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Goal. Design a data structure to support all operations in O(1) time.
* INIT(n): create and return an initialized array (all zero) of length =.
* READ(A, i): return element i in array.
* WRITE(A, i, value): set element i in array to value.

true in C or C++, but not Java

Assumptions. -
* Can MALLOC an uninitialized array of length n in O(1) time.
* Given an array, can read or write element i in O(1) time.

Remark. An array does INIT in ©(n) time and READ and WRITE in ©(1) time.
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* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.
* C[j] = index of j” initialized element for j=1, ..., k.
* If C[j]=i, then B[i]=jforj=1,..., k.

Theorem. A[i] is initialized iff both 1 < B[i] <k and C[B[i]] = i.
Pf. Ahead.

A[] 2?2 22 55 99 2 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order



Appetizer




Appetizer

INIT (A, n)

k < 0.
A < MALLOC(n).
B < MALLOC(n).

C < MALLOC(n).



Appetizer

INIT (A, n) READ (A, i)

k < 0. IF (IS-INITIALIZED (A[i]))
A < MALLOC(n). RETURN A[i].

B < MALLOC(n). ELSE

C <= MALLOC(n). RETURN O.



Appetizer

INIT (A, n)

k < Q0.

A < MALLOC(n).
B < MALLOC(n).

C < MALLOC(n).

READ (A, 1)
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INIT (A, n) READ (A, i)

k < 0. IF (IS-INITIALIZED (A[i]))
A < MALLOC(n). RETURN A[i].

B < MALLOC(n). ELSE

C <= MALLOC(n). RETURN O.

[S-INITIALIZED (A, i)

IF (1 <B[i] < k)and (C[B]i]] = 1)
RETURN ftrue.
ELSE

RETURN false.

WRITE (A, i, value)

IF (IS-INITIALIZED (A[i]))
Ali] < value.

ELSE
k<—k+1.
Ali] < value.

B[i] < k.

Clk] < i.
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Theorem. A[i] is initialized iff both 1 <BJ[i] < kand C[B[i]] = i.
Pf. <=
* Suppose A[{] is uninitialized.
* If B[i] <1 or B[i] > k, then A[i] clearly uninitialized.
* If 1 < B[i] < k by coincidence, then we still can’t have C[B[i]] = i
because none of the entries C[1.. k] can equal i. =

A[] ? 22 55 99 ? 33 ? ?

BI] ? 3 4 1 2 2 2?2 2

c[] 4 6 2 3 ? 2?2 2?2 7

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order
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Worst-case analysis. Determine worst-case running time of a data structure
operation as function of the input size n. \

can be too pessimistic if the only way to
encounter an expensive operation is when
there were lots of previous cheap operations

Amortized analysis. Determine worst-case running time of a sequence
of n data structure operations.

Ex. Starting from an empty stack implemented with a dynamic table, any
sequence of n push and pop operations takes O(n) time in the worst case.
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SIAM J. ALG. DISC. METH. © 1985 Society for Industrial and Applied Mathematics
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AMORTIZED COMPUTATIONAL COMPLEXITY*

ROBERT ENDRE TARJANTt

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain ‘‘self-adjusting” data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05
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Binary counter

Increment a k-bit binary counter (mod 2%).

Goal.

j™ least significant bit of counter.
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Number of bits flipped.

Cost model.
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Binary counter

Goal. Increment a k-bit binary counter (mod 2%).
Representation. A[j]=j" least significant bit of counter.
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14 000O01T1T10O0
15 00001 T1T1T1
16 0O000O10O0O00O0

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n k) bits.
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14 000O01T1T10O0
15 00001 T1T1T1
16 0O000O10O0O00O0

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(nk) bits. <—— overly pessimistic upper bound
Pf. At most k bits flipped per increment. =
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Aggregate method (brute force)

Aggregate method. Analyze cost of a sequence of operations.

0

1
3
4
7
8
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000O0O0OO0®
000O0O0O00O01

0

1
2
3
4
5

000O0O0O0OT1°0

00000011

0000O0T1O00

0000O0T101

0000O0T1T1°0

6
7
8
9
10

11

0000O01T11

15
16
18
19
22
23

000O01O0O0@0

000O0T1O00°1

00001010

00001011

00001100

12
13

00001101

14



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips »n times.

