



Chapter 5: Probabilistic Analysis and Randomised Algorithms

(Version of 7th January 2025)

Pierre Flener

Department of Information Technology
Computing Science Division
Uppsala University
Sweden

Course 1DL481:
Algorithms and Data Structures 3 (AD3)

Hiring Problem

Suppose your company needs to hire a new employee:

- An employment agency provides a list of n applicants.
- You interview one applicant per day.
- After each interview, you must immediately decide if you hire the interviewed applicant or not.
- You can rehire if a better applicant is interviewed later, but you must pay a fee to the fired employee.

How to hire the best applicant at minimal financial cost?
(Not at minimal runtime, as you interview all n applicants.)

Hiring Problem: Deterministic Algorithm

Step 1. Always hire after a better applicant was interviewed.

Example: For $n = 8$ applicants with post-interview scores $[2, 3, 1, 4, 6, 5, 8, 7]$, you **hire** 5 times (and pay the firing fee $5 - 1 = 4$ times).

Given n applicants, how many times do you hire?

- Worst case: n hirings.

Example: For $n = 8$ applicants with post-interview scores $[1, 2, 3, 4, 5, 6, 7, 9]$, you **hire** $n = 8$ times.

- Average case: ?

We need to perform a **probabilistic analysis**: we use **knowledge** of the distribution of the inputs, or we make **assumptions** about it.

For any particular input, the output and its cost are the same at each run.

Hiring Problem: Probabilistic Analysis

Define indicator random variables (independent ones here):

$$X_i = \begin{cases} 1 & \text{if applicant } i \text{ is hired} \\ 0 & \text{otherwise} \end{cases}$$

Let $E[X_i]$ denote the expected value of X_i , that is the probability that applicant i is hired, that is the probability that applicant i is better than 1 to $i - 1$, that is $1/i$ upon **assuming** that the applicants are randomly ordered. Average number of hirings, much lower than the worst-case number:

$$\begin{aligned} E \left[\sum_{i=1}^n X_i \right] &= \sum_{i=1}^n E[X_i] && \text{by linearity of expectation} \\ &= \sum_{i=1}^n 1/i && \text{assuming a random order} \\ &= \ln n + O(1) && \text{the } n\text{th harmonic number } H(n) \end{aligned}$$

Hiring Problem: Trust Issue

- We **assumed** that the agency's list is randomly ordered!
- But what if we cannot trust the employment agency?

Example: What if we must also pay the employment agency a fee each time we fire and rehire?

Hiring Problem: Randomised Algorithm

The probabilistic analysis guides us to a new algorithm:

Step 0. Shuffle the applicants randomly before interviewing.

Step 1. Always hire after a better applicant was interviewed.

A **randomised algorithm** **imposes** a particular distribution, namely a random order, independently of the input order.

- **Expected case:** In $n + O(1)$ hirings,
like the average case of the deterministic algorithm
upon **assuming** a random order.
- **Worst case:**
no particular input triggers n hirings at every run!

For any particular input, the output and its cost can differ between runs.

Hiring Problem: Questions

- How to shuffle (permute) an array $A[1 \dots n]$ randomly?

Swap $A[i]$ with $A[\text{RANDOM}(i, n)]$, for $i = 1$ to n ,
where $\text{RANDOM}(\ell, u)$ returns in $\Theta(1)$ time a random integer between
integers ℓ and u , inclusive.

This takes $\Theta(n)$ time overall.

- On-line Hiring Problem: You can only hire one applicant (and you then stop interviewing the remaining ones).

How do you hire a candidate close to the best?

Reject the first n/e applicants and hire the first one thereafter that scores
higher than all preceding ones, or hire the last one (in case the best one
was among the first n/e ones). See Section 5.4.4 of CLRS4 for details.