
Mini-tutorial on conflict-driven clause learning solvers

Marijn J. H. Heule

The University of Texas at Austin

20/01/2014 @ BIRS

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 1 / 24

The Satisfiability (SAT) problem

(x5 ∨ x8 ∨ x̄2) ∧ (x2 ∨ x̄1 ∨ x̄3) ∧ (x̄8 ∨ x̄3 ∨ x̄7) ∧ (x̄5 ∨ x3 ∨ x8) ∧
(x̄6 ∨ x̄1 ∨ x̄5) ∧ (x8 ∨ x̄9 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x̄1 ∨ x8 ∨ x4) ∧
(x̄9 ∨ x̄6 ∨ x8) ∧ (x8 ∨ x3 ∨ x̄9) ∧ (x9 ∨ x̄3 ∨ x8) ∧ (x6 ∨ x̄9 ∨ x5) ∧
(x2 ∨ x̄3 ∨ x̄8) ∧ (x8 ∨ x̄6 ∨ x̄3) ∧ (x8 ∨ x̄3 ∨ x̄1) ∧ (x̄8 ∨ x6 ∨ x̄2) ∧
(x7 ∨ x9 ∨ x̄2) ∧ (x8 ∨ x̄9 ∨ x2) ∧ (x̄1 ∨ x̄9 ∨ x4) ∧ (x8 ∨ x1 ∨ x̄2) ∧
(x3 ∨ x̄4 ∨ x̄6) ∧ (x̄1 ∨ x̄7 ∨ x5) ∧ (x̄7 ∨ x1 ∨ x6) ∧ (x̄5 ∨ x4 ∨ x̄6) ∧
(x̄4 ∨ x9 ∨ x̄8) ∧ (x2 ∨ x9 ∨ x1) ∧ (x5 ∨ x̄7 ∨ x1) ∧ (x̄7 ∨ x̄9 ∨ x̄6) ∧
(x2 ∨ x5 ∨ x4) ∧ (x8 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x̄5 ∨ x̄7 ∨ x9) ∧
(x2 ∨ x̄8 ∨ x1) ∧ (x̄7 ∨ x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3) ∧ (x1 ∨ x̄9 ∨ x̄4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x̄6 ∨ x3 ∨ x̄9) ∧ (x̄7 ∨ x5 ∨ x9) ∧ (x7 ∨ x̄5 ∨ x̄2) ∧
(x4 ∨ x7 ∨ x3) ∧ (x4 ∨ x̄9 ∨ x̄7) ∧ (x5 ∨ x̄1 ∨ x7) ∧ (x5 ∨ x̄1 ∨ x7) ∧
(x6 ∨ x7 ∨ x̄3) ∧ (x̄8 ∨ x̄6 ∨ x̄7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x̄8 ∨ x2 ∨ x5)

Does there exist an assignment satisfying all clauses?

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 2 / 24

Search for a satisfying assignment (or proof none exists)

(x5 ∨ x8 ∨ x̄2) ∧ (x2 ∨ x̄1 ∨ x̄3) ∧ (x̄8 ∨ x̄3 ∨ x̄7) ∧ (x̄5 ∨ x3 ∨ x8) ∧
(x̄6 ∨ x̄1 ∨ x̄5) ∧ (x8 ∨ x̄9 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x̄1 ∨ x8 ∨ x4) ∧
(x̄9 ∨ x̄6 ∨ x8) ∧ (x8 ∨ x3 ∨ x̄9) ∧ (x9 ∨ x̄3 ∨ x8) ∧ (x6 ∨ x̄9 ∨ x5) ∧
(x2 ∨ x̄3 ∨ x̄8) ∧ (x8 ∨ x̄6 ∨ x̄3) ∧ (x8 ∨ x̄3 ∨ x̄1) ∧ (x̄8 ∨ x6 ∨ x̄2) ∧
(x7 ∨ x9 ∨ x̄2) ∧ (x8 ∨ x̄9 ∨ x2) ∧ (x̄1 ∨ x̄9 ∨ x4) ∧ (x8 ∨ x1 ∨ x̄2) ∧
(x3 ∨ x̄4 ∨ x̄6) ∧ (x̄1 ∨ x̄7 ∨ x5) ∧ (x̄7 ∨ x1 ∨ x6) ∧ (x̄5 ∨ x4 ∨ x̄6) ∧
(x̄4 ∨ x9 ∨ x̄8) ∧ (x2 ∨ x9 ∨ x1) ∧ (x5 ∨ x̄7 ∨ x1) ∧ (x̄7 ∨ x̄9 ∨ x̄6) ∧
(x2 ∨ x5 ∨ x4) ∧ (x8 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x̄5 ∨ x̄7 ∨ x9) ∧
(x2 ∨ x̄8 ∨ x1) ∧ (x̄7 ∨ x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3) ∧ (x1 ∨ x̄9 ∨ x̄4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x̄6 ∨ x3 ∨ x̄9) ∧ (x̄7 ∨ x5 ∨ x9) ∧ (x7 ∨ x̄5 ∨ x̄2) ∧
(x4 ∨ x7 ∨ x3) ∧ (x4 ∨ x̄9 ∨ x̄7) ∧ (x5 ∨ x̄1 ∨ x7) ∧ (x5 ∨ x̄1 ∨ x7) ∧
(x6 ∨ x7 ∨ x̄3) ∧ (x̄8 ∨ x̄6 ∨ x̄7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x̄8 ∨ x2 ∨ x5)

