DATA STRUCTURES |, I, 1ll, AND IV

|. Amortized Analysis
Il. Binary and Binomial Heaps
lll. Fibonacci Heaps

IV. Union—Find

INTRODUCTION TO

ALGORITHMS

Lecture slides by Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2022-01-05 21:35

http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Data structures

Static problems. Given an input, produce an output.

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union—find,

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.

Ex. Stack, queue, priority queue, symbol table, union—find,

Algorithm. Step-by-step procedure to solve a problem.

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union—find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union—find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union—find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...

1 2 3 4 5 6 / 8

33 22 55 23 16 63 86 9

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union—find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...

1 2 3 4 5 6 / 8

33 22 55 23 16 63 86 9

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union—find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...

Appetizer

Goal. Design a data structure to support all operations in O(1) time.
* INIT(n): create and return an initialized array (all zero) of length =.
* READ(A, i): return element i in array.
* WRITE(A, i, value): set element i in array to value.

Appetizer

Goal. Design a data structure to support all operations in O(1) time.
* INIT(n): create and return an initialized array (all zero) of length =.
* READ(A, i): return element i in array.
* WRITE(A, i, value): set element i in array to value.
s, - true in C or C++, but not Java
* Can MALLOC an uninitialized array of length n in O(1) time.
* Given an array, can read or write element i in O(1) time.

Appetizer

Goal. Design a data structure to support all operations in O(1) time.
* INIT(n): create and return an initialized array (all zero) of length =.
* READ(A, i): return element i in array.
* WRITE(A, i, value): set element i in array to value.

true in C or C++, but not Java

Assumptions. -
* Can MALLOC an uninitialized array of length n in O(1) time.
* Given an array, can read or write element i in O(1) time.

Remark. An array does INIT in ©(n) time and READ and WRITE in ©(1) time.

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).

A[] 2?2 22 55 99 2 33 ? ?

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.

A[] 2?2 22 55 99 2 33 ? ?

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.
* C[j] = index of j” initialized element for j=1, ..., k.

A[] 2?2 22 55 99 2 33 ? ?

c[y] 4 6 2 3 ? 2?2 7 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.
* C[j] = index of j” initialized element for j=1, ..., k.
* If C[j]=i, then B[i]=jforj=1,..., k.

A[] 2?2 22 55 99 2 33 ? ?

B[] ? 3 4 1 ? 2 ? ?

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.
* C[j] = index of j” initialized element for j=1, ..., k.
* If C[j]=i, then B[i]=jforj=1,..., k.

Theorem. A[i] is initialized iff both 1 < B[i] <k and C[B[i]] = i.

A[] 2?2 22 55 99 2 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.
* C[j] = index of j” initialized element for j=1, ..., k.
* If C[j]=i, then B[i]=jforj=1,..., k.

Theorem. A[i] is initialized iff both 1 < B[i] <k and C[B[i]] = i.
Pf. Ahead.

A[] 2?2 22 55 99 2 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Appetizer

INIT (A, n)

k < 0.
A < MALLOC(n).
B < MALLOC(n).

C < MALLOC(n).

Appetizer

INIT (A, n) READ (A, i)

k < 0. IF (IS-INITIALIZED (A[i]))
A < MALLOC(n). RETURN A[i].

B < MALLOC(n). ELSE

C <= MALLOC(n). RETURN O.

Appetizer

INIT (A, n)

k < Q0.

A < MALLOC(n).
B < MALLOC(n).

C < MALLOC(n).

READ (A, 1)

IF (IS-INITIALIZED (A[i]))

RETURN A[1].

ELSE

RETURN O.

WRITE (A, i, value)
IF (IS-INITIALIZED (A[i]))
Ali] < value.

ELSE

k<—k+1.
Ali] < value.
Bli] < k.
Clk] < i.

Appetizer

INIT (A, n) READ (A, i)

k < 0. IF (IS-INITIALIZED (A[i]))
A < MALLOC(n). RETURN A[i].

B < MALLOC(n). ELSE

C <= MALLOC(n). RETURN O.

[S-INITIALIZED (A, i)

IF (1 <B[i] < k)and (C[B]i]] = 1)
RETURN ftrue.
ELSE

RETURN false.

WRITE (A, i, value)

IF (IS-INITIALIZED (A[i]))
Ali] < value.

ELSE
k<—k+1.
Ali] < value.

B[i] < k.

Clk] < i.

Appetizer

Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.

A[] ? 22 55 99 ? 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.
Pf. =

A[] ? 22 55 99 ? 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.
Pf. =
* Suppose A[i] is the j” entry to be initialized.

A[] ? 22 55 99 ? 33 ? ?

B[] ? 3 4 1 ? 2 ? ?

c[y] 4 6 2 3 ? 2?2 7 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <B[i] = kand C[B[i]] = i.
Pf. =

* Suppose A[i] is the j” entry to be initialized.

* Then C[j] =i and B[i] =J.