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips »n times.
* Bit 1 flips | n/2] times.

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bitj flips | n/2/| times.

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bit flips | n/2/| times. o

* The total number of bits flipped is Z L%J

7=0

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bitj flips | n/2/| times.

k—1 00

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bit flips | n/2/| times. o N

* The total number of bits flipped is ) L—J < nzi

15



Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips | n/2] times.
* Bit 2 flips | n/ 4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Bitj flips | n/2/| times.

k—1 00

Remark. Theorem may be false if initial counter is not zero.
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Pf l (unless counter overflows)

* Each INCREMENT operation flips at most one 0 bit to a 1 bit,
so the amortized cost per INCREMENT =< 2.
* Invariant = number of credits in data structure = 0.
* Total actual cost of n operations < sum of amortized costs < 2n. =
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accounting method theorem
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of each operation is low
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* Total actual cost of n operations < sum of amortized costs < 2n. =
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potential method theorem
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xeTl

Move-to-front. ®(L) = 2 inversions(L, L")

Preflow—push. &(f) = Z height(v)

v:excess(v) >0

Red-black trees. @(T) = ) w(x)

xeTl

(0 if x is red

1 if x is black and has no red children
0 if 2 is black and has one red child
2

if x is black and has two red children
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Multipop stack

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

MULTI-POP (S, k)

FOR i=1T0Ok
POP(S).

Exceptions. We assume PoP throws an exception if stack is empty.
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Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n?) time.
Pf.
overly pessimistic
* Use a singly linked list. upper bound
* PoP and PusH take O(1) time each.
* MULTI-POP takes O(n) time. =

top e——| 1 ——> 4 | e—— 1 ——> 3 °
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Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n) time.
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Multipop stack: aggregate method

Goal. Support operations on a set of elements:
* PUSH(S, x): add element x to stack S.
* PoOP(S): remove and return the most-recently added element.
* MULTI-PoP(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTI-POP operations takes O(n) time.

Pf.
 An element is popped at most once for each time that it is pushed.
* There are < n PUSH operations.
* Thus, there are < n POpP operations
(including those made within MULTI-POP). =
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Multipop stack: accounting method

Credits. 1 credit pays for either a PUsH or PoOP.
Invariant. Every element on the stack has 1 credit.

Accounting.
* PUSH(S, x): charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
* Popr(S): charge 0O credits.
* MULTIPOP(S, k): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Invariant = number of credits in data structure = 0.

* Amortized cost per operation < 2.
* Total actual cost of n operations < sum of amortized costs < 2n.

!

accounting method theorem
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Potential function. Let ®(D) = number of elements currently on the stack.
* ®(Do) = 0.
* O(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Popr, and MULTI-POP operations takes O(n) time.

Pf.
* Amortized cost & < 2. 2 for push; O for pop and multi-pop

* Sum of amortized costs ¢ of the n operations < 2.
 Total actual cost <= sum of amortized cost< 2n. =

!

potential method theorem
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Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
« Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(m).
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Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
« Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(m).

Theorem. Starting from an empty dynamic table, any intermixed sequence
of n INSERT and DELETE operations takes O(n?) time.

overly pessimistic

Pf. Each INSERT or DELETE takes O(n) time. = upper bound

39



Dynamic table: insert only

 When inserting into an empty table, allocate a table of capacity 1.

 When inserting into a full table, allocate a new table of twice the
capacity and copy all items.

* Insert item into table.

insert old_ new insert copy

capacity capacity cost cost
] 0 1 ] —
2 ] 2 ] ]
3 2 4 ] 2
4 4 4 ] -
5 4 8 ] 4
6 8 8 ] -
7 8 8 ] —
8 8 8 ] -
9 8 16 ] 8

Cost model. Number of items written (due to insertion or copy).



Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.
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Dynamic table: insert only (aggregate method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

¢ it ¢ — 1 is an exact power of 2
C;, — ]
1  otherwise

Starting from empty table, the cost of a sequence of n INSERT operations is:

n [lgn] '

IR O

i=1 =0
< n+2n
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Dynamic table demo: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).
Invariant. 2 credits with each item in right half of table; none in left hallf.

insert N

capacity = 16

A B C D E F G H

—
N
—
<
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Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).
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- these k credits pay for the work needed to copy the k items

- now, all kitems are in left half of table (and have 0O credits)
Theorem. Starting from an empty dynamic table,

any sequence of n INSERT operations takes O(n) time.
Pf.
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).
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elements array
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).
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number of capacity of
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« ®(Do) = 0.
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* PD) =0 for each Di. <— capacity(D;) = 2 size(D;)
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1 T

number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

Case 0.
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).
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Dynamic table: insert only (potential method)

Theorem. Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).
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number of capacity of
elements array

« ®(Do) = 0.
* &(D,) = 0 for each D..

* Amortized cost per operation ¢ < 3.
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Dynamic table: insert only (potential method)

Theorem.

Starting from an empty dynamic table,

any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

1

number of
elements

d(Dy) = 0.
d(D;) = 0 for each D..

Total actual cost of n

T

capacity of
array

Amortized cost per operation ¢ < 3.

operations =< sum of amortized cost < 3n. =

!

potential method theorem
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Dynamic table: doubling and halving

Thrashing.
* INSERT: when inserting into a full table, double capacity.
« DELETE: when deleting from a table that is J2-full, halve capacity.
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Dynamic table: doubling and halving

Thrashing.
* INSERT: when inserting into a full table, double capacity.

« DELETE: when deleting from a table that is J2-full, halve capacity.

Efficient solution.
 When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
* INSERT: when inserting into a full table, double capacity.

« DELETE: when deleting from a table that is %-full, halve capacity.
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Dynamic table: doubling and halving

Thrashing.
* INSERT: when inserting into a full table, double capacity.
« DELETE: when deleting from a table that is J2-full, halve capacity.

Efficient solution.
 When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
* INSERT: when inserting into a full table, double capacity.
* DELETE: when deleting from a table that is Y-full, halve capacity.

Memory usage. A dynamic table uses ®(n) memory to store n items.

Pf. Table is always between 25% and 100% full. =
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Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.
Invariant 2. 1 credit with each empty slot in left half of table.

delete M

capacity = 16

A B CcC D E F G H I J K L M
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Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.
Invariant 2. 1 credit with each empty slot in left half of table.

delete M

capacity = 16
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Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).
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Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).
Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.
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Dynamic table: insert and delete (accounting method)

Delete. Charge 2 credits (1 to delete; save 1\in empty slot if in left half).

Insert. Charge 3 credits (1 to insert; save vaxith item if in right half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table.

51



Dynamic table: insert and delete (accounting method)

Delete. Charge 2 credits (1 to delete; save 1\in empty slot if in left half).

Insert. Charge 3 credits (1 to insert; save thh item if in right half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table.

Invariant 2. 1 credit with each empty slot in left half of table.

51



Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2)with item if in right half).
Delete. Charge 2 credits (1 to delete; save ;Xn empty slot if in left half).

discard any existing or extra credits
Invariant 1. 2 credits with each item in right half of table. «— to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table.

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.
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Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.
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Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
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any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).
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Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

2size(D;) — capacity(D;) if a(D;) > 1/2

* Define ®(D,) =
(D;) {%capacity(Di) — size(D;) if a(D;) < 1/2
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* When a(D)) = 1/2, ®(D;) =0. [zero potential after resizing]
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Dynamic table: insert and delete (potential method)

Theorem. Starting from an empty dynamic table,

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

2size(D;) — capacity(D;) if a(D;) > 1/2

s capacity(D;) — size(D;) if a(D;) < 1/2

Define (I)(DZ) — {

* O(Dy)= 0,P(D)) = 0. [a potential function]

* When a(D;) = 1/2, ®(D;) =0. zero potential after resizing]
* When a(D)) = 1, ®(D;,) = size(D). can pay for expansion]

* When a(D;) = 1/4, ®(D;) = size(D;). [can pay for contraction]
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