

DATA STRUCTURES I, II, III, AND IV

- I. Amortized Analysis*
- II. Binary and Binomial Heaps*
- III. Fibonacci Heaps*
- IV. Union-Find*

Lecture slides by Kevin Wayne

<http://www.cs.princeton.edu/~wayne/kleinberg-tardos>

Data structures

Static problems. Given an input, produce an output.

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

Ex. Stack, queue, priority queue, symbol table, union–find,

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

Ex. Stack, queue, priority queue, symbol table, union–find,

Algorithm. Step-by-step procedure to solve a problem.

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

Ex. Stack, queue, priority queue, symbol table, union–find,

Algorithm. Step-by-step procedure to solve a problem.

Data structure. Way to store and organize data.

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

Ex. Stack, queue, priority queue, symbol table, union–find,

Algorithm. Step-by-step procedure to solve a problem.

Data structure. Way to store and organize data.

Ex. Array, linked list, binary heap, binary search tree, hash table, ...

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

Ex. Stack, queue, priority queue, symbol table, union–find,

Algorithm. Step-by-step procedure to solve a problem.

Data structure. Way to store and organize data.

Ex. Array, linked list, binary heap, binary search tree, hash table, ...

1	2	3	4	5	6	7	8
33	22	55	23	16	63	86	9

Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

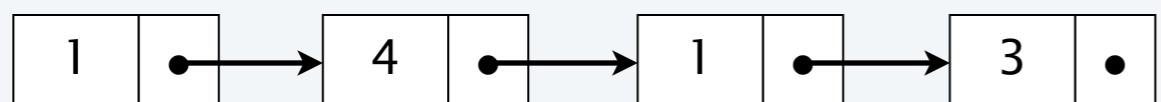
Ex. Stack, queue, priority queue, symbol table, union–find,

Algorithm. Step-by-step procedure to solve a problem.

Data structure. Way to store and organize data.

Ex. Array, linked list, binary heap, binary search tree, hash table, ...

1	2	3	4	5	6	7	8
33	22	55	23	16	63	86	9



Data structures

Static problems. Given an input, produce an output.

Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

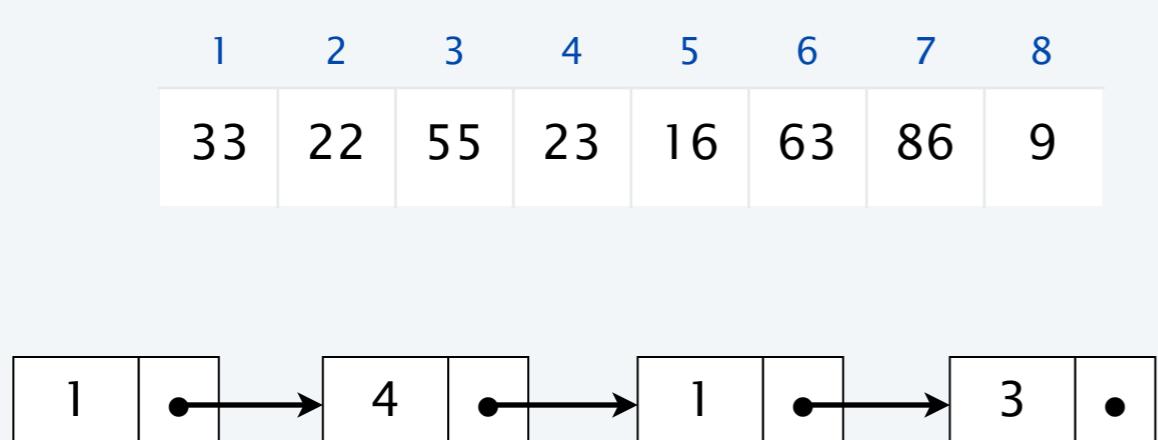
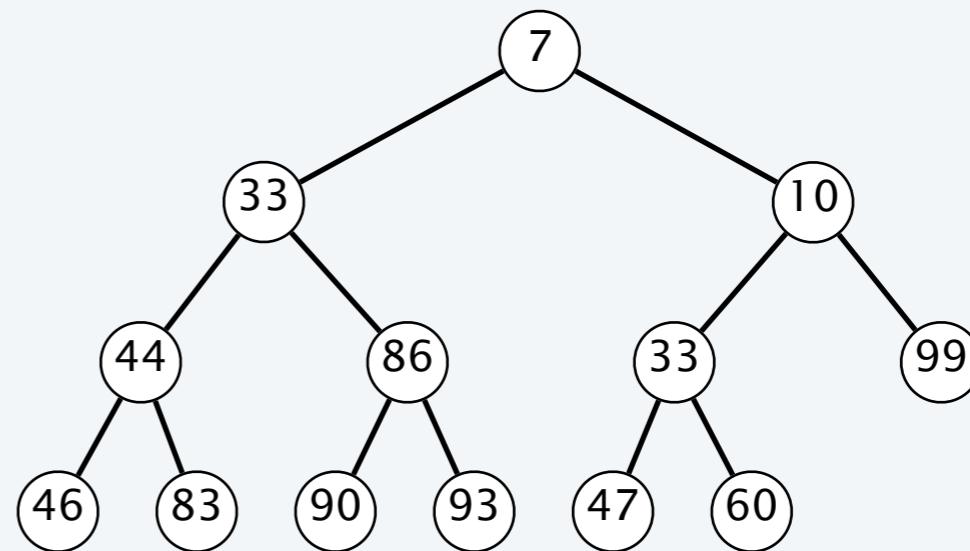
Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.

Ex. Stack, queue, priority queue, symbol table, union–find,

Algorithm. Step-by-step procedure to solve a problem.

Data structure. Way to store and organize data.

Ex. Array, linked list, binary heap, binary search tree, hash table, ...



Appetizer

Goal. Design a data structure to support all operations in $O(1)$ time.

- $\text{INIT}(n)$: create and return an **initialized** array (all zero) of length n .
- $\text{READ}(A, i)$: return element i in array.
- $\text{WRITE}(A, i, \text{value})$: set element i in array to value .

Appetizer

Goal. Design a data structure to support all operations in $O(1)$ time.

- $\text{INIT}(n)$: create and return an **initialized** array (all zero) of length n .
- $\text{READ}(A, i)$: return element i in array.
- $\text{WRITE}(A, i, \text{value})$: set element i in array to value .

Assumptions.

- Can `MALLOC` an uninitialized array of length n in $O(1)$ time.
- Given an array, can read or write element i in $O(1)$ time.

true in C or C++, but not Java

Appetizer

Goal. Design a data structure to support all operations in $O(1)$ time.

- $\text{INIT}(n)$: create and return an **initialized** array (all zero) of length n .
- $\text{READ}(A, i)$: return element i in array.
- $\text{WRITE}(A, i, \text{value})$: set element i in array to value .

Assumptions.

true in C or C++, but not Java

- Can `MALLOC` an **uninitialized** array of length n in $O(1)$ time.
- Given an array, can read or write element i in $O(1)$ time.

Remark. An array does `INIT` in $\Theta(n)$ time and `READ` and `WRITE` in $\Theta(1)$ time.

Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k .

Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k .

- $A[i]$ stores the current value for READ (if initialized).

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k .

- $A[i]$ stores the current value for READ (if initialized).
- $k =$ number of initialized entries.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?

$$k = 4$$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k .

- $A[i]$ stores the current value for READ (if initialized).
- $k = \text{number of initialized entries}$.
- $C[j] = \text{index of } j^{\text{th}} \text{ initialized element for } j = 1, \dots, k$.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?

$C[]$	4	6	2	3	?	?	?	?
--------	---	---	---	---	---	---	---	---

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k .

- $A[i]$ stores the current value for READ (if initialized).
- $k = \text{number of initialized entries}$.
- $C[j] = \text{index of } j^{\text{th}} \text{ initialized element for } j = 1, \dots, k$.
- If $C[j] = i$, then $B[i] = j$ for $j = 1, \dots, k$.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k .

- $A[i]$ stores the current value for READ (if initialized).
- $k = \text{number of initialized entries}$.
- $C[j] = \text{index of } j^{\text{th}} \text{ initialized element for } j = 1, \dots, k$.
- If $C[j] = i$, then $B[i] = j$ for $j = 1, \dots, k$.

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?

$B[]$?	3	4	1	?	2	?	?
--------	---	---	---	---	---	---	---	---

$C[]$	4	6	2	3	?	?	?	?
--------	---	---	---	---	---	---	---	---

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k .

- $A[i]$ stores the current value for READ (if initialized).
- $k = \text{number of initialized entries}$.
- $C[j] = \text{index of } j^{\text{th}} \text{ initialized element for } j = 1, \dots, k$.
- If $C[j] = i$, then $B[i] = j$ for $j = 1, \dots, k$.

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. Ahead.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Appetizer

INIT (A, n)

$k \leftarrow 0.$

$A \leftarrow \text{MALLOC}(n).$

$B \leftarrow \text{MALLOC}(n).$

$C \leftarrow \text{MALLOC}(n).$

Appetizer

INIT (A, n)

$k \leftarrow 0.$

$A \leftarrow \text{MALLOC}(n).$

$B \leftarrow \text{MALLOC}(n).$

$C \leftarrow \text{MALLOC}(n).$

READ (A, i)

IF (**IS-INITIALIZED** ($A[i]$))

RETURN $A[i].$

ELSE

RETURN 0.

Appetizer

INIT (A, n)

$k \leftarrow 0.$

$A \leftarrow \text{MALLOC}(n).$

$B \leftarrow \text{MALLOC}(n).$

$C \leftarrow \text{MALLOC}(n).$

READ (A, i)

IF (**IS-INITIALIZED** ($A[i]$))

RETURN $A[i].$

ELSE

RETURN 0.

WRITE ($A, i, value$)

IF (**IS-INITIALIZED** ($A[i]$))

$A[i] \leftarrow value.$

ELSE

$k \leftarrow k + 1.$

$A[i] \leftarrow value.$

$B[i] \leftarrow k.$

$C[k] \leftarrow i.$

Appetizer

INIT (A, n)

$k \leftarrow 0.$

$A \leftarrow \text{MALLOC}(n).$

$B \leftarrow \text{MALLOC}(n).$

$C \leftarrow \text{MALLOC}(n).$

READ (A, i)

IF (**IS-INITIALIZED** ($A[i]$))

RETURN $A[i].$

ELSE

RETURN 0.