A[] ? 22 55 99 ? 33 ? ?

B[] ? 3 4 1 ? 2 ? ?

c[y] 4 6 2 3 ? 2?2 7 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <B[i] = kand C[B[i]] = i.
Pf. =

* Suppose A[i] is the j” entry to be initialized.

* Then C[j] =i and B[i] =J.

* Thus, C[B[{]] = i.

A[] ? 22 55 99 ? 33 ? ?

B[] ? 3 4 1 ? 2 ? ?

c[y] 4 6 2 3 ? 2?2 7 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.
Pf. <=

A[] ? 22 55 99 ? 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.
Pf. <=
* Suppose A[{] is uninitialized.

A[] ? 22 55 99 ? 33 ? ?

B[] ? 3 4 1 ? 2 ? ?

c[y] 4 6 2 3 ? 2?2 7 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.
Pf. <=

* Suppose A[{] is uninitialized.

* If B[i] <1 or B[i] > k, then A[i] clearly uninitialized.

A[] ? 22 55 99 ? 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.
Pf. <=
* Suppose A[{] is uninitialized.
* If B[i] <1 or B[i] > k, then A[i] clearly uninitialized.
* If 1 < B[i] < k by coincidence, then we still can’t have C[B[i]] = i
because none of the entries C[1.. k] can equal i. =

A[] ? 22 55 99 ? 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

CLIFFORD STEIN

» binary counter
» multi-pop stack
» dynamic table

INTRODUCTION TO

ALGORITHMS

Lecture slides by Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2022-01-05 21:35

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure
operation as function of the input size n.

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure
operation as function of the input size n. \

can be too pessimistic if the only way to
encounter an expensive operation is when
there were lots of previous cheap operations

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure
operation as function of the input size n. \

can be too pessimistic if the only way to
encounter an expensive operation is when
there were lots of previous cheap operations

Amortized analysis. Determine worst-case running time of a sequence
of n data structure operations.

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure
operation as function of the input size n. \

can be too pessimistic if the only way to
encounter an expensive operation is when
there were lots of previous cheap operations

Amortized analysis. Determine worst-case running time of a sequence
of n data structure operations.

Ex. Starting from an empty stack implemented with a dynamic table, any
sequence of n push and pop operations takes O(n) time in the worst case.

Amortized analysis: applications

* Splay trees.

 Dynamic table.

* Fibonacci heaps.

« Garbage collection.

 Move-to-front list updating.

e Push-relabel algorithm for max flow.

« Path compression for disjoint-set union.

« Structural modifications to red-black trees.

« Security, databases, distributed computing, ...

10

Amortized analysis: applications

* Splay trees.

 Dynamic table.

* Fibonacci heaps.

« Garbage collection.

 Move-to-front list updating.

e Push-relabel algorithm for max flow.

« Path compression for disjoint-set union.

« Structural modifications to red-black trees.

« Security, databases, distributed computing, ...

SIAM J. ALG. DISC. METH. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 2, April 1985 016

AMORTIZED COMPUTATIONAL COMPLEXITY*

ROBERT ENDRE TARJANTt

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain ‘‘self-adjusting” data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05

10

o AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

‘ CLIFFORD STEIN

» binary counter

CHAPTER 17

Binary counter

Increment a k-bit binary counter (mod 2%).

Goal.

j™ least significant bit of counter.

Representation. A[j]

=111l 1=l 1=l 1= 11 1=
OO w00 /1 OO — OO — O
COOO —— = —H O OO — — —[= O
CO OO OO OO v v v — [O
C OO OO OO OO OO OO O OO —
C OO OO OO O OO OO O O OO0
C OO O OO OO OO OO OO0C OO0
C OO OO OO OO OO OO0 OO0

S AN NIV OO — AN <t n O
— o = — — —

12

Binary counter

Increment a k-bit binary counter (mod 2%).

Goal.

j™ least significant bit of counter.

Representation. A[j]

=111l 1=l 1=l 1= 11 1=
OO w00 /1 OO — OO — O
COOO —— = —H O OO — — —[= O
CO OO OO OO v v v — [O
C OO OO OO OO OO OO O OO —
C OO OO OO O OO OO O O OO0
C OO O OO OO OO OO OO0C OO0
C OO OO OO OO OO OO0 OO0

S AN NIV OO — AN <t n O
— o = — — —

Number of bits flipped.

Cost model.

12

Binary counter

Goal. Increment a k-bit binary counter (mod 2%).
Representation. A[j]=j" least significant bit of counter.

0 O00O0O0O0OO0ODO0
1 0O0000O0O0OO0OT1
2 O0000O0OO0OT1T0O0
3 OO0 00O0O0OT11
4 O00O0O0OT1TPO00DO0
5 O000O0T1TO0T1
6 0000O0OT1TT10O0
7 O0000O0T1T1T1
8 O0O000O01O0O00O0
9 O000T1TO0O0T1
10 0O00001O0T10O0
11 0O00001O0T1T1
12 0O000OO0T1T1O00
13 O0O00O0T1T1UO01
14 000O01T1T10O0
15 00001 T1T1T1
16 0O000O10O0O00O0

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n k) bits.