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 3 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

0

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

0

1

x5=1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

0

1

2

x5=1

x2=1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

0

1

2

6

x5=1

x2=1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

0

1

2

6

7

x5=1

x2=1

x1=0

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

7

1

2

7

7

7
x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

7

1

2

7

7

7
x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(x̄2 ∨ x̄4 ∨ x̄5)

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

7

1

2

7

7

7
x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(x̄2 ∨ x̄4 ∨ x̄5)

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

7

1

2

7

7

7
x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(x̄2 ∨ x̄4 ∨ x̄5)

0

1

2

6

7

2

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

x4=0
x1=1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧
(x̄3 ∨ x̄2 ∨ x̄4) ∧
Fextra

7

1

2

7

7

7
x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(x̄2 ∨ x̄4 ∨ x̄5)

0

1

2

6

7

2

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

x4=0
x1=1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 4 / 24

Conflict-driven SAT solvers: Pseudo-code

1: while TRUE do
2: ldecision := GetDecisionLiteral()

3: If no ldecision then return satisfiable

4: F := Simplify(F(ldecision ← 1))

5: while F contains Cfalsified do
6: Cconflict := AnalyzeConflict(Cfalsified)
7: If Cconflict = ∅ then return unsatisfiable

8: BackTrack(Cconflict)
9: F := Simplify(F ∪ {Cconflict})

10: end while
11: end while

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 5 / 24

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7
x7=1

7

x12=0

7
x2=0

3

x4=1

7
x10=0

1

x8=1

7
x1=1

7
x3=1

7
x5=0

5

x17=0

2

x19=1

7
x18=1

7
x18=0

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 6 / 24

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7
x7=1

7

x12=0

7
x2=0

3

x4=1

7
x10=0

1

x8=1

7
x1=1

7
x3=1

7
x5=0

5

x17=0

2

x19=1

7
x18=1

7
x18=0

(¬x1 ∨ ¬x3 ∨ x5 ∨ x17 ∨ ¬x19)

tri-asserting clause

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 6 / 24

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7
x7=1

7

x12=0

7
x2=0

3

x4=1

7
x10=0

1

x8=1

7
x1=1

7
x3=1

7
x5=0

5

x17=0

2

x19=1

7
x18=1

7
x18=0

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19)

first unique implication point

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 6 / 24

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7
x7=1

7

x12=0

7
x2=0

3

x4=1

7
x10=0

1

x8=1

7
x1=1

7
x3=1

7
x5=0

5

x17=0

2

x19=1

7
x18=1

7
x18=0

(x2 ∨ ¬x4 ∨ ¬x8 ∨ x17 ∨ ¬x19)

second unique implication point

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 6 / 24

Average Learned Clause Length

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 7 / 24

Data-structures

Data-structures

Watch pointers

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 8 / 24

Data-structures

Simple data structure for unit propagation

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 9 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = ∗ , x4 = ∗ , x5 = ∗ , x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3 x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = ∗ , x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3 x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3 x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = ∗ , x3 = 1, x4 = 0, x5 = 1, x6 = ∗ }

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = ∗ }

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 1}

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 1}

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 10 / 24

Data-structures

Conflict-driven: Watch pointers (2) [MoskewiczMZZM’01]

