» During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o= (a Vb)A(-bV c Vd)A(-bVe)A(~dV—-eV)...

Assume decisions ¢ = False and f = False

Assign a = False and imply assignments

A conflict is reached: (—d V —e V f) is unsatisfied
o A—-aA-cA-f = |

p=aVvcVf

vV vy vy VvVYyy

v

Learn new clause (aV ¢V 1)
Next time will propagate a: reveals a missing propagation!

% 31/117 UNIVERSITE D’ARTOIS

v

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g,b,d, e

v = (aVb)A(=bVcVd)A(-bV e)A(=dV eV I)A
(avVeVi)n(—aVg)A(—gVb)A(=hVj)A(=iVk)

Learned: (aV cV f)

(~dV —e V)

% 32/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g,b, d e

o = (aVb)A(=bVcV d)AN(-bVe)A(=dV —eV A
(aVeVF)A(—aVg)A(—gVb)A(=hVj)A(—iV k)
Learned: (aVcVf)

(—|b\/ —d \/f)

% 32/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g, b ,d,e

¢ = (aVb)A(=bVcVd)A(-bVe)A(=dV—eV A
(aveVFi)A(—mavVg)A(—gV b)A(=hVj)A(—iVk)
Learned: (aV cVf)

(=b VecVf)

% 32/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g ,b,de

¢ = (aVb)A(=bVcVd)A(-bVe)A(=dV—-eVI)A
(avVeVA)A(maV g)A (=g Vb)A(=hVj)A(=iVk)

Learned: (aV cV f)

(—g VcVi)

% 32/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g,b,d,e

v = (aVb)A(=bVcVd)A(=bVe)A(~dV eV F)A
(avVeVi)n(—aVg)A(—gVb)A(=hVj)A(=iVk)

Learned: (a VcVf)

(na VcVr)

% 32/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict analysis using resolution

Perform resolution steps in reverse order of the assignments.
Propagations deriving from a: g,b,d,e

o = (aVb)A(=bVcVd)A(-bVe)A(=dV eV A
(aVeVi)n(—aVg)A(—gVb)A(=hVj)A(=iVk)

Learned: (a VcVf)

(cVv i)

% 32/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Implementation of NCB and Learning for SAT

» Two approaches developed independently in two different
research communities:
GRASP/EDA by Marques-Silva and Sakallah (1996)
» Resolution graph seen as a circuit
» Conflict analysis thought as detecting faults in a
circuit
» Other sophisticated conflict analysis methods
based on truth maintenance systems
RELSAT/CSP by Bayardo and Schrag (1997)
» Introduction of CSP based techniques into a
SAT solver
» Conflict Directed Backjumping aka non
chronological backtracking [Prosser 93]
> Size based and relevance based learning schemes
» Main difference: in GRASP’s framework, the conflict analysis

drives the search, while in RELSAT it is the heuristics (more

later). / l
% 33/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The CDCL framework (CDCL is not DPLL)
Grasp
From Grasp to Chaff
Chaff
Anatomy of a modern CDCL SAT solver

% 34/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

GRASP architecture

Jo3o P. Marques Silva, Karem A. Sakallah: GRAPS: A Search Algorithm for
Propositional Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)

i{"jnnﬂict Analysis I Decision heuristics

vy

l:l Boolean Propagator

% 35/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Role of the boolean propagator

» Perform unit propagation on the set of clauses.
» Detect conflicts

» Backtrack according to a specific clause provided by the
conflict analyzer

% 36/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict analyzer

» Must produce a clause that becomes a unit clause after
backtracking (asserting clause)
» Introduction of the notion of Unique Implication Point (UIP),
as a reference to Unique Sensitization Points in ATPG.
» Find a literal that need to be propagated before reaching a

conflict

» Based on the notion of decision level, i.e. the number of
assumptions made so far.

» Syntactical: apply resolution until only one literal from current
decision level appears in the clause.

» Decision variables are always UIP: at least one UIP exists for

each conflict!
» Backtracking level computed as the lowest decision level of
the literals of the clause

% 37/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict graph for assumption a=False

[+]
E

current decision level \
First UIP d
i ™

Decision UIP ——-/:.:: e ——7’)'(.0111110_ e

p=(aVb)A(-bV c Vd)A(=bVe)A(-dV eV f)...

@ A

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict graph after learning aV ¢ V f and backjumping

current decision level

S e

>
. o
conflict e
=5

o o

s s
¢ = (aVb)A(=bV c VA)A(=bVe)A(-dV eV f)A

(aV c VvV f)AN(maVvg)A(—-gVb)A(=hVj)A(—iVKk)

% 39/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Some remarks about UIPs

> There are many possibilities to derive a clause using UIP
» RELSAT can be seen as applying Decision UIP

> Decision UIP always flip the decision variable truth value: the
search is thus driven by the heuristics.

> Using other UIP scheme, the value of any of the literal
propagated at the current decision level may be flipped. The
search is thus driven by the conflict analysis.

> Generic name for GRASP approach: Conflict Driven Clause
Learning (CDCL) solver [Ryan 2004].

% 40/117 UNIVERSITE D’ARTOIS

file://aim-50-cdcl-search-example.jpg
file://aim-50-cdcl-search-example.jpg
http://www.cnrs.fr/
http://www.univ-artois.fr/

Decision heuristics

» Pick an unassigned variable

» Many sophisticated decision heuristics available in the
literature for random formulas (MOMS, JW, etc).

» GRASP uses dynamic largest individual sum (DLIS): select the
literal with the maximum occurrences in unresolved clauses.

» Sophisticated heuristics require an exact representation of the
state of the CNF after unit propagation!

% 41/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Putting everything together: the CDCL approach

conflict found assume

propagate

no propagation

analyze decide

% 42/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

From GRASP to CHAFF

» Some key insights in the design of SAT solvers were discovered
when trying to solve real problems by translation into SAT.

» Huge interest on SAT after the introduction of Bounded
Model Checking [Biere et al 99] from the EDA community.

> The design of SAT solver becomes more pragmatic

o V]

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Application 1: Planning as satisfiability

Henry A. Kautz, Bart Selman: Planning as Satisfiability. ECAI 1992: 359-363

» Input: a set of actions, an initial state and a goal state

» Qutput: a sequence of actions to reach the goal state from
the initial state

> One of the first application of SAT in Artificial Intelligence
> A key application for the adoption of SAT in EDA later on
» The instances are supposed to be SAT

» Those instances are too big for complete solvers based on
DPLL

% 44/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

1992 - Planning As Satisfiability

k—1 k
PAS(S,1,T,G, k) =1(so)) A J\ T(si,six1) A\ G(si)
i=0 i=0

ol :
S the set of possible states s;
| the initial state
T transitions between states
G goal state
k bound

If the formula is satisfiable, then there is a plan of length at most k.

% 45/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Greedy SAT (Local Search Scheme for SAT)

function GSAT(CNF c, int maxtries, int maxflips) {
// DIVERSIFICATION STEP
for (int i =0; i< maxtries ; i++) {
m = randomAssignment ();
// INTENSIFICATION STEP
for (int j=0; j<maxflips; j++) {
if (m satisfies c)
return SAT;
flip (m);
}
}

return UNKNOVWWN:

% 46/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Lessons learned from GSAT

» The decision procedure is very simple to implement and very
fast!