WRITE ($A, i, value$)

IF (**IS-INITIALIZED** ($A[i]$))

$A[i] \leftarrow value.$

ELSE

$k \leftarrow k + 1.$

$A[i] \leftarrow value.$

$B[i] \leftarrow k.$

$C[k] \leftarrow i.$

IS-INITIALIZED (A, i)

IF ($1 \leq B[i] \leq k$) and ($C[B[i]] = i$)

RETURN *true*.

ELSE

RETURN *false*.

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Rightarrow

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Rightarrow

- Suppose $A[i]$ is the j^{th} entry to be initialized.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?

$B[]$?	3	4	1	?	2	?	?
--------	---	---	---	---	---	---	---	---

$C[]$	4	6	2	3	?	?	?	?
--------	---	---	---	---	---	---	---	---

$$k = 4$$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Rightarrow

- Suppose $A[i]$ is the j^{th} entry to be initialized.
- Then $C[j] = i$ and $B[i] = j$.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Rightarrow

- Suppose $A[i]$ is the j^{th} entry to be initialized.
- Then $C[j] = i$ and $B[i] = j$.
- Thus, $C[B[i]] = i$.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Leftarrow

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Leftarrow

- Suppose $A[i]$ is uninitialized.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?

$B[]$?	3	4	1	?	2	?	?
--------	---	---	---	---	---	---	---	---

$C[]$	4	6	2	3	?	?	?	?
--------	---	---	---	---	---	---	---	---

$$k = 4$$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Leftarrow

- Suppose $A[i]$ is uninitialized.
- If $B[i] < 1$ or $B[i] > k$, then $A[i]$ clearly uninitialized.

	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?
$B[]$?	3	4	1	?	2	?	?
$C[]$	4	6	2	3	?	?	?	?

$k = 4$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Leftarrow

- Suppose $A[i]$ is uninitialized.
- If $B[i] < 1$ or $B[i] > k$, then $A[i]$ clearly uninitialized.
- If $1 \leq B[i] \leq k$ by coincidence, then we still can't have $C[B[i]] = i$ because none of the entries $C[1.. k]$ can equal i . ■

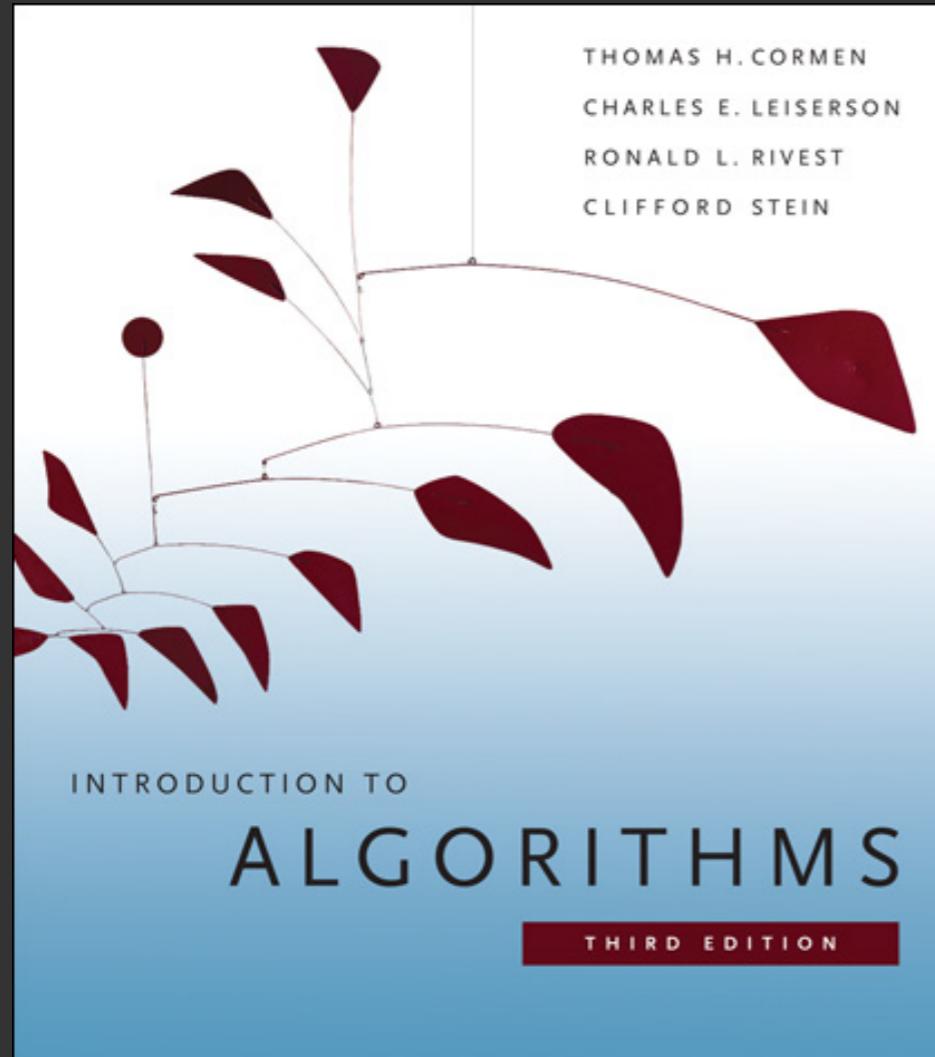
	1	2	3	4	5	6	7	8
$A[]$?	22	55	99	?	33	?	?

$B[]$?	3	4	1	?	2	?	?
--------	---	---	---	---	---	---	---	---

$C[]$	4	6	2	3	?	?	?	?
--------	---	---	---	---	---	---	---	---

$$k = 4$$

$A[4]=99$, $A[6]=33$, $A[2]=22$, and $A[3]=55$ initialized in that order



Lecture slides by Kevin Wayne

<http://www.cs.princeton.edu/~wayne/kleinberg-tardos>

AMORTIZED ANALYSIS

- ▶ *binary counter*
- ▶ *multi-pop stack*
- ▶ *dynamic table*

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure operation as function of the input size n .

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure operation as function of the input size n .

can be too pessimistic if the only way to encounter an expensive operation is when there were lots of previous cheap operations

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure operation as function of the input size n .

can be too pessimistic if the only way to encounter an expensive operation is when there were lots of previous cheap operations

Amortized analysis. Determine worst-case running time of a **sequence** of n data structure operations.

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure operation as function of the input size n .

can be too pessimistic if the only way to encounter an expensive operation is when there were lots of previous cheap operations

Amortized analysis. Determine worst-case running time of a **sequence** of n data structure operations.

Ex. Starting from an empty stack implemented with a dynamic table, any sequence of n push and pop operations takes $O(n)$ time in the worst case.

Amortized analysis: applications

- Splay trees.
- Dynamic table.
- Fibonacci heaps.
- Garbage collection.
- Move-to-front list updating.
- Push–relabel algorithm for max flow.
- Path compression for disjoint-set union.
- Structural modifications to red–black trees.
- Security, databases, distributed computing, ...

Amortized analysis: applications

- Splay trees.
- Dynamic table.
- Fibonacci heaps.
- Garbage collection.
- Move-to-front list updating.
- Push–relabel algorithm for max flow.
- Path compression for disjoint-set union.
- Structural modifications to red–black trees.
- Security, databases, distributed computing, ...

SIAM J. ALG. DISC. METH.
Vol. 6, No. 2, April 1985

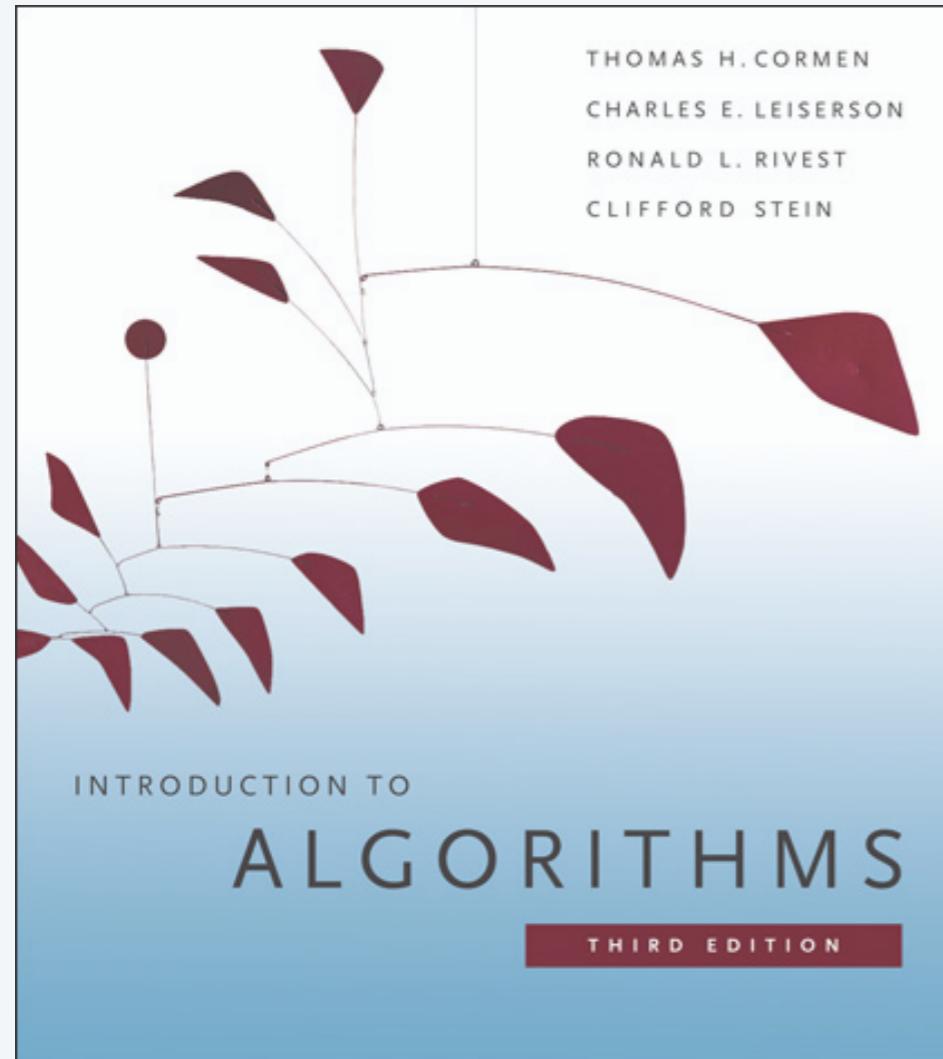
© 1985 Society for Industrial and Applied Mathematics
016

AMORTIZED COMPUTATIONAL COMPLEXITY*

ROBERT ENDRE TARJAN†

Abstract. A powerful technique in the complexity analysis of data structures is *amortization*, or averaging over time. Amortized running time is a realistic but robust complexity measure for which we can obtain surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing algorithms whose amortized complexity is low, we obtain “self-adjusting” data structures that are simple, flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05



CHAPTER 17

AMORTIZED ANALYSIS

- ▶ *binary counter*
- ▶ *multi-pop stack*
- ▶ *dynamic table*

Binary counter

Goal. Increment a k -bit binary counter $(\bmod 2^k)$.