13

Binary counter

Goal. Increment a k-bit binary counter (mod 2%).
Representation. A[j]=j" least significant bit of counter.

0 O00O0O0O0OO0ODO0
1 0O0000O0O0OO0OT1
2 O0000O0OO0OT1T0O0
3 OO0 00O0O0OT11
4 O00O0O0OT1TPO00DO0
5 O000O0T1TO0T1
6 0000O0OT1TT10O0
7 O0000O0T1T1T1
8 O0O000O01O0O00O0
9 O000T1TO0O0T1
10 0O00001O0T10O0
11 0O00001O0T1T1
12 0O000OO0T1T1O00
13 O0O00O0T1T1UO01
14 000O01T1T10O0
15 00001 T1T1T1
16 0O000O10O0O00O0

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n k) bits.
Pf. At most k bits flipped per increment. =

13

Binary counter

Goal. Increment a k-bit binary counter (mod 2%).
Representation. A[j]=j" least significant bit of counter.

0 O00O0O0O0OO0ODO0
1 0O0000O0O0OO0OT1
2 O0000O0OO0OT1T0O0
3 OO0 00O0O0OT11
4 O00O0O0OT1TPO00DO0
5 O000O0T1TO0T1
6 0000O0OT1TT10O0
7 O0000O0T1T1T1
8 O0O000O01O0O00O0
9 O000T1TO0O0T1
10 0O00001O0T10O0
11 0O00001O0T1T1
12 0O000OO0T1T1O00
13 O0O00O0T1T1UO01
14 000O01T1T10O0
15 00001 T1T1T1
16 0O000O10O0O00O0

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(nk) bits. <—— overly pessimistic upper bound
Pf. At most k bits flipped per increment. =

13

Aggregate method (brute force)

Aggregate method. Analyze cost of a sequence of operations.

0

1
3
4
7
8
10

11

000O0O0OO0®
000O0O0O00O01

0

1
2
3
4
5

000O0O0O0OT1°0

00000011

0000O0T1O00

0000O0T101

0000O0T1T1°0

6
7
8
9
10

11

0000O01T11

15
16
18
19
22
23

000O01O0O0@0

000O0T1O00°1

00001010

00001011

00001100

12
13

00001101

14

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips »n times.

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips »n times.
* Bit 1 flips | n/2] times.

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bitj flips | n/2/| times.

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bit flips | n/2/| times. o

* The total number of bits flipped is Z L%J

7=0

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bitj flips | n/2/| times.

k—1 00

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bit flips | n/2/| times. o N

* The total number of bits flipped is) L—J < nzi

15

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bitj flips | n/2/| times.

k—1 00

Remark. Theorem may be false if initial counter is not zero.

Accounting method (banker’s method)

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D, =data structure after i” operation.

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D, =data structure after i” operation.
* ¢; =actual cost of i operation.

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.

* ¢ =amortized cost of i operation = amount we charge operation i.

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

-— N
5 & \)
(» QQ*;.‘* q >
N < P / \\
. &
o S S.
i oo f&-

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

-— N
5 & \)
(» QQ*;.‘* q >
N < P / \\
. &
o S S.
i oo f&-

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

Initial data structure Dy starts with 0 credits.

— «\
— %\\\\/
A
\\xﬁ & Z \
R~ \ g‘
. o -

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

Initial data structure Dy starts with 0 credits.

Credit invariant. The total number of credits in the data structure > 0.

— «\
— %\\\\/
A
\\xﬁ & Z \
R~ \ g‘
. o -

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

Initial data structure Dy starts with 0 credits.

Credit invariant. The total number of credits in the data structure > 0.

our job is to choose suitable amortized
costs so that this invariant holds

p . \5
& N\

C; &" >
S Z 7 D
S A

16

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

Initial data structure Dy starts with 0 credits.

Credit invariant. The total number of credits in the data structure > 0.

Zéz — ZCZ' Z 0
p=ll =1

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.

17

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

Initial data structure Dy starts with 0 credits.

Credit invariant. The total number of credits in the data structure > 0.

Zéz — ZCZ' Z 0
p=ll =1

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortlzed costs

Pf. The amortized cost of the sequence of n operations is: Zcz ZC@ .

=1 =1)
T credit
invariant

17

Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
* D; =data structure after i operation. can be more or |ess
than actual cost
* ¢; =actual cost of i operation.
* & =amortized cost of i”» operation = amount we charge operation i.
* When & > c;, we store credits in data structure D; to pay for future ops;

when & < c¢;, we consume credits in data structure D..

Initial data structure Dy starts with 0 credits.

Credit invariant. The total number of credits in the data structure > 0.