» Efficiency depends on which literal to flip, and the values of
the parameters.

» Problem with local minima: use of Random Walks!
» Main drawback: incomplete, cannot answer UNSAT!

» Lesson 1: An agile (fast) SAT solver sometimes better than a
clever one!

% 47/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Application 2: Quasigroup (Latin Square) open problems

v

S a set and * a binary operator. |S| is the order of the group.
» a*b=c has a unique solution when fixing any pair of variables.
» equivalent to fill in a |S| x |S| square with elements of S
unique in each row and column.
» Looking for the existence of QG of a given order with
additional constraints, e.g.:
QGlL x*xy=u,zsw=u,vxy=x,vxw=2z=
X=2z,y=w
QG2 x*xy=u,z*sW=Uy*xV=X,W*xV=2=
X=2z,y=w
» First open QG problems solved by MGTP (Fujita, Slaney,
Benett 93)
» QG2(12) solved by DDPP in 1993.
QG1(12), QG2(14),QG2(15) solved by SATO in 1996.

% 48/117 UNIVERSITE D’ARTOIS

v

http://www.cnrs.fr/
http://www.univ-artois.fr/

SATO head/tail lazy data structure

Zhang, H., Stickel, M.: Implementing Davis-Putnam’s method . It appeared as a
Technical Report, The University of lowa, 1994

» CNF resulting for QG problems have a huge amount of
clauses: 10K to 150K!

» Encoding of real problems into SAT can lead to very large
clauses

» Truth value propagation cost in eager data structure depends
on the number of propagation to perform, thus on the size of
the clauses

» How to limit the cost of numerous and long clauses during
propagation?

> Answer: use a lazy data structure to detect only unit
propagation and falsified literals.

% 49/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The Head/Tail data structure

head tail
[\
| ! \
v v_ v
a@... |b@... [c | .. |x|y|z@..

initially put a head (resp. tail) pointer to the first (resp. last)
element of the clause
during propagation move heads or tails pointing to the negation of
the propagated literal. Easy identification of unit and
falsified clauses.

during backtracking move back the pointers to their previous
location

% 50/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit propagation with Adjacency lists

% 51/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Unit propagation with Head /Tail

% Y,

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Pro and Cons of the H/T data structure

advantage reduces the cost of unit propagation

drawback the solver has no longer a complete picture of the
reduced CNF!

Lesson 2: data structure matters !

% 53/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

High variability of SAT solvers runtime!

Heavy-tailed Distributions in Combinatorial Search. Carla Gomes, Bart Selman,

and Nuno Crato. In Principles and Practices of Constraint Programming, (CP-97)
Lecture Notes in Computer Science 1330, pp 121-135, Linz, Austria., 1997.
Springer-Verlag

>

SAT solvers exhibits on some problems a high runtime
variability
Decision heuristics need to break ties, often randomly
The solver are sensible to syntactical input changes:
» Shuffled industrial benchmarks harder than original ones for

most solvers
» The “lisa syndrome” during the SAT 2003 competition

v

v

v

An explanation: Heavy tailed distribution

% 54/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Example of variability: SAT4J GreedySolver on QGH

1e+06

variability of SAT4J GreedySolver on qwh,35,485,shuffled-as,sat83-1651,cnf

“quh-cnﬂflicts.da{“ +
5 +
+ * g, * s
1008008 | 4+ +F5t + e +, H o+ P T B J
e s et :+ +++++: Y fﬁﬂf* Ty o LR
F}Hﬁ e o -i;l—f&+ﬁ +&+‘¢+‘ff* # #‘*ﬁ# >
8 i BT Ao el T T
B i i e Q’r-ﬁ* T iR
DR A R S A e U,
[Foo4 +-¢ ++ Fo+ + gttt TS
= T -+ F T b ¥ ¥ T g
H + ﬂF+ e # -.‘1;& +¢-+I+ 5 #—;i+++ rd AT E TR
16868 |- e +7 R+ oy S Wy e e T+
- + AL g i + s
° i e it S P i SR i S
& - + 4 o+ . P OF L o + =
&
£ *: + o+ & " 2 ¥
2 e * + * .
»
I . + +
+
1888 | 5 ¥ % E
A
i
i . . i
8 100 208 300 408 508 (] 768 868
sequence of runs gll
55/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Example of variability: SAT4J GreedySolver on QGH

variability of SAT4J GreedySolver on qwh,35,405,shuffled-as,satB3-1651,cnf

1e+06 T

100088

16088 |

nunber of conflicts

1888

MLy

“quh-cnﬁflicts.da{“ +

56/117

280 308 4008 500
nunber of runs

680 7oe 868

1]

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Heavy Tailed distribution

» Introduced by the economist Pareto in the context of income
distribution

> Widely used in many areas: stock market analysis, weather
forecast, earthquake prediction, time delays on the WWW.

» Those distributions have infinite mean and infinite variance

» Some SAT solvers exhibit an Heavy Tailed distribution on
Quasigroup Completion with Holes problems.

» What does it mean in practice ?

> In rare occasion, the solver can get trapped on a very long run
» while most of the time the run could be short

» the solution: restartsl!

% 57/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Restarting in SAT solvers

» Stop the search after a given number of
conflicts/decisions/propagation is achieved (cutoff).

» Start again the search [with increased cutoff to be complete]

> Requires some variability in the solver behavior between two
runs

» Problem: how to choose the cutoff value?
> In theory, an optimal strategy exists [Luby 93].
» Lesson 3: introduce restarts to make the solver more robusts

% 58/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The killer app: Bounded Model Checking
A. Biere, A. Cimatti, E. Clarke, M. Fujita, Y. Zhu. Symbolic Model Checking using

SAT procedures instead of BDDs. In Proc. ACM Design Automation Conf.
(DAC'99), ACM 1999.

BMC(S, 1, T,p, k) =1(sp) A /\ (siySit1) \/ =p(si)
i=0 i=0
where :
S the set of possible states s;
| the initial state
T transitions between states
p is an invariant property
k a bound

If the formula is satisfiable, then there is a counter-example
reachable within k steps.

% 59/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

SAT vs BDD model checking

» Some model checking problems out of reach of BDD checkers
can be solved thanks to a reduction to SAT

» The behavior of SAT solvers is less dependent of the form of
the input than BDD solvers

» But the SAT solvers are not powerful enough yet for industrial
use...

% 60/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The breakthrough: Chaff
Chaff: Engineering an Efficient SAT Solver by M. Moskewicz, C. Madigan, Y.

Zhao, L. Zhang, S. Malik, 39th Design Automation Conference (DAC 2001), Las
Vegas, June 2001.