Representation. $A[j] = j^{\text{th}}$ least significant bit of counter.

Counter value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	1	1	0
7	0	0	0	0	0	1	1	1
8	0	0	0	0	1	0	0	0
9	0	0	0	0	1	0	0	1
10	0	0	0	0	1	0	1	0
11	0	0	0	0	1	0	1	1
12	0	0	0	0	1	1	0	0
13	0	0	0	0	1	1	0	1
14	0	0	0	0	1	1	1	0
15	0	0	0	0	0	1	1	1
16	0	0	0	1	0	0	0	0

Binary counter

Goal. Increment a k -bit binary counter $(\bmod 2^k)$.

Representation. $A[j] = j^{\text{th}}$ least significant bit of counter.

Counter value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	1	1	0
7	0	0	0	0	0	1	1	1
8	0	0	0	0	1	0	0	0
9	0	0	0	0	1	0	0	1
10	0	0	0	0	1	0	1	0
11	0	0	0	0	1	0	1	1
12	0	0	0	0	1	1	0	0
13	0	0	0	0	1	1	0	1
14	0	0	0	0	1	1	1	0
15	0	0	0	0	0	1	1	1
16	0	0	0	1	0	0	0	0

Cost model. Number of bits flipped.

Binary counter

Goal. Increment a k -bit binary counter $(\bmod 2^k)$.

Representation. $A[j] = j^{\text{th}}$ least significant bit of counter.

Counter value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	1	1	0
7	0	0	0	0	0	1	1	1
8	0	0	0	0	1	0	0	0
9	0	0	0	0	1	0	0	1
10	0	0	0	0	1	0	1	0
11	0	0	0	0	1	0	1	1
12	0	0	0	0	1	1	0	0
13	0	0	0	0	1	1	0	1
14	0	0	0	0	1	1	1	0
15	0	0	0	0	0	1	1	1
16	0	0	0	1	0	0	0	0

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(nk)$ bits.

Binary counter

Goal. Increment a k -bit binary counter $(\bmod 2^k)$.

Representation. $A[j] = j^{\text{th}}$ least significant bit of counter.

Counter value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	1	1	0
7	0	0	0	0	0	1	1	1
8	0	0	0	0	1	0	0	0
9	0	0	0	0	1	0	0	1
10	0	0	0	0	1	0	1	0
11	0	0	0	0	1	0	1	1
12	0	0	0	0	1	1	0	0
13	0	0	0	0	1	1	0	1
14	0	0	0	0	1	1	1	0
15	0	0	0	0	0	1	1	1
16	0	0	0	1	0	0	0	0

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(nk)$ bits.

Pf. At most k bits flipped per increment. ▀

Binary counter

Goal. Increment a k -bit binary counter $(\bmod 2^k)$.

Representation. $A[j] = j^{\text{th}}$ least significant bit of counter.

Counter value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	1	1	0
7	0	0	0	0	0	1	1	1
8	0	0	0	0	1	0	0	0
9	0	0	0	0	1	0	0	1
10	0	0	0	0	1	0	1	0
11	0	0	0	0	1	0	1	1
12	0	0	0	0	1	1	0	0
13	0	0	0	0	1	1	0	1
14	0	0	0	0	1	1	1	0
15	0	0	0	0	0	1	1	1
16	0	0	0	1	0	0	0	0

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(nk)$ bits. \leftarrow overly pessimistic upper bound

Pf. At most k bits flipped per increment. ■

Aggregate method (brute force)

Aggregate method. Analyze cost of a **sequence of operations**.

Counter value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	0	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	0	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n / 2 \rfloor$ times.

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Bit j flips $\lfloor n/2^j \rfloor$ times.

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Bit j flips $\lfloor n/2^j \rfloor$ times.
- The total number of bits flipped is $\sum_{j=0}^{k-1} \left\lfloor \frac{n}{2^j} \right\rfloor$

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Bit j flips $\lfloor n/2^j \rfloor$ times.
- The total number of bits flipped is $\sum_{j=0}^{k-1} \left\lfloor \frac{n}{2^j} \right\rfloor < n \sum_{j=0}^{\infty} \frac{1}{2^j}$

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Bit j flips $\lfloor n/2^j \rfloor$ times.
- The total number of bits flipped is
$$\sum_{j=0}^{k-1} \left\lfloor \frac{n}{2^j} \right\rfloor < n \sum_{j=0}^{\infty} \frac{1}{2^j} = 2n \blacksquare$$

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n/2 \rfloor$ times.
- Bit 2 flips $\lfloor n/4 \rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Bit j flips $\lfloor n/2^j \rfloor$ times.
- The total number of bits flipped is
$$\sum_{j=0}^{k-1} \left\lfloor \frac{n}{2^j} \right\rfloor < n \sum_{j=0}^{\infty} \frac{1}{2^j} \\ = 2n \quad \blacksquare$$

Remark. Theorem may be false if initial counter is not zero.

Accounting method (banker's method)

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .

can be more or less
than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less
than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less
than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less
than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less
than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less
than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .

can be more or less
than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .
- Initial data structure D_0 starts with 0 credits.

can be more or less than actual cost

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .
- Initial data structure D_0 starts with 0 credits.

can be more or less than actual cost

Credit invariant. The total number of credits in the data structure ≥ 0 .

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .
- Initial data structure D_0 starts with 0 credits.

can be more or less than actual cost

Credit invariant. The total number of credits in the data structure ≥ 0 .

$$\sum_{i=1} \hat{c}_i - \sum_{i=1} c_i \geq 0 \quad \leftarrow \text{our job is to choose suitable amortized costs so that this invariant holds}$$

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .
- Initial data structure D_0 starts with 0 credits.

can be more or less
than actual cost

Credit invariant. The total number of credits in the data structure ≥ 0 .

$$\sum_{i=1} \hat{c}_i - \sum_{i=1} c_i \geq 0$$

Theorem. Starting from the initial data structure D_0 , the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
can be more or less than actual cost
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .
- Initial data structure D_0 starts with 0 credits.

Credit invariant. The total number of credits in the data structure ≥ 0 .

$$\sum_{i=1} \hat{c}_i - \sum_{i=1} c_i \geq 0$$

Theorem. Starting from the initial data structure D_0 , the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of n operations is: $\sum_{i=1}^n \hat{c}_i \geq \sum_{i=1}^n c_i$. ■

credit invariant

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- D_i = data structure after i^{th} operation.
- c_i = actual cost of i^{th} operation.
- \hat{c}_i = amortized cost of i^{th} operation = amount we charge operation i .
can be more or less than actual cost
- When $\hat{c}_i > c_i$, we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i$, we consume credits in data structure D_i .
- Initial data structure D_0 starts with 0 credits.

Credit invariant. The total number of credits in the data structure ≥ 0 .

$$\sum_{i=1}^n \hat{c}_i - \sum_{i=1}^n c_i \geq 0$$

Theorem. Starting from the initial data structure D_0 , the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of n operations is: $\sum_{i=1}^n \hat{c}_i \geq \sum_{i=1}^n c_i$. ■

credit invariant

Intuition. Measure running time in terms of credits (time = money).

Binary counter: accounting method

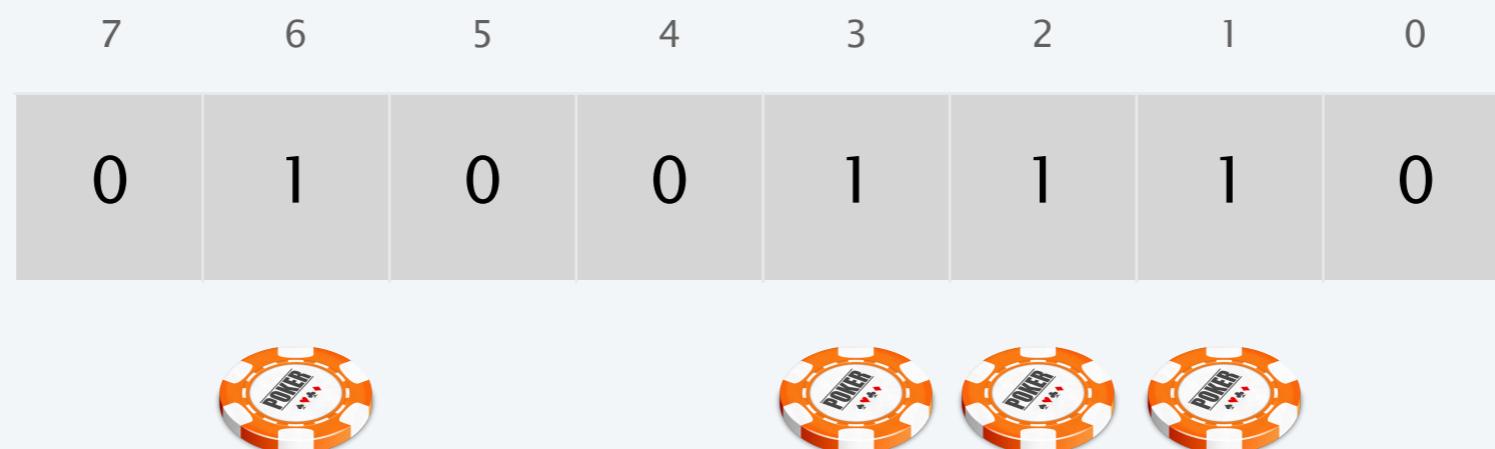
Credits. One credit pays for a bit flip.