Only examine (get in the cache) a clause when both
a watch pointer gets falsified

the other one is not satisfied

While backjumping, just unassign variables

Conflict clauses → watch pointers

No detailed information available

Not used for binary clauses

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 11 / 24

Data-structures

Average Number Clauses Visited Per Propagation

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 12 / 24

Data-structures

Percentage visited clauses with other watched literal true

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 13 / 24

Heuristics

Heuristics

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 14 / 24

Heuristics

Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 15 / 24

Heuristics

Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution (or conflict)

plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 15 / 24

Heuristics

Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution (or conflict)

plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato’97]

plus: focus search on recent conflicts when combined with
dynamic heuristics

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 15 / 24

Heuristics

Variable selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 16 / 24

Heuristics

Variable selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)
original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts

[MoskewiczMZZM’01]

improvement (MiniSAT): for each conflict, increase the
score of involved variables by δ and increase δ := 1.05δ

[EenSörensson’03]

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 16 / 24

Heuristics

Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=MOjhFywLre8

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 17 / 24

http://www.youtube.com/watch?v=MOjhFywLre8

Heuristics

Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 18 / 24

Heuristics

Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
negative branching (early MiniSAT) [EenSörensson’03]

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 18 / 24

Heuristics

Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
negative branching (early MiniSAT) [EenSörensson’03]

Based on the last implied value (phase-saving)
introduced to CDCL [PipatsrisawatDarwiche’07]

already used in local search [HirschKojevnikov’01]

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 18 / 24

Heuristics

Heuristics: Phase-saving [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components

negative branching phase-saving

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 19 / 24

Heuristics

Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 20 / 24

Heuristics

Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 20 / 24

Heuristics

Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

Rapid restarts by reusing trail: [vanderTakHeuleRamos’11]

Partial restart same effect as full restart

Optimal strategy Luby-1: 1, 1, 2, 1, 1, 2, 4, . . .

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 20 / 24

Conflict-Clause Minimization

Conflict-Clause Minimization

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 21 / 24

Conflict-Clause Minimization

Self-Subsumption

Use self-subsumption to shorten conflict clauses

C ∨ l D ∨ l̄

D
C ⊆ D

(a ∨ b ∨ l) (a ∨ b ∨ c ∨ l̄)

(a ∨ b ∨ c)

Conflict clause minimization is an important optimization.

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 22 / 24

Conflict-Clause Minimization

Self-Subsumption

Use self-subsumption to shorten conflict clauses

C ∨ l D ∨ l̄

D
C ⊆ D

(a ∨ b ∨ l) (a ∨ b ∨ c ∨ l̄)

(a ∨ b ∨ c)

Conflict clause minimization is an important optimization.

Use implication chains to further minimization:

. . . (ā ∨ b)(b̄ ∨ c)(a ∨ c ∨ d) . . . ⇒

. . . (ā ∨ b)(b̄ ∨ c)(c ∨ d) . . .

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 22 / 24

Conflict-Clause Minimization

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10=1

x11 =0 x12 =1 x13 =0

x14 =1 x15 =0 x13 =1

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 23 / 24

Conflict-Clause Minimization

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10=1

x11 =0 x12 =1 x13 =0

x14 =1 x15 =0 x13 =1
first unique

implication point

(x̄2 ∨ x5 ∨ x̄6 ∨ x7 ∨ x11)

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 23 / 24

Conflict-Clause Minimization

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10=1

x11 =0 x12 =1 x13 =0

x14 =1 x15 =0 x13 =1
last unique

implication point

(x1 ∨ x̄4 ∨ x̄8 ∨ x̄10)

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 23 / 24

Conflict-Clause Minimization

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10=1

x11 =0 x12 =1 x13 =0

x14 =1 x15 =0 x13 =1
reduced conflict clause

(x̄2 ∨ x5 ∨ x̄6 ∨ x11)

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 23 / 24

Conflict-Clause Minimization

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10=1

x11 =0 x12 =1 x13 =0

x14 =1 x15 =0 x13 =1
minimized conflict clause

(x̄2 ∨ x5 ∨ ∨x11)

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 23 / 24

Conflict-Clause Minimization

Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:
concept of conflict clauses (grasp) [Marques-SilvaSakallah’96]

restart strategies [GomesSC’97,LubySZ’93]

2-watch pointers and VSIDS (zChaff) [MoskewiczMZZM’01]

efficient implementation (Minisat) [EenSörensson’03]

phase-saving (Rsat) [PipatsrisawatDarwiche’07]

conflict-clause minimization [SörenssonBiere’09]

+ Pre- and in-processing techniques

Marijn J. H. Heule (UT) Mini-tutorial on CDCL solvers BIRS, January 2014 24 / 24

	Data-structures
	Heuristics
	Conflict-Clause Minimization