>

2 order of magnitude speedup on unsat instances compared to
existing approaches on BMC (Velev) benchmarks.

v

Immediate speedup for SAT based tools: BlackBox
“Supercharged with Chaff”

Based on careful analysis of GRASP internals

v

v

3 key features:

> New lazy data structure: Watched literals

» New adaptative heuristic: Variable State Independent
Decaying Sum

» New conflict analysis approach: First UIP

v

Taking into account randomization

% 61/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The watched literals data structure

watchl watch2
1 ! A\
| !
Yy v
a@.. b |c@... | .. | x@. |y |z@...

initially watch two arbitrary literals in the clause

during propagation move watchers pointers in clauses containing
the negation of the propagated literal.

during backtracking do nothing!
advantage cost free data structure when backtracking

issue pointers can move in both directions.

% 62/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Variable State Independent Decaying Sum

» compatible with Lazy Data Structures
» each literal has a score

» score based on the number of occurrences of the literals in the
formula

> score updated whenever a new clause is learned

» pick the unassigned literal with the highest score, tie broken
randomly

» regularly (every 256 conflicts), divided the scores by a
constant (2)

% 63/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

New Learning Scheme: First UIP
Efficient Conflict Driven Learning in a Boolean Satisfiability Solver by L. Zhang, C.

Madigan, M. Moskewicz, S. Malik, Proceedings of ICCAD 2001, San Jose, CA,
Nov. 2001

» The idea is to quickly compute a reason for the conflict
» Stop the resolution process as soon as an UIP is detected

» First UIP Shown to be optimal in terms of backtrack level
compared to the other possible UIPs [Audemard et al 08].

% 64/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Chaff: a highly coupled set of features

Learning does not degrade solver performance because the use
of the watched literals

The VSIDS heuristics does not need a complete picture of the
reduced formula, i.e. is compatible with the lazy data
structure.

v

v

v

VSIDS take advantage of the conflict analysis to spot
important literals.

v

VSIDS provides different orders of literals at each restart
VSIDS adapt itself to the instance!

% 65/117 UNIVERSITE D’ARTOIS

v

http://www.cnrs.fr/
http://www.univ-artois.fr/

The reason of the success?

» Better engineering (level 2 cache awareness)?

% 66/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The reason of the success?

» Better engineering (level 2 cache awareness)?

> Better tradeoff between speed and intelligence?

% 66/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The reason of the success?

» Better engineering (level 2 cache awareness)?
> Better tradeoff between speed and intelligence?

> Instance-based auto adaptation?

@ g

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The reason of the success?

v

Better engineering (level 2 cache awareness)?

v

Better tradeoff between speed and intelligence?

v

Instance-based auto adaptation?

% 66/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The reason of the success?

v

Better engineering (level 2 cache awareness)?

v

Better tradeoff between speed and intelligence?

v

Instance-based auto adaptation?

> ...

All those reasons are correct. There is a more fundamental reason
too ...

o V]

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

CDCL has a better proof system than DPLL!

Proof theory strikes back!

» ... thanks to many others before ...

> Bonet, M. L., & Galesi, N. (2001). Optimality of size-width
tradeoffs for resolution. Computational Complexity, 10(4),
261-276.

» Beame, P., Kautz, H., and Sabharwal, A. Towards understanding
and harnessing the potential of clause learning. JAIR 22 (2004),
319-351.

» Van Gelder, A. Pool resolution and its relation to regular
resolution and dpll with clause learning. In LPAR'05 (2005), pp.
580-594.

» Hertel, P., Bacchus, F., Pitassi, T., and Van Gelder, A. Clause
learning can effectively p-simulate general propositional
resolution. In Proc. of AAAI-08 (2008), pp. 283-290.

» Knot Pipatsrisawat and Adnan Darwiche. On the power of
clause-learning sat solvers as resolution engines. Artif. Intell.,
175(2) :512-525, 2011

» Albert Atserias, Johannes Klaus Fichte, and Marc Thurley.
Clause-learning algorithms with many restarts and bounded-width
resolution. J. Artif. Intell. Res. (JAIR), 40 :353-373, 2011

Ul

67/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

CDCL has a better proof system than DPLL!

Proof theory strikes back!

Definition

p-simulation Proof system S p-simulates proof system T , if, for
every unsatisfiable formula ¢, the shortest refutation proof of ¢ in
S is at most polynomially longer than the shortest refutation proof

of o in T.

% 68/117 UNIVERSITE D'ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

CDCL has a better proof system than DPLL!

Proof theory strikes back!

Definition

p-simulation Proof system S p-simulates proof system T , if, for
every unsatisfiable formula ¢, the shortest refutation proof of ¢ in
S is at most polynomially longer than the shortest refutation proof
of o in T.

Theorem 1 [Pipatsrisawat, Darwiche 09]. CLR with any asserting
learning scheme p-simulates general resolution.

@ 68/117 UNIVERSITE D'ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Since Chaff ...

» The international SAT competition/SAT race is organized
every year

> A huge number of CDCL solvers have been developed, and
made available to the community

» SAT has integrated the engineer toolbox to solve
combinatorial problems

» Many papers published on the design of efficient SAT solvers

% 69/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Since Chaff ...

» The international SAT competition/SAT race is organized
every year

> A huge number of CDCL solvers have been developed, and
made available to the community

» SAT has integrated the engineer toolbox to solve
combinatorial problems

» Many papers published on the design of efficient SAT solvers

v

... but a big part of the knowledge still lies in source code!

% 69/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Minisat: the minimalist CDCL SAT solver

Niklas Eén, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518

> very simple implementation of a Chaff-like solver

» resulting from the lessons learned from designing Satzoo (SAT
2003 Winner) and SATnick

» with implementation improvements (Watched Literals,
Heuristics, Priority Queue (2005), etc.)

» ready for generic constraints (cardinality, linear pseudo
boolean, etc.).

» published description of the design

Reduced the entry level required to experiment with CDCL SAT
solvers

% 70/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The watched literals data structure improved

[mChaff,vanGelder02, Minisat]

watchl watch2
AY r B —— —
\ L~ T
' N
a |b@. [c@.. |. |x@. |y|z@..

initially watch the two first literals in the clause

during propagation move falsified literal in second position.
Exchange it with an unassigned literal is any. Easy
identification of unit and falsified clauses.

during backtracking do nothing!

advantage cost free data structure when backtracking

% 71/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

The watched literals data structure improved

[mChaff,vanGelder02, Minisat]

watchl watch2
\ F o m—————e
\ { \‘
¥
a|b@. |c@. |. [x@. |y|z@..

initially watch the two first literals in the clause

during propagation move falsified literal in second position.
Exchange it with an unassigned literal is any. Easy
identification of unit and falsified clauses.

during backtracking do nothing!
advantage cost free data structure when backtracking

Moving literals instead of pointers in HT data structure also
provides cost free backtracking!

% 71/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Berkmin style heuristic

Evguenii |. Goldberg, Yakov Novikov: BerkMin: A Fast and Robust Sat-Solver.
DATE 2002: 142-149

Ideas:

» force the heuristic to satisfy recently learned clauses to be
more reactive than VSIDS

» sophisticated phase selection strategy based on an estimate of
the unit propagations to result from the selection (a la SATZ
[Li Anbulagan 97]).

> take into account literals met during the conflict analysis

Berkmin performed quite well during SAT 2002 (despite a stupid
bug) and it's successor Forklift won in 2003.

% 72/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose

decisionLevel(f) = x and

decisionLevel(c) = y with x > y.