7	6	5	4	3	2	1	0
0	1	0	0	1	1	1	0

Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

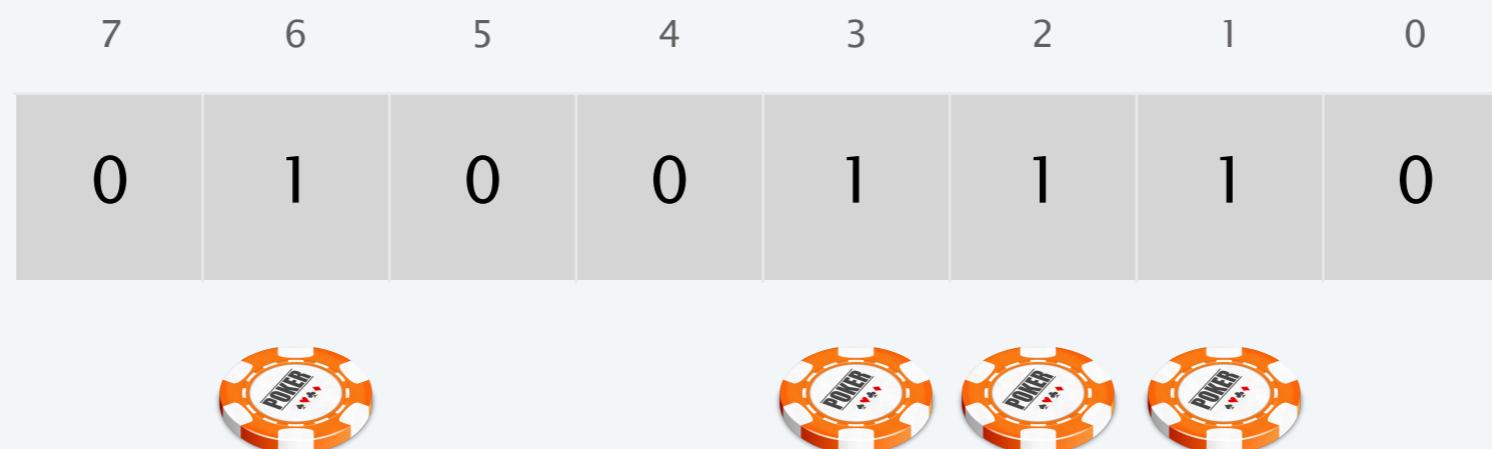


Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.



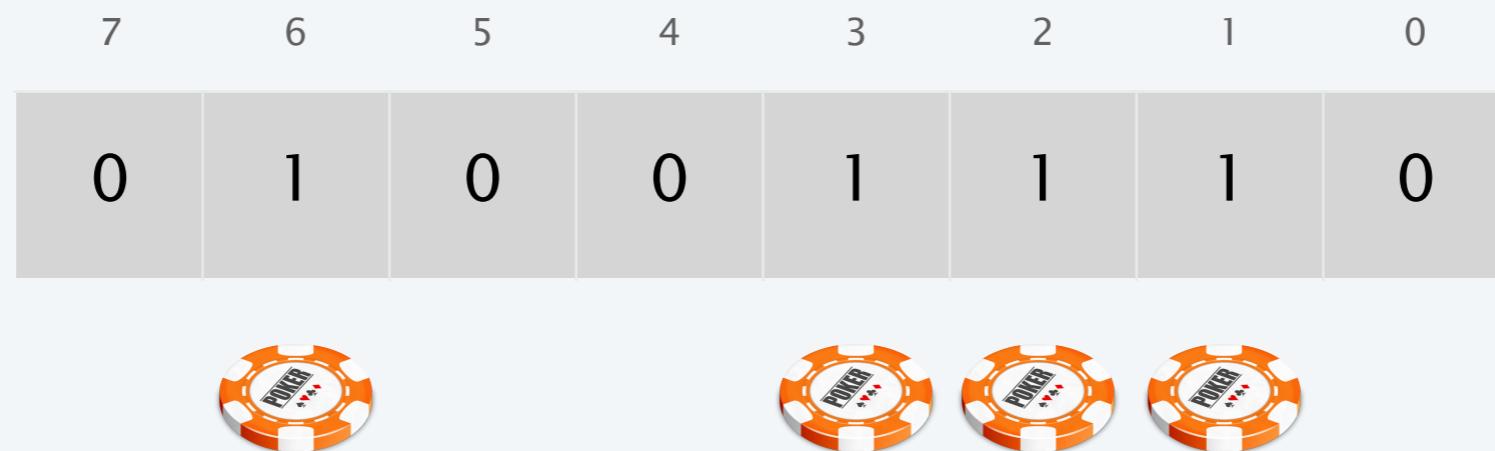
Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).



Binary counter: accounting method

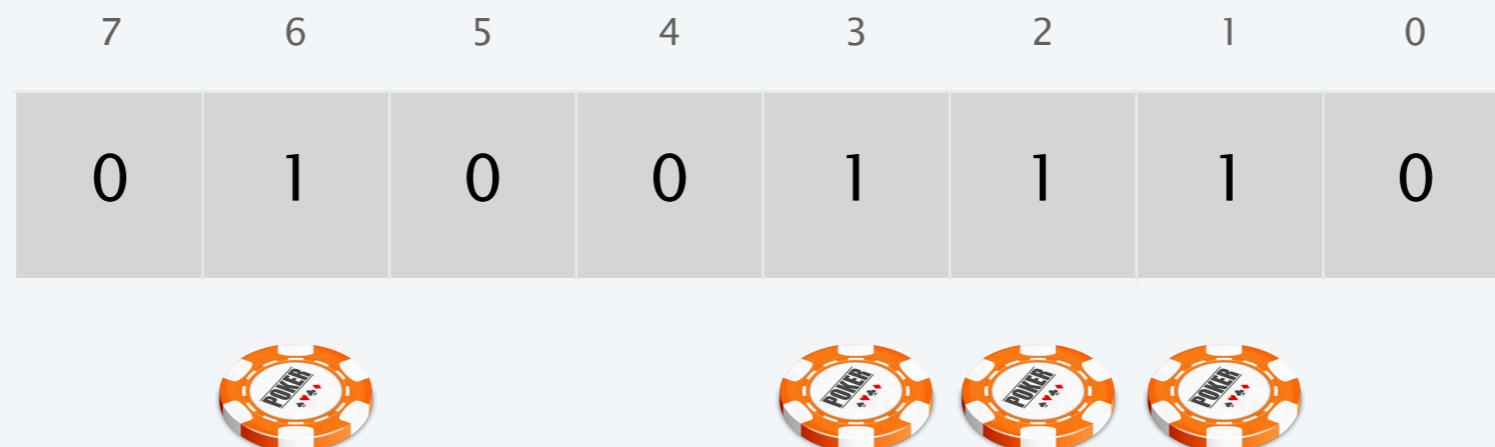
Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).

increment



Binary counter: accounting method

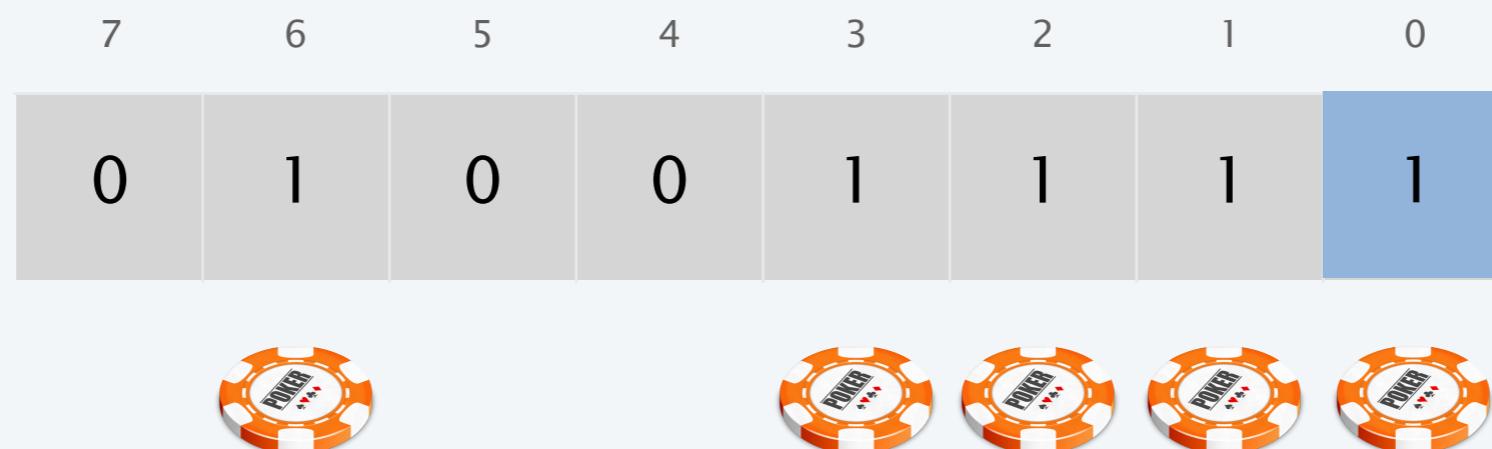
Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).