Zéz — ZCZ' Z 0
p=ll =1

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortlzed costs

Pf. The amortized cost of the sequence of n operations is: Zcz ZC@ .

=1 =1)
T credit
invariant

Intuition. Measure running time in terms of credits (time = money).

17

Binary counter: accounting method

Credits. One credit pays for a bit flip.

18

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

S o - ~

18

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

18

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

G ol & W& m W&
N - ~ ~

18

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

increment

18

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

increment

18

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

increment

& Wl n & m lEom W&
N L -~ . ~

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

increment

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

increment

&2 N

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

increment

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

increment

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

increment

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

20

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).

* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.

21

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).
* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

21

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).
* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

Theorem. Starting from the zero counter, a sequence of n INCREMENT

operations flips O(n) bits.
the rightmost O bit

Pf l (unless counter overflows)

* Each INCREMENT operation flips at most one 0 bit to a 1 bit,
so the amortized cost per INCREMENT =< 2.

21

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).
* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

Theorem. Starting from the zero counter, a sequence of n INCREMENT

operations flips O(n) bits.
the rightmost O bit

Pf l (unless counter overflows)

* Each INCREMENT operation flips at most one 0 bit to a 1 bit,
so the amortized cost per INCREMENT =< 2.
* Invariant = number of credits in data structure = 0.

21

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
* Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit).
* Flip bit jfrom 1 to 0: pay for it with the 1 credit saved in bit ;.

Theorem. Starting from the zero counter, a sequence of n INCREMENT

operations flips O(n) bits.
the rightmost O bit

Pf l (unless counter overflows)

* Each INCREMENT operation flips at most one 0 bit to a 1 bit,
so the amortized cost per INCREMENT =< 2.
* Invariant = number of credits in data structure = 0.
* Total actual cost of n operations < sum of amortized costs < 2n. =

!

accounting method theorem

21

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« ®(Dy) = 0.
* O(D,) = 0 for each data structure D..

22

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« ®(Dy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.

22

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« ®(Dy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.
* ¢; = actual cost of i operation.

22

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:

* ®(Doy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.

* ¢; = actual cost of i operation.
* & =c + ®D) - ®(D1) = amortized cost of i operation.

22

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« ®(Dy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.
* ¢; = actual cost of i operation.
* & =c + ®D) - ®(D1) = amortized cost of i operation.

AN

our job is to choose
a potential function
so that the amortized cost
of each operation is low

22

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:

* ®(Doy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.

* ¢; = actual cost of i operation.
* & =c + ®D) - ®(D1) = amortized cost of i operation.

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.

23

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:

* ®(Doy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.

* ¢; = actual cost of i operation.
* & =c + ®D) - ®(D1) = amortized cost of i operation.

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of operations is:

Zc — Z(cﬁ@(z}i)—@(z}i_l))

23

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:

* ®(Doy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.

* ¢; = actual cost of i operation.
* & =c + ®D) - ®(D1) = amortized cost of i operation.

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of operations is:

n n

Y b =) (c+®(D;) — (Dis1))

1=1 1=1
n

=) ci+®(Dyn) — ®(Dy)

Potential method (physicist’s method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« ®(Dy) = 0.
* O(D,) = 0 for each data structure D..

Actual and amortized costs.

* ¢; = actual cost of i operation.
* & =c + ®D) - ®(D1) = amortized cost of i operation.

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of operations is:

n n

Y b =) (c+®(D;) — (Dis1))

1=1 1=1
n

=) ci+®(Dyn) — ®(Dy)

n
E Cz]
1=1

[V

Binary counter: potential method

24

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

24

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment
7 6 5 4 3 2] 0
0)] 0 0]]] 0 e A S T

24

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment
2 l T
7 6 S 4 3 0 ¢ T
S S
0 0 0 1 1 1 1 N PAMNT
“ -

24

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment
2 l T
7 6 5 4 3 L 2 S0
T . = 4
‘/\é%; . «/\éﬁ;
&= S
o 1 0 0 1 1 1 1 N AN

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment
7 6 5 4 3 2] 0
0)] 0) 0]]] 0 IS A S T4

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment
7 6 5 4 3 2 1 0
0 1 0 O 1 1 0 0 A (S

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

increment

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

26

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Suppose that the i” INCREMENT operation flips # bits from 1 to O.

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Suppose that the i” INCREMENT operation flips # bits from 1 to O.

o The actual costce <t + 1 E operation flips at most one bit from O to 1
P] (no bits flipped to 1 when counter overflows)

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.
* Suppose that the i” INCREMENT operation flips # bits from 1 to O.
° The aCtuaI cost ci < ti + 1. <«—— operation flips at most one bit from O to 1

(no bits flipped to 1 when counter overflows)

* The amortized cost é = ¢i + (D)) — ®(Diy)

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.

* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Suppose that the i” INCREMENT operation flips # bits from 1 to O.

e The actual coste: < ¢ + 1 s operation flips at most one bit from O to 1
P] (no bits flipped to 1 when counter overflows)
* The amortized cost é = ¢i + (D)) — ®(Diy)
< ¢; +1— t; «<—— potential decreases by 1 for ¢ bits flipped from 1 to 0

and increases by 1 for bit flipped from 0 to 1

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Suppose that the i” INCREMENT operation flips # bits from 1 to O.

o The actual costce <t + 1 E operation flips at most one bit from O to 1
P] (no bits flipped to 1 when counter overflows)

* The amortized cost é = ¢i + (D)) — ®(Diy)

c; + 1 — t; «<—— potential decreases by 1 for ¢ bits flipped from 1 to 0
) and increases by 1 for bit flipped from 0 to 1

IA

IA

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Doy) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Suppose that the i” INCREMENT operation flips # bits from 1 to O.

o The actual costce <t + 1 E operation flips at most one bit from O to 1
P] (no bits flipped to 1 when counter overflows)

* The amortized cost é = ¢i + (D)) — ®(Diy)

IA

c; + 1 — t; «<—— potential decreases by 1 for ¢ bits flipped from 1 to 0
) and increases by 1 for bit flipped from 0 to 1
< Z.

* Total actual cost of n operations < sum of amortized costs < 2n. =

f

potential method theorem

27

Famous potential functions

28

Famous potential functions

Fibonacci heaps. ®(H) = 2trees(H) + 2 marks(H)

28

Famous potential functions

Fibonacci heaps. ®(H) = 2trees(H) + 2 marks(H)

Splay trees. ®(T) = Z [log, size(x) |

xeTl

28

Famous potential functions

Fibonacci heaps. ®(H) = 2trees(H) + 2 marks(H)

Splay trees. ®(T) = Z [log, size(x) |

xeTl

Move-to-front. ®(L) = 2 inversions(L, L")

28

Famous potential functions

Fibonacci heaps. ®(H) = 2trees(H) + 2 marks(H)

Splay trees. ®(T) = Z [log, size(x) |

xeTl

Move-to-front. ®(L) = 2 inversions(L, L")

Preflow—push. &(f) = Z height(v)

v:excess(v) >0

28

Famous potential functions

Fibonacci heaps. ®(H) = 2trees(H) + 2 marks(H)

Splay trees. ®(T) = Z [log, size(x) |

xeTl

Move-to-front. ®(L) = 2 inversions(L, L")

Preflow—push. &(f) = Z height(v)

v:excess(v) >0

Red-black trees. @(T) =) w(x)

xeTl

(0 if x is red

1 if x is black and has no red children
0 if 2 is black and has one red child
2

if x is black and has two red children

\

o AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

‘ CLIFFORD STEIN

» multi-pop stack

SECTION 17.4

Multipop stack

Goal. Support operations on a set of elements:

30

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.

30

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

MULTI-POP (S, k)

FOR i=1T0Ok
POP(S).

30

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

MULTI-POP (S, k)

FOR i=1T0Ok
POP(S).

Exceptions. We assume PoP throws an exception if stack is empty.

30

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n?) time.

31

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n?) time.
Pf.

31

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n?) time.
Pf.

« Use a singly linked list.

top e——| 1 ——> 4 | e—— 1 ——> 3 °

31

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n?) time.
Pf.

« Use a singly linked list.

* PoP and PusH take O(1) time each.

top e——| 1 ——> 4 | e—— 1 ——> 3 °

31

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n?) time.
Pf.

« Use a singly linked list.

* PoP and PusH take O(1) time each.

* MULTI-POP takes O(n) time. =

top e——| 1 ——> 4 | e—— 1 ——> 3 °

31

Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n?) time.
Pf.
overly pessimistic
* Use a singly linked list. upper bound
* PoP and PusH take O(1) time each.
* MULTI-POP takes O(n) time. =

top e——| 1 ——> 4 | e—— 1 ——> 3 °

31

Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n) time.

32

Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n) time.

Pf.

32

Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n) time.

Pf.
 An element is popped at most once for each time that it is pushed.

32

Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n) time.

Pf.
 An element is popped at most once for each time that it is pushed.
* There are < n PUSH operations.

32

Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n) time.

Pf.
 An element is popped at most once for each time that it is pushed.
* There are < n PUSH operations.
* Thus, there are < n POpP operations
(including those made within MULTI-POP). =

32

Multipop stack: accounting method

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future

* Popr(S): charge 0O credits.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Popr(S): charge 0O credits.
* MULTIPOP(S, k): charge 0 credits.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Popr(S): charge 0O credits.
* MULTIPOP(S, k): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Popr(S): charge 0O credits.
* MULTIPOP(S, k): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.
Pf.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Popr(S): charge 0O credits.
* MULTIPOP(S, k): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Invariant = number of credits in data structure = 0.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Popr(S): charge 0O credits.
* MULTIPOP(S, k): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Invariant = number of credits in data structure = 0.