Propagations deriving from a: g,b,d, e

Reasons of the propagations:

= (aVeVI)A(maVg)AN(—gVb)A(=bVcVd)A(-bV e)

Conlflicting clause (resolvent);

(—dOx VvV —e@x V fQx)

% 73/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose

decisionLevel(f) = x and

decisionLevel(c) = y with x > y.

Propagations deriving from a: g,b, d e

Reasons of the propagations:

= (avVeVi)A(-aVvg)AN(-gVDb)A(=bVcV d)

Conlflicting clause (resolvent);

(—bO@x V —=d@x V f@x)

% 73/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose

decisionLevel(f) = x and

decisionLevel(c) = y with x > y.

Propagations deriving from a: g, b ,d,e

Reasons of the propagations:

= (aveVi)A(-aVvg)A(-gV b)

Conflicting clause (resolvent);

(=b@x V cQy V fOx)

% 73/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose

decisionLevel(f) = x and

decisionLevel(c) = y with x > y.

Propagations deriving from a: g ,b,d,e

Reasons of the propagations:
= (avVeVi)A(-aV g)
Conlflicting clause (resolvent);

(—g0@x V cQy V fOx)

% 73/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose

decisionLevel(f) = x and

decisionLevel(c) = y with x > y.

Propagations deriving from a: g,b,d,e

Reasons of the propagations:

= (aVcVf)

Conflicting clause (resolvent);

(—alx V cQy V fOx)

% 73/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

First UIP conflict analysis based on Resolution!

Perform resolution steps in reverse order of the assignments.
Suppose

decisionLevel(f) = x and

decisionLevel(c) = y with x > y.

Propagations deriving from a: g,b,d,e

Reasons of the propagations:
Conlflicting clause (resolvent);

(c@y V f@x)

First UIP! only one literal at decision level x left.

% 73/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Conflict Clause minimization
Minisat 1.13, N. Sorensson, A. Biere. Minimizing Learned Clauses. In Proc. 12th

Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT'09), Lecture
Notes in Computer Science (LNCS) vol. 5584, pages 237-243, Springer 2009.

» Clauses generated using the 1st UIP scheme can be simplified

» Using simple direct self subsumption (direct dependencies
among the clause’s literals outside current decision level):

x101V x01 V x302 x101V —x01

If sub. tion:
self subsumption x101 V x302

> Using a chain of resolution steps

% 74/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Recursively Minimizing Learned Clause Minimizing Learned Clauses 3g

top-level b=1@0

decision

decision

decision

decision r=1@4 t=1@4 —y=1@4

z=1@4 —x conflict

(evgVvh) (dvgVvsVvh)
(evdVg\Vs)

Preprocessing

Niklas Eén, Armin Biere: Effective Preprocessing in SAT Through Variable and
Clause Elimination. SAT 2005: 61-75

» Variable elimination
» as in DP60 if the number of clauses does not increase
» by substitution if a definition such as x <> y; V...V y, or
X < y1 A ... Ay, is detected.
» Clause subsumption
> self subsumption
> classical subsumption
» SatELite: de-facto standard pre-processor since 2005
» Included in Minisat 2 (better integration with the SAT solver)
» Still used by SAT solver designers that do not want to
implement their own
» But also clause and variable addition
> preprocessing on the fly: in processing in
lingeling/cryptominisat

% 76/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Clause Minimization and Preprocessing @SAT COMP. 2005

Second Stage:
All solvers on renamed Industrial benchmarks o o N
14000 — N N & &
S ° 5 ¢ & N of & & & 5
& & & & & &8 4 & & &
/ . . / / / / .
t ¢ b4
SJoh
" !
| Jvof
¢ 7 .
« } L
10000} x v A ¥
: f ¢ @t
¢ | i 3 ¥
v
@ [! fﬁﬁ
2 i
- Lo
g oor | | by R
8 i ¢ I 4 eat (59
< i 4 § v - vallstsh (159
3 ! i I § ! satdijar (1s0)
2 ! f 4 N +— compsat (1s5)
I | | IS ¢ Zehalt (o7
3 ool ! f &di o 2onattand (zz0
2 ! i] ¥ - csat (1)
S i . e HafaSat)
i | o Jerusatt 31 (ass)
1 minisa tatic (s0)
il - SatELiteGTI (267)
d
¥
B
UNIVERSITE D’ARTOIS

77/117

http://www.cnrs.fr/
http://www.univ-artois.fr/

Efficiency of solvers incorporating inprocessing (Armin's

solvers)

“Time (in scconds)

1200

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1000

78/117

20 40 60 80 100 120 140 160 180

T T T T T T T T T
Limmat (2002) B o -
Picasat (2007) x ¥
Precosat (2009) -
Lingeling (2010)
Lingeling S87F (2012)
Lingeling agw (2013)

LT

Number of problems solved

200

Ul

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Phase Saving

Knot Pipatsrisawat, Adnan Darwiche: A Lightweight Component Caching Scheme
for Satisfiability Solvers. SAT 2007: 294-299

» To concentrate on a single component, keep track of the
phase of assigned literals when restarting.

» Always branch first on the recorded phase when taking a
decision.

> A small change in the code of the solver, a big improvement
in practice (at least for pure SAT :))!

> Note: RSAT forgets the phase after a while ...

% 79/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Rapid Restarts

Jinbo Huang: The Effect of Restarts on the Efficiency of Clause Learning. 1JCAI
2007: 2318-2323

» Restarts bounds usually grow slowly until being large enough
to ensure completeness

» Different restart strategies make huge differences depending of
the benchmarks

» Rapid Restarts strategies usually a good companion for Phase
Saving

% 80/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Armin Inner/Outer rapid restarts

Armin Biere: PicoSAT Essentials. JSAT 4(2-4): 75-97 (2008)

int inner = 100, outer = 100;
int restarts = 0, conflicts = 0;

for (;;) {

// run SAT core loop for inner conflicts

restarts++; conflicts += inner;
if (inner >= outer) {

outer *= 1.1; inner = 100;
else

inner = 1.1;

% 81/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Luby series rapid restarts

Michael Luby, Alistair Sinclair, David Zuckerman: Optimal Speedup of Las Vegas
Algorithms. ISTCS 1993: 128-133

t'_{zk—l, ifi =28 —1;
U gy, 2R <d < 2b

» Used in SATZ_rand and Relsat_rand within Blackbox
[Kautz,Selman 99]

» Used in Tinisat and RSAT in 2007 with factor 512.

% 82/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Comparison of a few different restarts strategies

Hinisat restarts vs Rapid Restarts strategies
10008 T T T T T T

T T

= Hinisat +
Arnin X

ol Luby{32} *
+

£

5 +

B

@ +

9

= +

% 1000 [* 1

£ +

2

o

5 + #

o

= *

w

2

o

-

a

b

[

g 188

o

-]

e K KK KK KK KX KK KK KX ¥E OEE KK KK ¥

2

9

g K K K R EE O WO EK 0K K 0K e WK HE RO B0 K EE K -

10 1 1 1 ! 1 1 1 1 1

a 18 28 38 40 58 68 78 808 a8 188

Hunber of restarts gll

83/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Effect of Rapid Restarts in SAT4J

Using the SAT Race 2006 benchmarks set (100 benchmarks), with
a timeout of 900 seconds per benchmark:

Configuration Total | SAT | UNSAT | Time
MiniSAT 58 29 29 835
Luby (factor 32) 59 24 35| 790
Luby (factor 512, no PS, no CCM) 48 19 29 | 947
Luby (factor 512, no CCM) 55 26 29 | 866
Luby scheme (factor 512) 61 29 32| 788
Armin 61 27 34| 790

Time is given in minutes, on a PIV 3GHz, 1.5GB of RAM, Java 6
VM under Mandriva Linux 2007.1.