increment



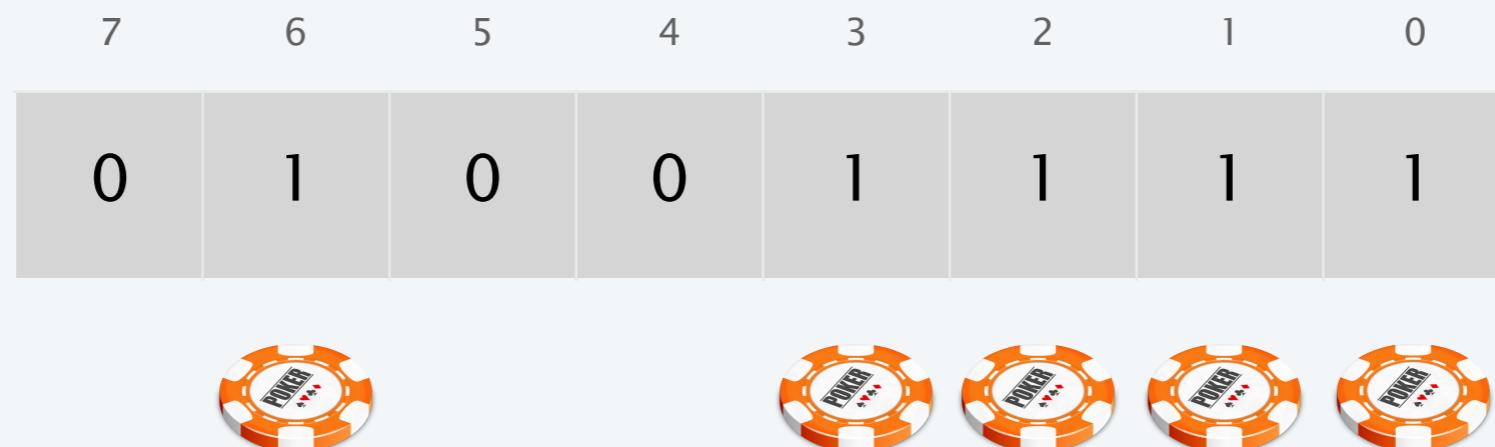
Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .



Binary counter: accounting method

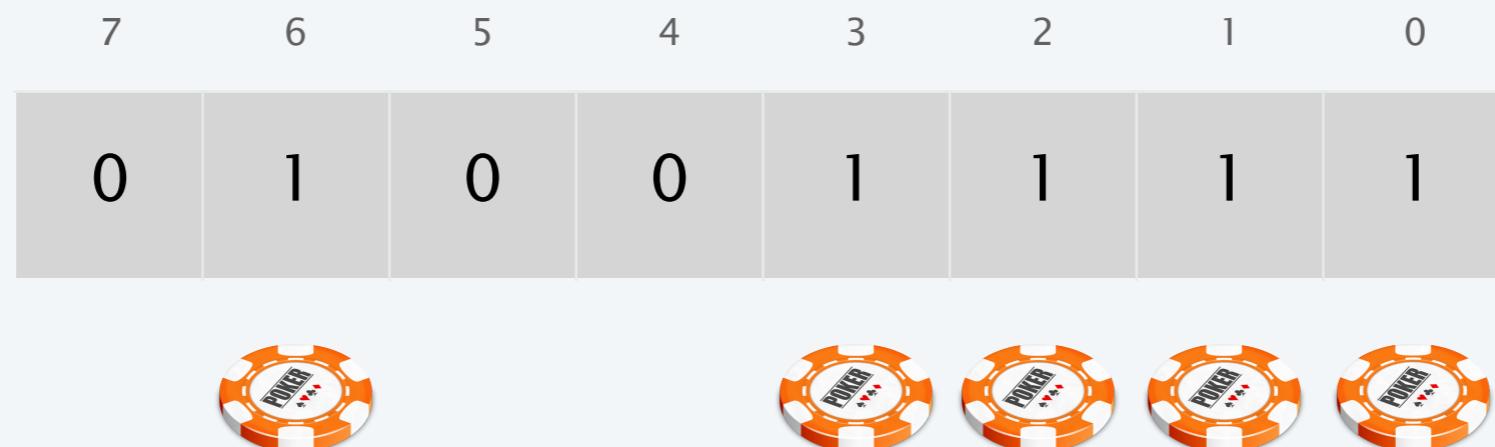
Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

increment



Binary counter: accounting method

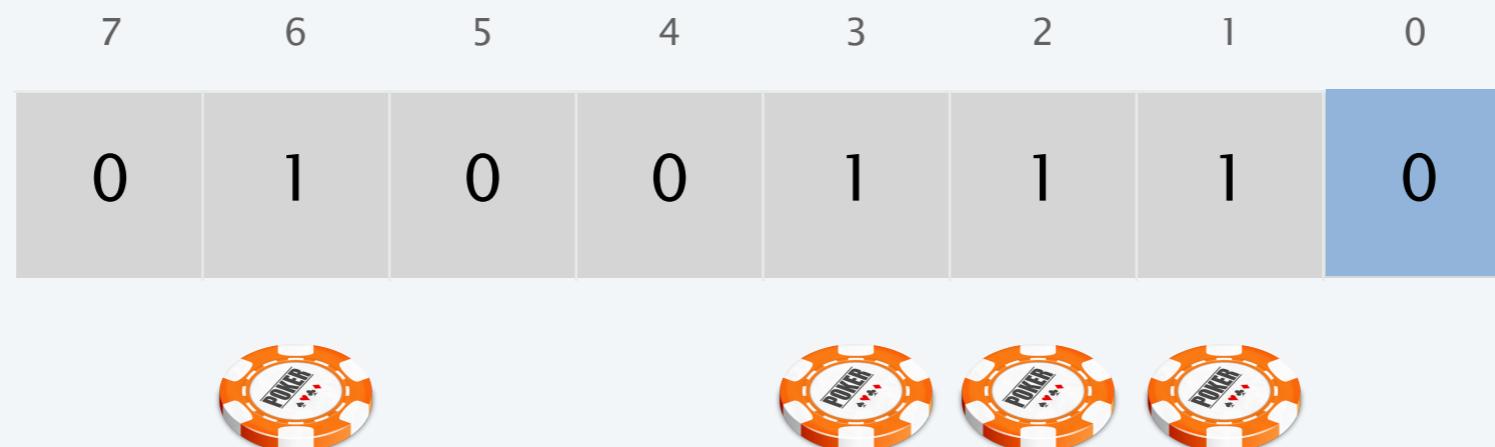
Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

increment



Binary counter: accounting method

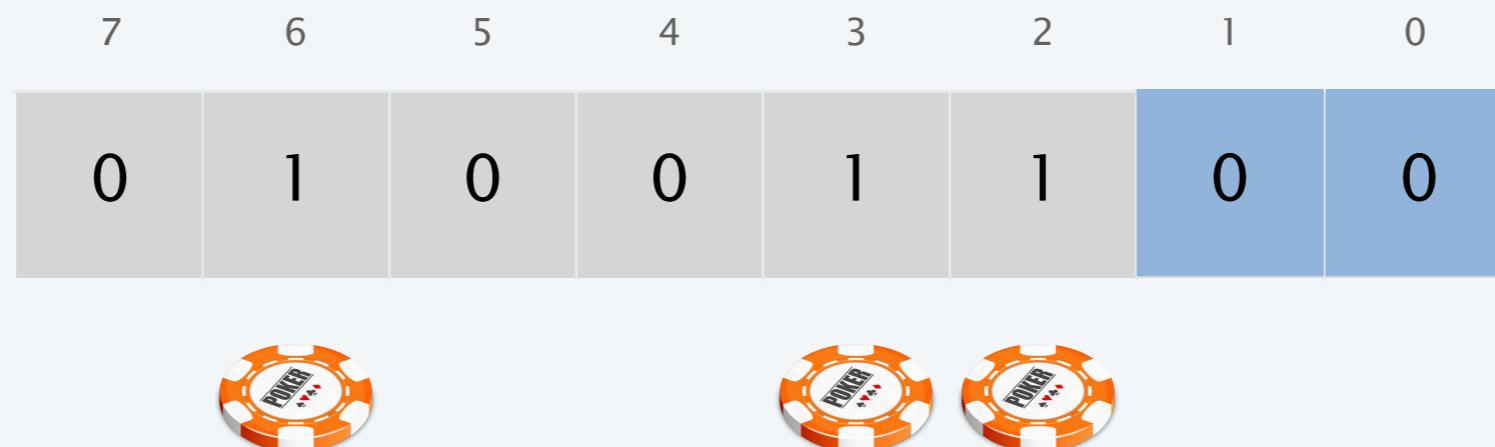
Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

increment



Binary counter: accounting method

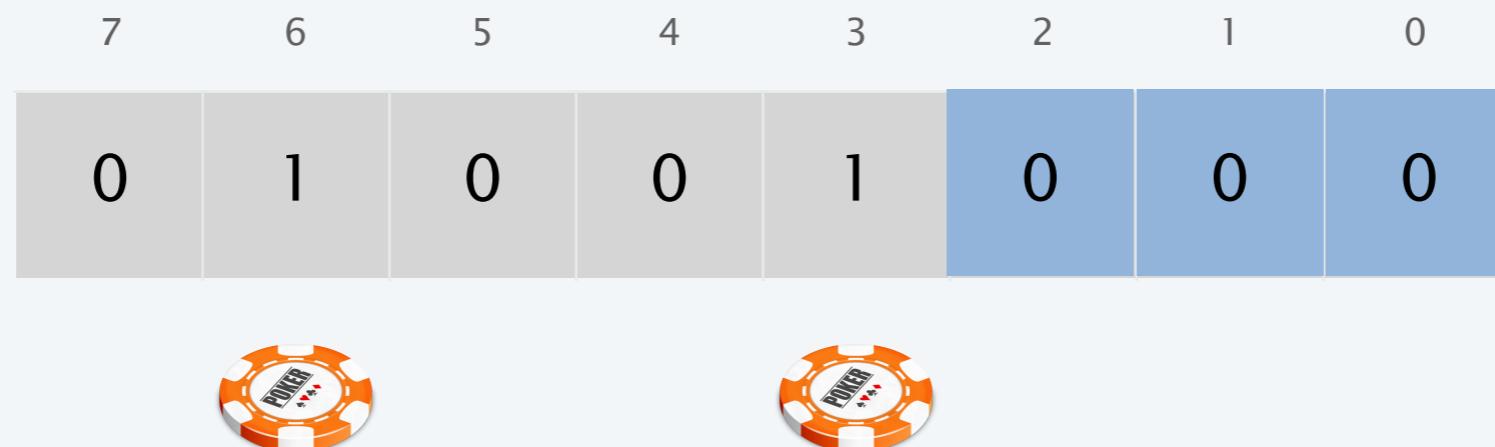
Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