* Amortized cost per operation < 2.

33

Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Popr(S): charge 0O credits.
* MULTIPOP(S, k): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Invariant = number of credits in data structure = 0.

* Amortized cost per operation < 2.
* Total actual cost of n operations < sum of amortized costs < 2n.

!

accounting method theorem

33

Multipop stack: potential method

34

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

34

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

34

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.

34

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a PUSH.

34

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a PUSH.
* The actual cost ¢; =1.

34

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a PUSH.
* The actual cost ¢; =1.
* The amortized costé = ¢ci +PD) — PDi1) =1 + 1 = 2.

34

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.

35

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a Pop.

35

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a Pop.
* The actual cost ¢; =1.

35

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a Pop.
* The actual cost ¢; =1.
* The amortized costé = ¢ci +PD) — PDi1)) =1 -1 = 0.

35

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.

36

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a MULTI-PoP of k objects.

36

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a MULTI-PoP of k objects.
* The actual cost ¢; =«k.

36

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Suppose that the i operation is a MULTI-PoP of k objects.
* The actual cost ¢; =«k.
* The amortized costé = ¢ci + PD) — ®PDi1)) =k — k =0. =

36

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.

37

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Amortized cost & < 2. 2 for push; O for pop and multi-pop

37

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Amortized cost & < 2. 2 for push; O for pop and multi-pop

* Sum of amortized costs ¢ of the n operations < 2.

37

Multipop stack: potential method

Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Amortized cost & < 2. 2 for push; O for pop and multi-pop

* Sum of amortized costs ¢ of the n operations < 2.
 Total actual cost <= sum of amortized cost< 2n. =

!

potential method theorem

37

o AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

‘ CLIFFORD STEIN

» dynamic table

SECTION 17.4

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
« Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(m).

39

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
« Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(m).

Theorem. Starting from an empty dynamic table, any intermixed sequence
of n INSERT and DELETE operations takes O(n?) time.

39

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
« Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(m).

Theorem. Starting from an empty dynamic table, any intermixed sequence
of n INSERT and DELETE operations takes O(n?) time.

Pf. Each INSERT or DELETE takes O(n) time. =

39

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
« Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(m).

Theorem. Starting from an empty dynamic table, any intermixed sequence
of n INSERT and DELETE operations takes O(n?) time.

overly pessimistic

Pf. Each INSERT or DELETE takes O(n) time. = upper bound

39

Dynamic table: insert only

 When inserting into an empty table, allocate a table of capacity 1.

 When inserting into a full table, allocate a new table of twice the
capacity and copy all items.

* Insert item into table.

insert old_ new insert copy

capacity capacity cost cost
] 0 1] —
2] 2]]
3 2 4] 2
4 4 4] -
5 4 8] 4
6 8 8] -
7 8 8] —
8 8 8] -
9 8 16] 8

Cost model. Number of items written (due to insertion or copy).

Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

41

Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

¢ it ¢ — 1 is an exact power of 2
C;, —]
1 otherwise

41

Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

¢ it ¢ — 1 is an exact power of 2
C;, —]
1 otherwise

Starting from empty table, the cost of a sequence of n INSERT operations is:

41

Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

¢ it ¢ — 1 is an exact power of 2
C;, —]
1 otherwise

Starting from empty table, the cost of a sequence of n INSERT operations is:

41

Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

{i if + — 1 is an exact power of 2
C;, —

1 otherwise

Starting from empty table, the cost of a sequence of n INSERT operations is:

n [lgn]
ZC@ < n + Z 27
i=1 j=0

41

Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

¢ it ¢ — 1 is an exact power of 2
C;, —]
1 otherwise

Starting from empty table, the cost of a sequence of n INSERT operations is:

n [lgn] '

IR O

i=1 =0
< n+2n

41

Dynamic table demo: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).
Invariant. 2 credits with each item in right half of table; none in left hallf.

insert N

capacity = 16

A B C D E F G H

—
N
—
<

42

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
Pf. !

slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
Pf. !

: i] slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
Pf. 1

: i] slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)

* When table doubles from k to 2k, k/2 items in the table have 2 credits.

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
Pf. 1

_ _ _ slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)
* When table doubles from k to 2k, k/2 items in the table have 2 credits.

- these k credits pay for the work needed to copy the k items

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
Pf. 1

_ _ _ slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)
* When table doubles from k to 2k, k/2 items in the table have 2 credits.
- these k credits pay for the work needed to copy the k items

- now, all kitems are in left half of table (and have 0O credits)

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
PF. 1
_ _ _ slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)
* When table doubles from k to 2k, k/2 items in the table have 2 credits.
- these k credits pay for the work needed to copy the k items

- now, all kitems are in left half of table (and have 0O credits)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
PF. 1
_ _ _ slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)
* When table doubles from k to 2k, k/2 items in the table have 2 credits.
- these k credits pay for the work needed to copy the k items

- now, all kitems are in left half of table (and have 0O credits)
Theorem. Starting from an empty dynamic table,

any sequence of n INSERT operations takes O(n) time.
Pf.