% 84/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Adaptative restarts during the SAT 2009 competition

picosat A. Biere. Adaptive Restart Control for Conflict
Driven SAT Solvers. In Proc. 11th Intl. Conf. on
Theory and Applications of Satisfiability Testing
(SAT'08), Lecture Notes in Computer Science
(LNCS) vol. 4996, Springer 2008.

Minisat09z Carsten Sinz, Markus Iser: Problem-Sensitive Restart
Heuristics for the DPLL Procedure. SAT 2009:
356-362

Lysat Youssef Hamadi, Said Jabbour, and Lakhdar Sais.
ManySAT: a Parallel SAT Solver. Volume 6 (2009),
pages 245-262.
glucose Predicting Learnt Clauses Quality in Modern SAT
Solver G. Audemard, L. Simon, in Twenty-first
International Joint Conference on Artificial
Intelligence (1JCAI'09), july 20009.

% 85/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Glucose : agressive learned clause deletion strategies

» Learning a huge amount of clauses reduces the velocity of the
solver.

> It would be nice to keep only "important” clauses inside the
solver.

» New measure proposed by Glucose: Literal Block Distance

(LBD)

count for each clause the number of different decision level in
that clause

x101V x03 V x301 V x4,02 V x501 LBD =3

> Glucose 1, 2, 2.1, 3.0 : improvement and generalization of the
use of LBD inside the solver

% 86/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Minisat and Glucose

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 T T T T T T LE—
Zchaff (2002) Fl
SatELite (2005))
Minisat 2 (2006) & .
Minisat 2.1 (2008) o o
Glucose (2009) .
000 < Minisat 22 (2010}
® Glucose 2 (2011)
a Glucose 2.1 (2012)
Glucose 3 (2013)
800 |-
c)
i
g
£
=
=600 |
<
E
400
200 -
0
] 20 180

Number of problems solved

Ul

87/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Nearby SAT
MaxSat

Pseudo-Boolean Optimization
MUS

% 88/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Extending SAT 1: MaxSat MinUnsat

» Associate to each constraint (clause) a weight (penalty) w;
taken into account if the constraint is violated: Soft
constraints ¢.

> Special weight (c0) for constraints that cannot be violated:
hard constraints «

» Find a model / of « that minimizes weight(/, ¢) such that:

» weight(l,(ci,w;)) = 0 if | satisfies ¢;, else w;.
> weight(l,¢) =34 weight(l, wc)

Weight | oo | denomination

yes | Sat

no | MaxSat

yes | Partial MaxSat

no | Weighted MaxSat

yes | Weighted Partial MaxSat

ZZ* x g

Partial Max Sat Example: soccer game support

I am French, my family in law is German. Which team should |
support when visiting family in law?
> hard constraint: one should support exactly one team
(g VF,00)A(—gV~f,o00)
» soft constraint: supporting Germany (penalty 1 if violated)
(g,1)
» soft constraint: supporting France (penalty 10 if violated)
(f,10)

% 90/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Extending SAT 2: Pseudo-Boolean problems

Linear Pseudo-Boolean constraint

—3x1 +4x0 — Tx3 + x4 < =5

» variables x; take their value in {0,1}

»x1=1-x1

» coefficients and degree are integral constants
Pseudo-Boolean decision problem: NP-complete

(81) 5x1 4+ 3x0 +2x3 + 2x4 + x5 > 8

(a2) 5x1+3%+2x3+2x4+% >5

(b) X1 +x3+x4>2

(c) x1+X+x5 > 1
Plus an objective function: Optimization problem, NP-hard

min : 4xp + 2x3 + X5

% 91/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Solving Pseudo Boolean Optimization problems with a

SAT solver

» Pseudo-Boolean constraints express a boolean formula — that
formula can be expressed by a CNF

» One of the best Pseudo-Boolean solver in 2005 was Minisat+,
based on that idea: Niklas Eén, Niklas Sorensson: Translating
Pseudo-Boolean Constraints into SAT. JSAT 2(1-4): 1-26
(2006)

» Handling those constraints natively in a CDCL solver isn't hard
either (Satire, Satzoo, Minisat, ...): simplifies the mapping
from domain constraints and model constraints, explanations.

» One can easily use a SAT solver to solve an optimization
problem using either linear or binary search on the objective
function.

% 92/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization using strengthening (linear search)

input : A set of clauses, cardinalities and pseudo-boolean
constraints setOfConstraints and an objective function
objFct to minimize

output: a model of setOfConstraints, or UNSAT if the problem is
unsatisfiable.

answer <— isSatisfiable (setOfConstraints);

if answer is UNSAT then
| return UNSAT

end
repeat
model < answer;
answer < isSatisfiable (setOfConstraints U
{objFct < objFct (model)});
until (answer is UNSAT);
return model;

% 93/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(31) 5x1 4+ 3x0 +2x3 + 2x4 + x5 > 8
(22) 5%+ 3% +2x3+2x4 +X5 > 5
(b) X1+ X3+ x4 > 2

Objective function

min: 4x2 +2x3 + x5

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
Model
(a1) 5x1+3x+2x3+2x4 + x5 > 8
(a2) 5x1+3%+23+2X+X >5 XT, X2, X3, X4, X5

(b) X1+ X3+ X4 > 2

Objective function

min: 4x2 +2x3 + x5

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
Model
(a1) 5x1+3x+2x3+2x4+ x5 > 8
(32) 571+372+273+274+7525 X_laX2aX_37X4aX5
(b) X1+ x3+ x4 > 2
Objective function Objective function value
min: 4xo + 2x3 + xs < 5

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(31) 5x1 4+ 3x0 +2x3 + 2x4 + x5 > 8
(22) 5%+ 3% +2x3+2x4 +X5 > 5
(b) X1+ X3+ x4 > 2

Objective function

min: 4x2 +2x3 + X5 < 5

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
Model
(31) 5x1 +3x0 + 2x3 + 2x4 + x5 > 8
(32) 571+372+273+274+7525 X1a727X37747X5
(b) X1+ X3+ x4 > 2
Objective function
min: 4xo + 2x3 + xs < 5

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
Model
(1) 5x1+3x+2x3+2x4+ x5 > 8
(32) 571+372+273+274+7525 XlaX_2’X37)T4’X5
(b) X1+ X3+ xq > 2
Objective function Objective function value
min: 4x +2x3 + X5 < 3<5

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(31) 5x1 4+ 3x0 +2x3 + 2x4 + x5 > 8
(22) 5%+ 3% +2x3+2x4 +X5 > 5
(b) X1+ X3+ x4 > 2