increment



Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

increment

7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	0

Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

increment

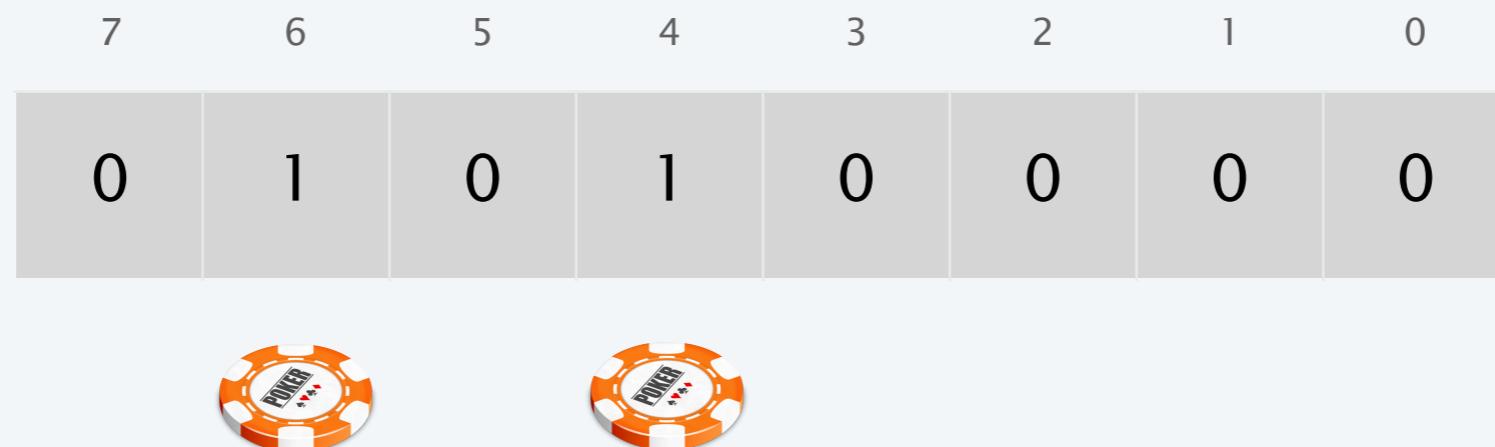
Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .



Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Each INCREMENT operation flips at most one 0 bit to a 1 bit, so the amortized cost per INCREMENT ≤ 2 .

 the rightmost 0 bit
(unless counter overflows)

Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Each INCREMENT operation flips at most one 0 bit to a 1 bit, so the amortized cost per INCREMENT ≤ 2 .
- Invariant \Rightarrow number of credits in data structure ≥ 0 .

 the rightmost 0 bit
(unless counter overflows)

Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Each INCREMENT operation flips at most one 0 bit to a 1 bit, so the amortized cost per INCREMENT ≤ 2 .
- Invariant \Rightarrow number of credits in data structure ≥ 0 .
- Total actual cost of n operations \leq sum of amortized costs $\leq 2n$. ▀

 the rightmost 0 bit
(unless counter overflows)

 accounting method theorem

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

- c_i = actual cost of i^{th} operation.

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

- c_i = actual cost of i^{th} operation.
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = amortized cost of i^{th} operation.

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

- c_i = actual cost of i^{th} operation.
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = amortized cost of i^{th} operation.

our job is to choose
a potential function
so that the amortized cost
of each operation is low

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

- c_i = actual cost of i^{th} operation.
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = amortized cost of i^{th} operation.

Theorem. Starting from the initial data structure D_0 , the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

- c_i = actual cost of i^{th} operation.
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = amortized cost of i^{th} operation.

Theorem. Starting from the initial data structure D_0 , the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of operations is:

$$\sum_{i=1}^n \hat{c}_i = \sum_{i=1}^n (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

- c_i = actual cost of i^{th} operation.
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = amortized cost of i^{th} operation.

Theorem. Starting from the initial data structure D_0 , the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of operations is:

$$\begin{aligned}\sum_{i=1}^n \hat{c}_i &= \sum_{i=1}^n (c_i + \Phi(D_i) - \Phi(D_{i-1})) \\ &= \sum_{i=1}^n c_i + \Phi(D_n) - \Phi(D_0)\end{aligned}$$

Potential method (physicist's method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i .

Actual and amortized costs.

- c_i = actual cost of i^{th} operation.
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = amortized cost of i^{th} operation.

Theorem. Starting from the initial data structure D_0 , the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of operations is:

$$\begin{aligned}\sum_{i=1}^n \hat{c}_i &= \sum_{i=1}^n (c_i + \Phi(D_i) - \Phi(D_{i-1})) \\ &= \sum_{i=1}^n c_i + \Phi(D_n) - \Phi(D_0) \\ &\geq \sum_{i=1}^n c_i \quad \blacksquare\end{aligned}$$

Binary counter: potential method

7	6	5	4	3	2	1	0
0	1	0	0	1	1	1	0

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

7	6	5	4	3	2	1	0
0	1	0	0	1	1	1	0

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment

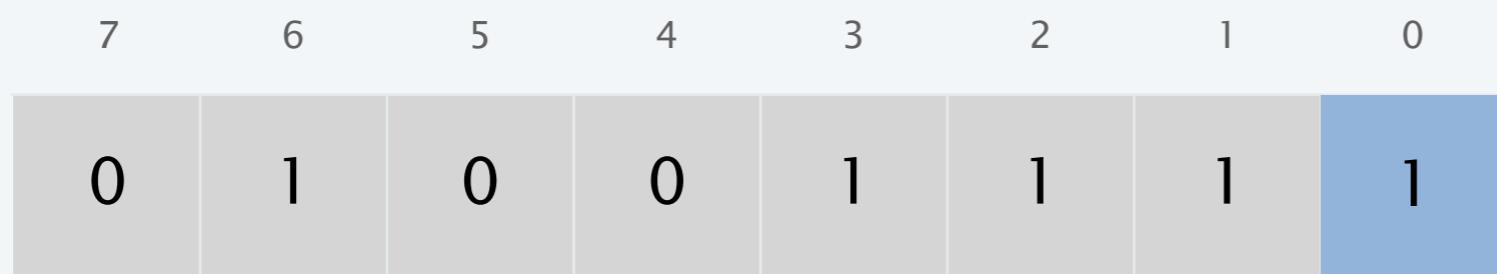
7	6	5	4	3	2	1	0
0	1	0	0	1	1	1	0

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment



Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

7	6	5	4	3	2	1	0
0	1	0	0	1	1	1	1

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment

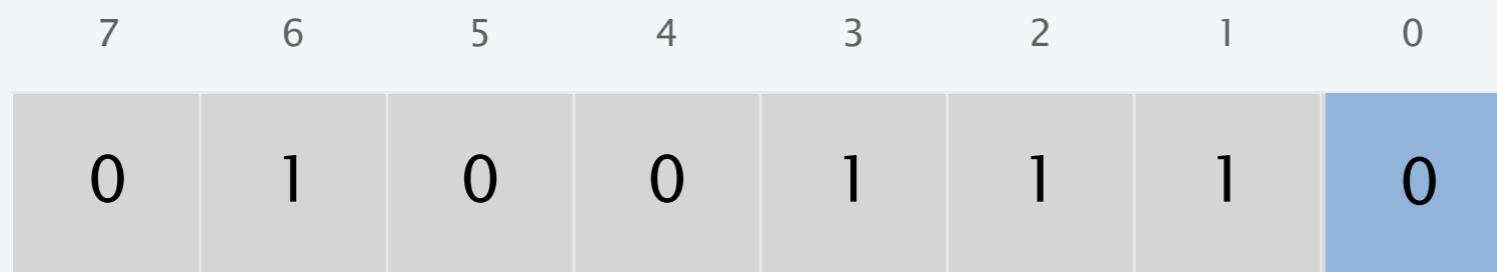
7	6	5	4	3	2	1	0
0	1	0	0	1	1	1	1

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment

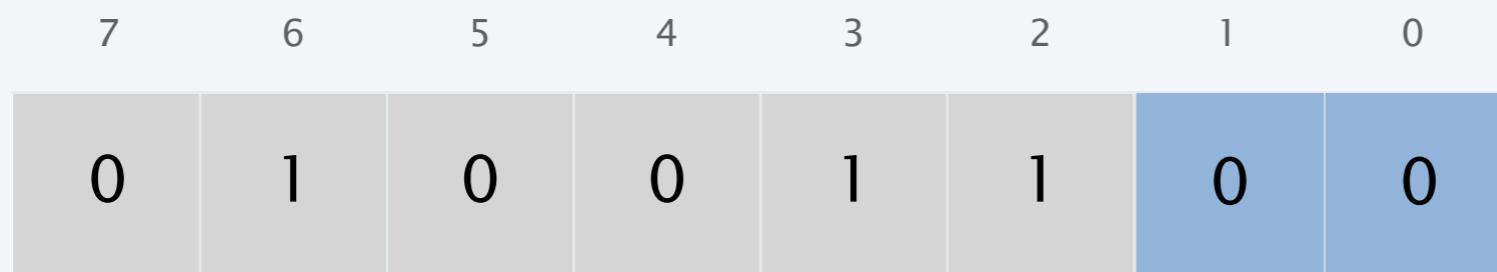


Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment

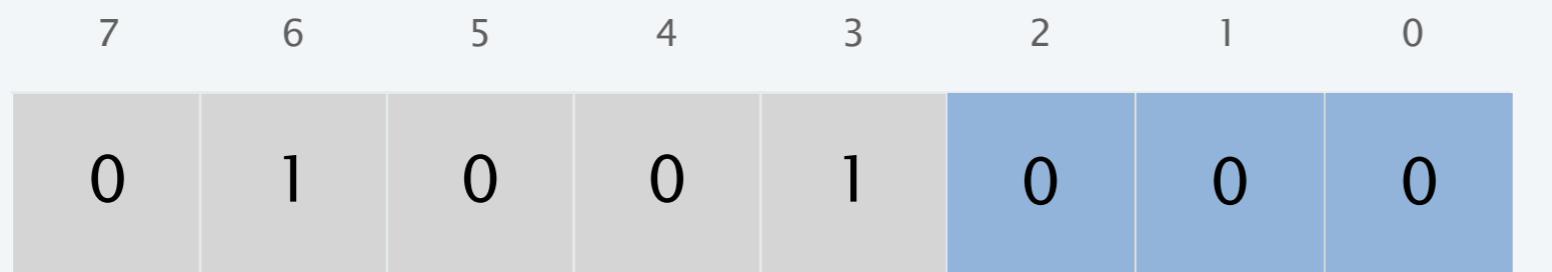


Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment



Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

increment

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

7	6	5	4	3	2	1	0
0	1	0	1	0	0	0	0

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Suppose that the i^{th} INCREMENT operation flips t_i bits from 1 to 0.