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
PF. 1
_ _ _ slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)
* When table doubles from k to 2k, k/2 items in the table have 2 credits.
- these k credits pay for the work needed to copy the k items

- now, all kitems are in left half of table (and have 0O credits)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.
Pf.

* Invariant = number of credits in data structure = 0.

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
PF. 1
_ _ _ slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)
* When table doubles from k to 2k, k/2 items in the table have 2 credits.
- these k credits pay for the work needed to copy the k items

- now, all kitems are in left half of table (and have 0O credits)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.
Pf.

* Invariant = number of credits in data structure = 0.

* Amortized cost per INSERT = 3.

43

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.
PF. 1
_ _ _ slight cheat if table capacity = 1
« Each newly inserted item gets 2 credits. (can charge only 2 credits for first insert)
* When table doubles from k to 2k, k/2 items in the table have 2 credits.
- these k credits pay for the work needed to copy the k items

- now, all kitems are in left half of table (and have 0O credits)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.
Pf.

* Invariant = number of credits in data structure = 0.

* Amortized cost per INSERT = 3.

* Total actual cost of n operations < sum of amortized cost <3n. =

!

accounting method theorem
43

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

44

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

44

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,

any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 1

number of capacity of
elements array

\\

p \

oS>

1 2 3 4 5 6 . SN AN
R 1D,

- \/

size = 6

capacity = 8

b =4

44

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,

any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 1

number of capacity of
elements array
* ®(Dy)=0
| 2 3 4 5 6 /4{‘\ ’7\
= C Y-
T Iy BT
size = 6
capacity = 8

D=4

44

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 1

number of capacity of
elements array

« ®(Do) = 0.
immediately after doubling
* PD) =0 for each Di. <— capacity(D;) = 2 size(D;)

<2
1 2 3 4 5 6 e a s &
size = 6
capacity = 8
b =4

44

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 0.

45

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case O.
 Actual cost c; =1.

45

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case O.
* Actual cost ¢ =1.
* O(D1)— P(Do) = (2 size(D1) — capacity(D1)) — (2 size(Do) — capacity(Do))
=1.

45

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 0.
* Actual cost ¢; =1.
* O(D1)— P(Do) = (2 size(D1) — capacity(D1)) — (2 size(Do) — capacity(Do))
=1.
* Amortized cost ¢ = ¢1 + (D(D1) — P(Do))
=1+1
=2.

45

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 1. capacity(D;) = capacity(Di-1).

46

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 1. capacity(D;) = capacity(Di-1).
* Actual cost¢; =1.

46

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 1. capacity(D;) = capacity(Di-1).
* Actual cost¢; =1.
* O(D;))— P(Di1) = (2 size(D;i) — capacity(D;)) — (2 size(Di-1) — capacity(Di-1))
= 2.

46

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 1. capacity(D;) = capacity(Di-1).
* Actual cost ¢ =1.
* O(D;))— P(Di1) = (2 size(D;i) — capacity(D;)) — (2 size(Di-1) — capacity(Di-1))
=2.
* Amortized cost ¢ = ¢ + (P(D)) — P(Di1))
=1+2
= 3.

46

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 2. capacity(D;) =2 capacity(Di_1).

47

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 2. capacity(D;) =2 capacity(Di-1).
* Actual cost ¢; =1 + capacity(D;1).

47

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 2. capacity(D;) =2 capacity(Di_1).
* Actual cost ¢; =1 + capacity(D;1).
* O(D;))— P(Di1) = (2 size(D;i) — capacity(D;)) — (2 size(Di-1) — capacity(Di-1))
= 2 — capacity(D;) + capacity(Di-1)
= 2 — capacity(Di-1).

47

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 2. capacity(D;) =2 capacity(Di_1).
* Actual cost ¢; =1 + capacity(D;1).
* O(D;))— P(Di1) = (2 size(D;i) — capacity(D;)) — (2 size(Di-1) — capacity(Di-1))
= 2 — capacity(D;) + capacity(Di-1)
= 2 — capacity(Di-1).
* Amortized cost ¢ = ¢ + (P(D;) — P(Di1))
= 1 + capacity(Di-1) + (2 — capacity(D;-1))
= 3.

47

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

48

Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

* Amortized cost per operation ¢ < 3.

48

Dynamic table: insert only (potential method)

Theorem.

Starting from an empty dynamic table,

any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1

number of
elements

d(Dy) = 0.
d(D;) = 0 for each D..

Total actual cost of n

T

capacity of
array

Amortized cost per operation ¢ < 3.

operations =< sum of amortized cost < 3n. =

!

potential method theorem

48

Dynamic table: doubling and halving

Thrashing.
* INSERT: when inserting into a full table, double capacity.
« DELETE: when deleting from a table that is J2-full, halve capacity.