Objective function

min: 4x2 + 2x3 + x5 < 3

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
Model
(1) 5x1+3x+2x3+2x4+ x5 > 8
(32) 571+372+273+274+7525 X1, X2, X3, X4, X5
(b) x1+x3+ x4 >2
Objective function
min: 4xo + 2x3 + xs < 3

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
Model
(1) 5x1+3x+2x3+2x4+ x5 > 8
(32) 571+372+273+274+7525 X1, X2, X3, X4, X5
(b) X1+ X3+ xq > 2
Objective function Objective function value
min: 4x2 + 2x3 + x5 < 1<3

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(31) 5x1 4+ 3x0 +2x3 + 2x4 + x5 > 8
(22) 5%+ 3% +2x3+2x4 +X5 > 5
(b) X1+ X3+ x4 > 2

Objective function

min: 4x2 + 2x3 + x5 < 1

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(1) 5x1+3x+2x3+2x4+ x5 > 8
(a2) 5x1+ 3%+ 23 +2X3 +X5 > 5
(b) x1+ X3+ x4 > 2

Objective function

min: 4xo + 2x3 + xs < 1

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(81) 5x1 4+ 3x0 + 2x3 + 2x4 + x5 > 8
(a2) 5x+3%+2x3+2x4+% >5
(b X1+ x3+ x5 > 2

Objective function

min: 4x2 +2x3 + x5

The objective function value 1 is optimal for the formula.
X1, X2, X3, X4, X5 is an optimal solution.

% 94/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Extending SAT 3: Minimally Unsatisfiable Subformula

» Let C be an inconsistent set of clauses.
» C’ C Cis an unsat core of C iff C’' is inconsistent.

» C' C Cisa MUS of Ciff C'is an unsat core of C and no
subset of C’ is an unsat core of C.

o V]

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Extending SAT 3: Minimally Unsatisfiable Subformula

Let C be an inconsistent set of clauses.

v

C’ C C is an unsat core of C iff C’ is inconsistent.

C' C Cis a MUS of C iff C’ is an unsat core of C and no
subset of C’ is an unsat core of C.

v

v

v

Computing a MUS (set of clauses) is equivalent to computing
the set of literals L such that:

1. L satisfies {k; V G;|C; € C}
2. LN K is subset minimal

% 95/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Solvers are available for those problems

Some competitive events are organized for those problems:
» Pseudo Boolean since 2005
» MAX-SAT since 2006
» MUS in 2011
> Certified Unsat track since 2005, successful in 2013!

As such, a common input format exists, together with a bunch of
solvers.

@ g

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Generalized use of selector variables

The minisat+ syndrom: is a SAT solver sufficient for all our needs?

Selector variable principle: satisfying the selector variable should
satisfy the selected constraint.

clause simply add a new variable
\/ I; = sV \/ I;
cardinality add a new weighted variable
Shi>d = dxs+> li>d
The new constraints is PB, no longer a cardinality!

pseudo add a new weighted variable
ZW,‘X/,‘Zd = dXS—i—ZWiX/,'Zd

if the weights are positive, else use

(d+2wcolwil) x s+ wixli>d

% 97/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

From Weighted Partial Max SAT to PBO

Once cardinality constraints, pseudo boolean constraints and
objective functions are managed in a solver, one can easily build a
weighted partial Max SAT solver

» Add a selector variable s; per soft clause C;: s; VvV C;

» Objective function: minimize) s;

» Partial MAX SAT: no selector variables for hard clauses

> Weighted MAXSAT: use a weighted sum instead of a sum.

Special case: do not add new variables for unit weighted
clauses wy/j

Ignore the constraint and add simply wy x I to the objective
function.

% 98/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Selector variables 4+ assumptions = explanation (MUS)

>

Assumptions available from the beginning in Minisat 1.12
(incremental SAT)

Add a new selector variable per constraint

Check for satisfiability assuming that the selector variables are
falsified

if UNSAT, analyze the final root conflict to keep only selector
variables involved in the inconsistency

Apply a minimization algorithm afterward to compute a
minimal explanation

Advantages:

» no changes needed in the SAT solver internals
» works for any kind of constraints!

Approach used in Sat4j and Picosat

% 99/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

From Unsat Core computation to MaxSat: MSU
Z. Fu and S. Malik, On solving the partial MAX-SAT problem, in International

Conference on Theory and Applications of Satisfiability Testing, August 2006, pp.
252-265.

Recent advances in practical Max Sat solving rely on unsat core
computation [Fu and Malik 2006]:

» Compute one unsat core C’ of the formula C
Relax it by replacing C' by { r; v G;|C; € C'}
Add the constraint > r; <1to C

Repeat until the formula is satisfiable

If MinUnsat(C) = k, requires k loops.

v

v

v

v

Many improvement since then (Pl\/ll, PM2, MsUncore, etc): works
for Weighted Max Sat, reduction of the number of relaxation
variables, etc.

% 100/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik's Algorithm: msu

X6, X2
X6, X8

X7, X5

Example CNF formula

% 101/117

X6, X2

X6, X8

X7, X5

X2, X1 X1
X2, X4 X4, X5
X5, X3 X3

1]

UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik's Algorithm: msul.0

X6, X2 X6, X2 X2, X1 X1
X6, X8 X6, X8 X2, X4 X4, X5
X7, X5 X7, X5 X5, X3 —X3

Formula is UNSAT; Get unsat core

% 101/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik's Algorithm: msul.0

X6y X2 X6, X2 X2, X1, b1 —x1, bo
X6, X8 X6, X8 Xo, X4, b3 =Xy, X5, by
X7, X5 X7, X5 X5, X3, b5 X3, b6
6
Zi:l bi < 1

Add blocking variables and AtMost1 constraint

% 101/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik's Algorithm: msul.0

X6y X2 X6, X2 X2, X1, by —x1, b2
X6, X8 X6, X8 Xo, X4, b3 =Xy, X5, by
%79 2E RERE X5, X3, b5 X3, b6
6
Zi:l bi <1

Formula is (again) UNSAT; Get unsat core

@ 101/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik's Algorithm: msul.0

X6, X2, b7 =X, X2, bg —X2, X1, b1, by —X1, b, b1g
X6, X8 X6, X8 Xo, X4, b3 =Xy, X5, by
X7, X5, b11 -7, X5, 010 —xs,x3, bs, b1s —x3, bs, b1s

Z?:l bi <1 Z}L bi <1

Add new blocking variables and AtMostl constraint

% 101/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik's Algorithm: msul.0

X6, X2, by —X6, X2, bg —X2, X1, b1, by —X1, b, b1g
X6, X8 X6, X8 X0, X4, b3 =Xy, X5, by
X7, X5, b11 —X7, X5, b12 —X5, X3, bs, b13 —x3, bg, b14

Z?:l bi <1 2}17 bi <1

Instance is now SAT

% 101/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Fu&Malik's Algorithm: msul.0

X6, X2, by —X6, X2, bg —X2, X1, b1, by —X1, b, b1g
X6, X8 X6, X8 X0, X4, b3 =Xy, X5, by
X7, X5, b11 —X7, X5, b12 —X5, X3, bs, b13 —x3, bg, b14

Z?:l bi <1 2}17 bi <1

MaxSAT solution is || — 7 = 12 — 2 = 10

% 101/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Organization of msul.0

[Fu&Malik'06]
» Clauses characterized as:

> Initial: derived from clauses in ¢
» Auxiliary: added during execution of algorithm

» E.g. clauses from cardinality constraints

» While exist unsatisfiable cores

» Add fresh set B of blocking variables to non-auxiliary soft
clauses in core
» Add new AtMostl constraint

d <1

bieB
> At most 1 blocking variable from set B can take value 1

» MaxSAT solution is || — Z, where Z is number of iterations

% 102/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Main interest of the approach

» Takes advantage of unsat core computation
» Works well in practice on real MAXSAT problems

» Completely orthogonal to “reasoning-based” MAX SAT
approaches.