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Suppose that the i^{th} INCREMENT operation flips t_i bits from 1 to 0.
- The actual cost $c_i \leq t_i + 1$. ← operation flips at most one bit from 0 to 1
(no bits flipped to 1 when counter overflows)

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Suppose that the i^{th} INCREMENT operation flips t_i bits from 1 to 0.
- The actual cost $c_i \leq t_i + 1$. ← operation flips at most one bit from 0 to 1
(no bits flipped to 1 when counter overflows)
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Suppose that the i^{th} INCREMENT operation flips t_i bits from 1 to 0.
- The actual cost $c_i \leq t_i + 1$. \leftarrow operation flips at most one bit from 0 to 1
(no bits flipped to 1 when counter overflows)
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $\leq c_i + 1 - t_i \leftarrow$ potential decreases by 1 for t_i bits flipped from 1 to 0
and increases by 1 for bit flipped from 0 to 1

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Suppose that the i^{th} INCREMENT operation flips t_i bits from 1 to 0.
- The actual cost $c_i \leq t_i + 1$. \leftarrow operation flips at most one bit from 0 to 1
(no bits flipped to 1 when counter overflows)
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $\leq c_i + 1 - t_i \leftarrow$ potential decreases by 1 for t_i bits flipped from 1 to 0
and increases by 1 for bit flipped from 0 to 1
 ≤ 2 .

Binary counter: potential method

Potential function. Let $\Phi(D)$ = number of 1 bits in the binary counter D .

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.

- Suppose that the i^{th} INCREMENT operation flips t_i bits from 1 to 0.
- The actual cost $c_i \leq t_i + 1$. ← operation flips at most one bit from 0 to 1
(no bits flipped to 1 when counter overflows)
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $\leq c_i + 1 - t_i$ ← potential decreases by 1 for t_i bits flipped from 1 to 0
and increases by 1 for bit flipped from 0 to 1
 ≤ 2 .
- Total actual cost of n operations \leq sum of amortized costs $\leq 2n$. ▀

↑
potential method theorem

Famous potential functions

Famous potential functions

Fibonacci heaps. $\Phi(H) = 2 \text{ trees}(H) + 2 \text{ marks}(H)$

Famous potential functions

Fibonacci heaps. $\Phi(H) = 2 \text{ trees}(H) + 2 \text{ marks}(H)$

Splay trees. $\Phi(T) = \sum_{x \in T} \lfloor \log_2 \text{size}(x) \rfloor$

Famous potential functions

Fibonacci heaps. $\Phi(H) = 2 \text{ trees}(H) + 2 \text{ marks}(H)$

Splay trees. $\Phi(T) = \sum_{x \in T} \lfloor \log_2 \text{size}(x) \rfloor$

Move-to-front. $\Phi(L) = 2 \text{ inversions}(L, L^*)$

Famous potential functions

Fibonacci heaps. $\Phi(H) = 2 \text{ trees}(H) + 2 \text{ marks}(H)$

Splay trees. $\Phi(T) = \sum_{x \in T} \lfloor \log_2 \text{size}(x) \rfloor$

Move-to-front. $\Phi(L) = 2 \text{ inversions}(L, L^*)$

Preflow-push. $\Phi(f) = \sum_{v : \text{excess}(v) > 0} \text{height}(v)$

Famous potential functions

Fibonacci heaps. $\Phi(H) = 2 \text{ trees}(H) + 2 \text{ marks}(H)$

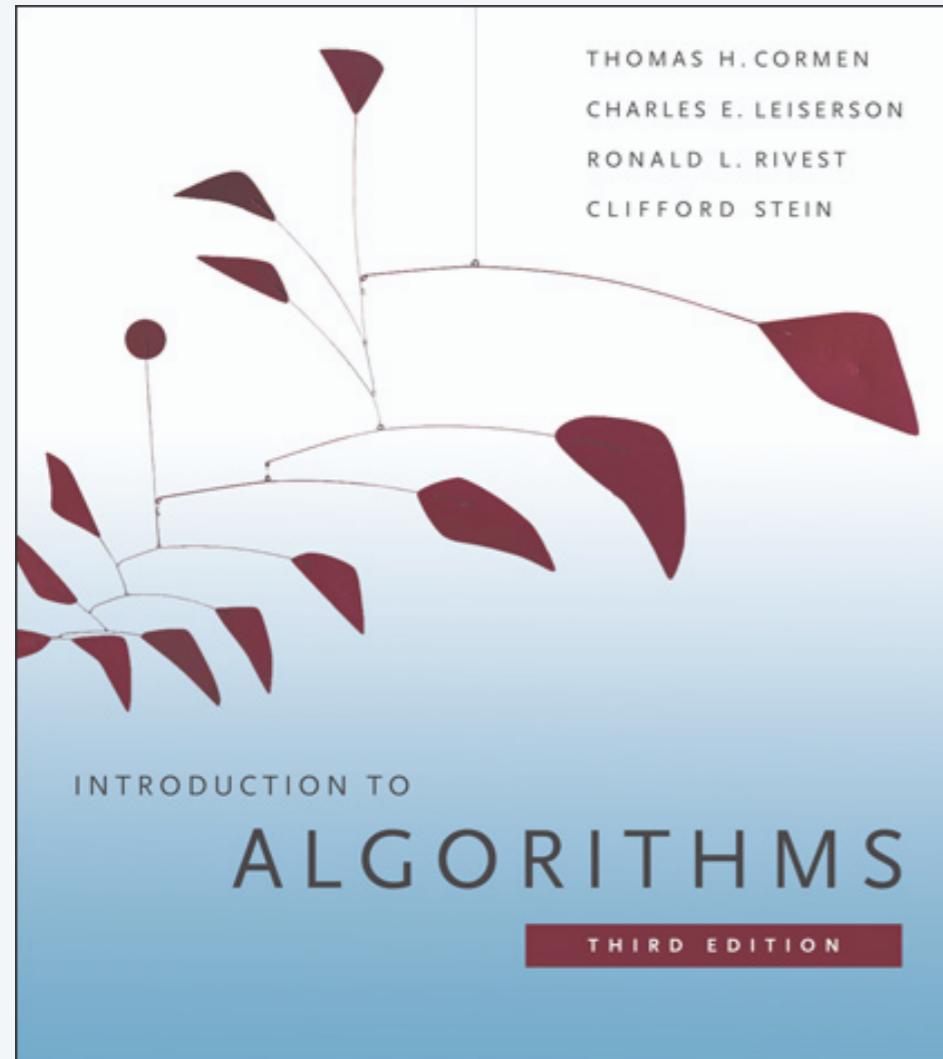
Splay trees. $\Phi(T) = \sum_{x \in T} \lfloor \log_2 \text{size}(x) \rfloor$

Move-to-front. $\Phi(L) = 2 \text{ inversions}(L, L^*)$

Preflow-push. $\Phi(f) = \sum_{v : \text{excess}(v) > 0} \text{height}(v)$

Red–black trees. $\Phi(T) = \sum_{x \in T} w(x)$

$$w(x) = \begin{cases} 0 & \text{if } x \text{ is red} \\ 1 & \text{if } x \text{ is black and has no red children} \\ 0 & \text{if } x \text{ is black and has one red child} \\ 2 & \text{if } x \text{ is black and has two red children} \end{cases}$$



SECTION 17.4

AMORTIZED ANALYSIS

- ▶ *binary counter*
- ▶ *multi-pop stack*
- ▶ *dynamic table*

Multipop stack

Goal. Support operations on a set of elements:

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

MULTI-POP(S, k)

FOR $i = 1$ TO k

 POP(S).

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

MULTI-POP(S, k)

FOR $i = 1$ TO k

 POP(S).

Exceptions. We assume POP throws an exception if stack is empty.

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n^2)$ time.

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n^2)$ time.

Pf.

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n^2)$ time.

Pf.

- Use a singly linked list.

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n^2)$ time.

Pf.

- Use a singly linked list.
- POP and PUSH take $O(1)$ time each.

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n^2)$ time.

Pf.

- Use a singly linked list.
- POP and PUSH take $O(1)$ time each.
- MULTI-POP takes $O(n)$ time. ■

Multipop stack

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n^2)$ time.

Pf.

- Use a singly linked list.
- POP and PUSH take $O(1)$ time each.
- MULTI-POP takes $O(n)$ time. ■

overly pessimistic
upper bound

Multipop stack: aggregate method

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n)$ time.

Multipop stack: aggregate method

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n)$ time.

Pf.

Multipop stack: aggregate method

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n)$ time.

Pf.

- An element is popped at most once for each time that it is pushed.

Multipop stack: aggregate method

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n)$ time.

Pf.

- An element is popped at most once for each time that it is pushed.
- There are $\leq n$ PUSH operations.

Multipop stack: aggregate method

Goal. Support operations on a set of elements:

- $\text{PUSH}(S, x)$: add element x to stack S .
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH , POP , and MULTI-POP operations takes $O(n)$ time.

Pf.

- An element is popped at most once for each time that it is pushed.
- There are $\leq n$ PUSH operations.
- Thus, there are $\leq n$ POP operations
(including those made within MULTI-POP). ■

Multipop stack: accounting method

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future
- $\text{POP}(S)$: charge 0 credits.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future
- $\text{POP}(S)$: charge 0 credits.
- $\text{MULTIPOP}(S, k)$: charge 0 credits.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future
- $\text{POP}(S)$: charge 0 credits.
- $\text{MULTIPOP}(S, k)$: charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future
- $\text{POP}(S)$: charge 0 credits.
- $\text{MULTIPOP}(S, k)$: charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf.