49

Dynamic table: doubling and halving

Thrashing.
* INSERT: when inserting into a full table, double capacity.

« DELETE: when deleting from a table that is J2-full, halve capacity.

Efficient solution.
 When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
* INSERT: when inserting into a full table, double capacity.

« DELETE: when deleting from a table that is %-full, halve capacity.

49

Dynamic table: doubling and halving

Thrashing.
* INSERT: when inserting into a full table, double capacity.
« DELETE: when deleting from a table that is J2-full, halve capacity.

Efficient solution.
 When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
* INSERT: when inserting into a full table, double capacity.
* DELETE: when deleting from a table that is Y-full, halve capacity.

Memory usage. A dynamic table uses ®(n) memory to store n items.

49

Dynamic table: doubling and halving

Thrashing.
* INSERT: when inserting into a full table, double capacity.
« DELETE: when deleting from a table that is J2-full, halve capacity.

Efficient solution.
 When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
* INSERT: when inserting into a full table, double capacity.
* DELETE: when deleting from a table that is Y-full, halve capacity.

Memory usage. A dynamic table uses ®(n) memory to store n items.

Pf. Table is always between 25% and 100% full. =

49

Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.
Invariant 2. 1 credit with each empty slot in left half of table.

delete M

capacity = 16

A B CcC D E F G H I J K L M

50

Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.
Invariant 2. 1 credit with each empty slot in left half of table.

delete M

capacity = 16

A B CcC D E F G H I J K L

frdiry,
-

50

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

51

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).
Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.

51

Dynamic table: insert and delete (accounting method)

Delete. Charge 2 credits (1 to delete; save 1\in empty slot if in left half).

Insert. Charge 3 credits (1 to insert; save vaxith item if in right half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table.

51

Dynamic table: insert and delete (accounting method)

Delete. Charge 2 credits (1 to delete; save 1\in empty slot if in left half).

Insert. Charge 3 credits (1 to insert; save thh item if in right half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table.

Invariant 2. 1 credit with each empty slot in left half of table.

51

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2)with item if in right half).
Delete. Charge 2 credits (1 to delete; save ;Xn empty slot if in left half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table. «— to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table.

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

51

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2)with item if in right half).
Delete. Charge 2 credits (1 to delete; save ;Xn empty slot if in left half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table. «— to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. «— to pay for contraction

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.
Pf.

51

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2)with item if in right half).
Delete. Charge 2 credits (1 to delete; save ;Xn empty slot if in left half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table. «— to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. «— to pay for contraction

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.
Pf.

* Invariants = number of credits in data structure = 0.

51

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2)with item if in right half).
Delete. Charge 2 credits (1 to delete; save ;Xn empty slot if in left half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table. «— to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. «— to pay for contraction

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.
Pf.

* Invariants = number of credits in data structure > 0.

* Amortized cost per operation < 3.

51

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2)with item if in right half).
Delete. Charge 2 credits (1 to delete; save ;Xn empty slot if in left half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table. «— to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. «— to pay for contraction

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.
Pf.

* Invariants = number of credits in data structure > 0.

* Amortized cost per operation < 3.

* Total actual cost of n operations < sum of amortized cost <3n. =

!

accounting method theorem

51

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

52

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.

52

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

52

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

2size(D;) — capacity(D;) if a(D;) > 1/2

* Define ®(D,) =
(D;) {%capacity(Di) — size(D;) if a(D;) < 1/2

52

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

2size(D;) — capacity(D;) if a(D;) > 1/2

* Define ®(D,) =
(D;) {%capacity(Di) — size(D;) if a(D;) < 1/2

* O(Dy)= 0,P(D)) = 0. [a potential function]

52

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

2size(D;) — capacity(D;) if a(D;) > 1/2

* Define ®(D,) =
(D;) {%capacity(Di) — size(D;) if a(D;) < 1/2

* O(Dy)= 0,P(D)) = 0. [a potential function]
* When a(D)) = 1/2, ®(D;) =0. [zero potential after resizing]

52

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

2size(D;) — capacity(D;) if a(D;) > 1/2

s capacity(D;) — size(D;) if a(D;) < 1/2

Define (I)(Dz) — {

* O(Dy)= 0,P(D)) = 0. [a potential function]
* When a(D)) = 1/2, ®(D;) =0. zero potential after resizing]
* When a(D)) = 1, ®(D;,) = size(D). can pay for expansion]

52

Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

2size(D;) — capacity(D;) if a(D;) > 1/2

s capacity(D;) — size(D;) if a(D;) < 1/2

Define (I)(DZ) — {

* O(Dy)= 0,P(D)) = 0. [a potential function]

* When a(D;) = 1/2, ®(D;) =0. zero potential after resizing]
* When a(D)) = 1, ®(D;,) = size(D). can pay for expansion]

* When a(D;) = 1/4, ®(D;) = size(D;). [can pay for contraction]

52