% 103/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

SAT in practice: working with CNF

% 104/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Real problems are not in CNF!

Using SAT technology is hard because
» Efficient encodings are not trivial
» Input format for solvers is not meant for end users
» Reasoning at the boolean level is error prone

Requires some abstraction

% 105/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Copris

http://bach.istc.kobe-u.ac.jp/copris/

CSP DSL in Scala

Front end to award winning Sugar

uses the Order Encoding for domain constraints

Translates CSP into SAT (Dimacs) SMT (SMTLIB 2.0) or
CSP (XCSP 2.0, JSR331)

All-in-one jar with Sat4j as default backend

v

v

v

v

% 106/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Scarab

http://kix.istc.kobe-u.ac.jp/ soh/scarab/

v

CSP DSL in Scala

Full Order Encoding in Scala
Designed to work intimately with Sat4j

» Native constraints

» Incremental SAT

> Library of predefined solvers
>

v

v

v

Everything runs in a JVM

% 107/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Designing Constraint Models in Scarab

Pandiagonal Latin Square PLS(n) is a problem of placing different
n numbers into n X n matrix such that each number is occurring
exactly once for each row, column, diagonally down right, and
diagonally up right.

> alldiff Model
» One uses alldiff constraint, which is one of the best known and
most studied global constraints in constraint programming.
» The constraint alldiff(a, ..., a,) ensures that the values
assigned to the variable ai, ..., a, must be pairwise distinct.
» Boolean Cardinality Model
» One uses Boolean cardinality constraint.

% 108/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 | X15

X21 | X22 | X23 | X24 | X25

X31 | X32 | X33 | X34 | X35

Xa1 | Xa2 | Xa3 | Xas | Xas

X51 | X52 | X53 | X54 | X55

> x; € {1,2,3,4,5}

% 109/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 X13 X14 X15

X21 | X22 | X23 | X24 | X25

X31 | X32 | X33 | X34 | X35

Xa1 | Xa2 | Xa3 | Xas | Xas

X51 | X52 | X53 | X54 | X55

» xj €{1,2,3,4,5}
» alldiff in each row (5 rows)

% 109/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 | X15

X21 X22 X23 X24 X25

X31 | X32 | X33 | X34 | X35

Xa1 | Xa2 | Xa3 | Xas | Xas

X51 | X52 | X53 | X54 | X55

» xj €{1,2,3,4,5}
» alldiff in each row (5 rows)

% 109/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 | X15

X21 | X22 | X23 | X24 | X25

X31 | X32 | X33 | X34 | X35

Xa1 | Xa2 | Xa3 | Xas | Xas

X51 X52 | X53 | X54 | X55

» xj €{1,2,3,4,5}
» alldiff in each row (5 rows)
» alldiff in each column (5 columns)

% 109/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 | X15

X21 | X22 | X23 | X24 | X25

X31 X32 | X33 | X34 | X35

Xa1 | Xa2 | Xa3 | Xa4 | Xa5

X51 X52 | X53 | X54 | Xb5

» xj €{1,2,3,4,5}
» alldiff in each row (5 rows)
» alldiff in each column (5 columns)

% 109/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 | X15

X21 | X22 | X23 | X24 | X25

X31 | X32 | X33 X34 | X35

Xa1 | Xa2 | Xa3 | Xas | Xas

X51 | X52 | X53 | X54 | X55

x;j € {1,2,3,4,5}

alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

% 109/117 UNIVERSITE D’ARTOIS

vV vyYyysy

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 | X15

X21 | X22 | X23 | X24 | X25

X31 | X32 | X33 | X34 | X35

Xa1 | Xa2 | Xa3 | Xas | Xas

X51 X52 | X53 | X54 | X55

x;j € {1,2,3,4,5}

alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

% 109/117 UNIVERSITE D’ARTOIS

vV vyYyysy

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 | X15

X21 | X22 | X23 | X24 | X25

X31 | X32 | X33 X34 | X35

Xa1 | Xa2 | Xa3 | Xa4 | Xa5

X51 X52 | X53 | X54 | X55

x;j € {1,2,3,4,5}

alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

% 109/117 UNIVERSITE D’ARTOIS

vV vyYyysy

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X11 X12 | X13 | X14 X15

X21 | X22 | X23 | X24 | X25

X31 X32 | X33 | X34 | X35

Xa1 | Xa2 | Xa3 | Xas | Xas

X51 | X52 | X53 | X54 | X55

x;j € {1,2,3,4,5}

alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

% 109/117 UNIVERSITE D’ARTOIS

vV vyYyysy

http://www.cnrs.fr/
http://www.univ-artois.fr/

alldiff Model

Pandiagonal Latin Square PLS(5)

X1 | X2 | X13 | X14 | X15 1 2 3 (4|5
X21 | X22 | X23 | Xoa | Xo5 3|4 |5 1 2
X31 | X32 | X33 | X34 | X35 5 1 2 3 4
Xa1 | Xa2 | Xa3 | Xas | Xas 2 3 4 5 1
Xs1 | Xs52 | X53 | Xs54 | Xs5 4 5 1 2 3

> x5 €{1,2,3,4,5}

» alldiff in each row (5 rows)

» alldiff in each column (5 columns)

» alldiff in each pandiagonal (10 pandiagonals)

>

% PLS(5) is satisfiable. Il
109/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Scarab Program for alldiff Model

import jp.kobe_u.scarab.csp._
import jp.kobe_u.scarab.solver.
import jp.kobe_u.scarab.sapp._

val n = args(0).toInt

for (i <~ 1 ton; j <~ 1ton) int(’x(i,j),1,n)

for (i <- 1 ton) {

9: add(alldiff((1 to n).map(j => ’x(i,j))))

10: add(alldiff((1 to n).map(j => ’x(j,i))))

11: add(alldiff ((1 to n).map(j => ’x(j, (i+j-1)%n+1))))

12: add(alldiff((1 to n).map(j => ’x(j, (i+(j-1)*(n-1))%n+1))))
13: }

O ~NO U WN -

16: if (find) println(solution)

% 110/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Implementing alldiff in Scarab

> In Scarab, all we have to do for implementing global
constraints is just decomposing them into simple arithmetic
constraints [Bessiere et al. ‘09].

In the case of alldiff(ay, ..., a,),

It is decomposed into pairwise not-equal constraints

N (& #3))

1<i<j<n

> It is also known that some extra constraints improves
performance in computation.

@ 111/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Extra Constraints for alldiff (a1, ..., ap)

» In Pandiagonal Latin Square PLS(n), all integer variables
ai,...,an have the same domain {1,..., n}.

» Then, we can add the following extra constraints.

» Permutation constraints:

AV =i

i=1j=1
> It represents that one of ay, ..., a, must be assigned to /.
» Pigeon hole constraint:
n n
=A@ <n)Ar=A(ai > 1)
i=1 i=1

> It represents that mutually different n variables cannot be
assigned within the interval of the size n — 1.

% 112/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Ya1k | Ya2k | Y43k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yiik € {0,1} yik = 1 & k is placed at (i,)

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Ya1k | Ya2k | Y43k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yiik € {0,1} yik = 1 & k is placed at (i,))
> for each value (5 values)
> for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Ya1k | Ya2k | Y43k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yiik € {0,1} yik = 1 & k is placed at (i,))
> for each value (5 values)
> for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Yalk | Ya2k | Y43k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yix € {0,1} yik =1 < k is placed at (i,J)

> for each value (5 values)
» for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1
> for each column (5 columns) Yijk + Yojk + Yajk + Yaji + ysik = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Ya1k | Yazk | Ya3k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yix € {0,1} yik =1 < k is placed at (i,J)

> for each value (5 values)
» for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1
> for each column (5 columns) Yijk + Yojk + Yajk + Yaji + ysik = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Yalk | Ya2k | Ya3k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yix € {0,1} yik =1 < k is placed at (i,J)

> for each value (5 values)
» for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1
> for each column (5 columns) Yijk + Yojk + Yajk + Yaji + ysik = 1

> for each pandiagonal (10 pandiagonals)
Y11k + Y22k + Y33k + Yaak + yssk = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Yalk | Ya2k | Ya3k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yix € {0,1} yik =1 < k is placed at (i,J)

> for each value (5 values)
» for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1
> for each column (5 columns) Yijk + Yojk + Yajk + Yaji + ysik = 1

> for each pandiagonal (10 pandiagonals)
Y11k + Y22k + Y33k + Yaak + yssk = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Ya1k | Yazk | Ya3k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yix € {0,1} yik =1 < k is placed at (i,J)

> for each value (5 values)
» for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1
> for each column (5 columns) Yijk + Yojk + Yajk + Yaji + ysik = 1

> for each pandiagonal (10 pandiagonals)
Y11k + Y22k + Y33k + Yaak + yssk = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Yalk | Ya2k | Y43k | Yaak | Yask

Y51k | Y52k | Y53k | Y54k | Y55k

> yix € {0,1} yik =1 < k is placed at (i,J)

> for each value (5 values)
» for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1
> for each column (5 columns) Yijk + Yojk + Yajk + Yaji + ysik = 1

> for each pandiagonal (10 pandiagonals)
Y11k + Y22k + Y33k + Yaak + yssk = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Boolean Cardinality Model

Y11k | Y12k | Y13k | Y14k | Y15k

Y21k | Y22k | Y23k | Y24k | Y25k

Y31k | Y32k | Y33k | Y34k | Y35k

Ya1k | Ya2k | Y43k | Yaak | Yask

Ys1k | Y52k | Y53k | Y54k | Y55k d

> yiik € {0,1} yik = 1 & k is placed at (i,))

> for each value (5 values)
> for each row (5 rows) Yitk + Yiok + Yisk + Yiak + Yisk = 1
> for each column (5 columns) Yijk + Yojk + Yajk + Yaji + ysik = 1

> for each pandiagonal (10 pandiagonals)
Y11k + Y22k + Y33k + Yaak + yssk = 1
> for each (i,j) position (25 positions) Vit + Yije + Yiis + Yija + yis = 1

% 113/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Scarab Program for Boolean Cardinality Model

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: for (1 <- 1 ton; j <- 1 ton; num <- 1 to n)

6: int(’y(i,j,num),0,1)

7:

8: for (num <- 1 to n) {

9: for (i <- 1 ton) {

10: add(BC((1 to n).map(j => ’y(i,j,num)))===1)

11: add(BC((1 to n).map(j => ’y(j,i,num)))===1)

12: add(BC((1 to n).map(j => ’y(j, (i+j-1)%n+1l,num))) === 1)
13: add(BC((1 to n).map(j => ’y(j, (i+(j-1)*(n-1))%n+1,num))) === 1)
14: }

15: }

16:

17: for (i <- 1 ton; j <- 1 to n)

18 add(BC((1 to n).map(k => ’y(i,j,k))) === 1)

[
©

%o: if (find) println(solution) /l
114/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

“Real” problems have to be encoded into a CNF

» Finding the right encoding is as important as finding the right
solver

» Good SAT encodings typically increase the number of variables

» Powerful SAT encodings are designed to favor unit
propagation

% 115/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

“Real” problems have to be encoded into a CNF

» Finding the right encoding is as important as finding the right
solver

» Good SAT encodings typically increase the number of variables
» Powerful SAT encodings are designed to favor unit
propagation

Example: solving pandiagonal latin square with Scarab

2|13|5(1]|4
5114|123
412|351
351|142
1141235

% 115/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

Encoding and solving times using different approaches

» Each approach encodes differently cardinality constraint > x; <1
» Native means specific handling (no encoding)

n s/U Pairwise Totalizer Seq. Counter Native BC
Enc. Sol. Enc. Sol. Enc. Sol. Enc. Sol.
7 S 0.772 0.007 0.088 0.003 0.336 0.012 0.042 0.001
8 u 0.392 0.045 0.134 0.016 0.325 0.026 0.044 0.012
9 U 0.696 0.038 0.191 0.048 0.369 0.063 0.048 0.019
10 u 1.204 0.046 0.258 0.175 0.475 0.137 0.054 0.024
11 S 2.702 0.149 0.341 0.180 0.635 0.109 0.063 0.023
12 u 6.165 0.150 0.443 0.633 0.876 0.731 0.080 0.137
14 U 34.345 3.719 0.712 12521 1.567 10.806 0.104 3.856
15 u 80.502 221.028 0.890 415.011 2.026 262.875 0.126 215.593
16 U 185.215 190.803 1.096 T.O. 2591 363.120 0.143 202.636
Total 727.978 >1032.739 647.078 423.004

4

116/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

To bring back home

Modern SAT solvers architecture is called CDCL
CDCL # DPLL
CDCL solvers designed for "application benchmarks”

v

v

v

v

See Christophe's talk this afternoon for Parallel SAT solving

See invited talk by Armin Biere at Pragmatics of SAT (VSL)
for lingeling (inprocessing) details

v

% 117/117 UNIVERSITE D’ARTOIS

http://www.cnrs.fr/
http://www.univ-artois.fr/

	Introduction to SAT
	A bit of history (DP, DPLL)
	The CDCL framework (CDCL is not DPLL)
	Grasp
	From Grasp to Chaff
	Chaff
	Anatomy of a modern CDCL SAT solver

	Nearby SAT
	MaxSat
	Pseudo-Boolean Optimization
	MUS

	SAT in practice: working with CNF