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future
- $\text{POP}(S)$: charge 0 credits.
- $\text{MULTIPOP}(S, k)$: charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0 .

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future
- $\text{POP}(S)$: charge 0 credits.
- $\text{MULTIPOP}(S, k)$: charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0 .
- Amortized cost per operation ≤ 2 .

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or POP.

Invariant. Every element on the stack has 1 credit.

Accounting.

- $\text{PUSH}(S, x)$: charge 2 credits.
 - use 1 credit to pay for pushing x now
 - store 1 credit to pay for popping x at some point in the future
- $\text{POP}(S)$: charge 0 credits.
- $\text{MULTIPOP}(S, k)$: charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0 .
- Amortized cost per operation ≤ 2 .
- Total actual cost of n operations \leq sum of amortized costs $\leq 2n$. ▀

accounting method theorem

Multipop stack: potential method

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 1: push]

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 1: push]

- Suppose that the i^{th} operation is a PUSH.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 1: push]

- Suppose that the i^{th} operation is a PUSH.
- The actual cost $c_i = 1$.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 1: push]

- Suppose that the i^{th} operation is a PUSH.
- The actual cost $c_i = 1$.
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2$.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 2: pop]

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 2: pop]

- Suppose that the i^{th} operation is a POP.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 2: pop]

- Suppose that the i^{th} operation is a POP.
- The actual cost $c_i = 1$.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 2: pop]

- Suppose that the i^{th} operation is a POP.
- The actual cost $c_i = 1$.
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 - 1 = 0$.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 3: multi-pop]

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 3: multi-pop]

- Suppose that the i^{th} operation is a MULTI-POP of k objects.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 3: multi-pop]

- Suppose that the i^{th} operation is a MULTI-POP of k objects.
- The actual cost $c_i = k$.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [Case 3: multi-pop]

- Suppose that the i^{th} operation is a MULTI-POP of k objects.
- The actual cost $c_i = k$.
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = k - k = 0$. ▀

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [putting everything together]

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [putting everything together]

- Amortized cost $\hat{c}_i \leq 2$. \leftarrow 2 for push; 0 for pop and multi-pop

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [putting everything together]

- Amortized cost $\hat{c}_i \leq 2$. \leftarrow 2 for push; 0 for pop and multi-pop
- Sum of amortized costs \hat{c}_i of the n operations $\leq 2 n$.

Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

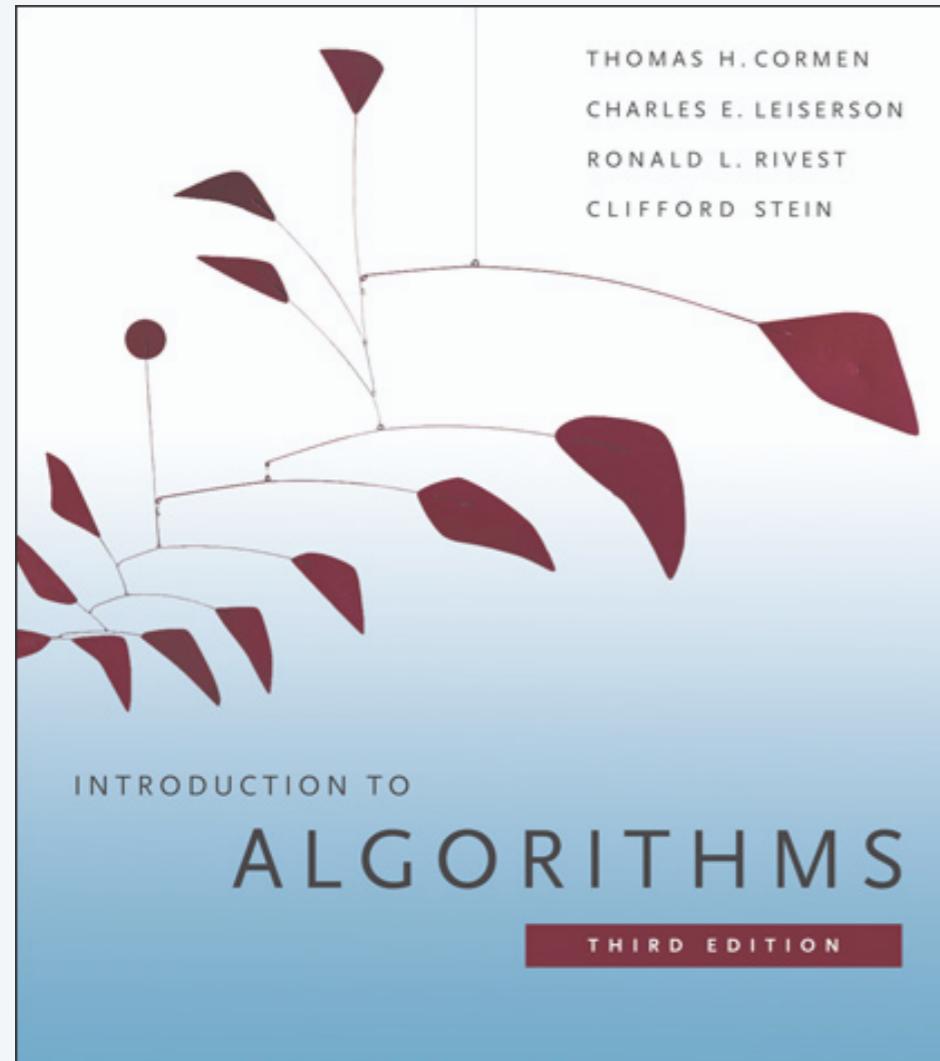
- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n)$ time.

Pf. [putting everything together]

- Amortized cost $\hat{c}_i \leq 2$. \leftarrow 2 for push; 0 for pop and multi-pop
- Sum of amortized costs \hat{c}_i of the n operations $\leq 2n$.
- Total actual cost \leq sum of amortized cost $\leq 2n$. ■

potential method theorem



SECTION 17.4

AMORTIZED ANALYSIS

- ▶ *binary counter*
- ▶ *multi-pop stack*
- ▶ *dynamic table*

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).

- Two operations: INSERT and DELETE.
 - too many items inserted \Rightarrow **expand** table.
 - too many items deleted \Rightarrow **contract** table.
- Requirement: if table contains m items, then space = $\Theta(m)$.

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).

- Two operations: INSERT and DELETE.
 - too many items inserted \Rightarrow **expand** table.
 - too many items deleted \Rightarrow **contract** table.
- Requirement: if table contains m items, then space = $\Theta(m)$.

Theorem. Starting from an empty dynamic table, any intermixed sequence of n INSERT and DELETE operations takes $O(n^2)$ time.

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).

- Two operations: `INSERT` and `DELETE`.
 - too many items inserted \Rightarrow **expand** table.
 - too many items deleted \Rightarrow **contract** table.
- Requirement: if table contains m items, then space = $\Theta(m)$.

Theorem. Starting from an empty dynamic table, any intermixed sequence of n `INSERT` and `DELETE` operations takes $O(n^2)$ time.

Pf. Each `INSERT` or `DELETE` takes $O(n)$ time. ▀

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).

- Two operations: `INSERT` and `DELETE`.
 - too many items inserted \Rightarrow **expand** table.
 - too many items deleted \Rightarrow **contract** table.
- Requirement: if table contains m items, then space = $\Theta(m)$.

Theorem. Starting from an empty dynamic table, any intermixed sequence of n `INSERT` and `DELETE` operations takes $O(n^2)$ time.

Pf. Each `INSERT` or `DELETE` takes $O(n)$ time. ▀

overly pessimistic
upper bound

Dynamic table: insert only

- When inserting into an empty table, allocate a table of capacity 1.
- When inserting into a full table, allocate a new table of twice the capacity and copy all items.
- Insert item into table.

insert	old capacity	new capacity	insert cost	copy cost
1	0	1	1	–
2	1	2	1	1
3	2	4	1	2
4	4	4	1	–
5	4	8	1	4
6	8	8	1	–
7	8	8	1	–
8	8	8	1	–
9	8	16	1	8
:	:	:	:	:

Cost model. Number of items written (due to insertion or copy).

Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let c_i denote the cost of the i^{th} insertion.

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let c_i denote the cost of the i^{th} insertion.

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

Starting from empty table, the cost of a sequence of n INSERT operations is:

Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let c_i denote the cost of the i^{th} insertion.

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

Starting from empty table, the cost of a sequence of n INSERT operations is:

$$\sum_{i=1}^n c_i \leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j$$

Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let c_i denote the cost of the i^{th} insertion.

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

Starting from empty table, the cost of a sequence of n INSERT operations is:

$$\begin{aligned} \sum_{i=1}^n c_i &\leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j \\ &< n + 2n \end{aligned}$$

Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let c_i denote the cost of the i^{th} insertion.

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

Starting from empty table, the cost of a sequence of n INSERT operations is:

$$\begin{aligned} \sum_{i=1}^n c_i &\leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j \\ &< n + 2n \\ &= 3n \quad \blacksquare \end{aligned}$$

Dynamic table demo: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

insert N

capacity = 16

A	B	C	D	E	F	G	H	I	J	K	L	M			
---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items
 - now, all k items are in left half of table (and have 0 credits)

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items
 - now, all k items are in left half of table (and have 0 credits)

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Theorem. [via accounting method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items
 - now, all k items are in left half of table (and have 0 credits)

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Theorem. [via accounting method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf.

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items
 - now, all k items are in left half of table (and have 0 credits)

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Theorem. [via accounting method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0 .

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items
 - now, all k items are in left half of table (and have 0 credits)

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Theorem. [via accounting method] Starting from an empty dynamic table, any sequence of n `INSERT` operations takes $O(n)$ time.

Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0 .
- Amortized cost per `INSERT` = 3.

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [by induction]

- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items
 - now, all k items are in left half of table (and have 0 credits)

↑
slight cheat if table capacity = 1
(can charge only 2 credits for first insert)

Theorem. [via accounting method] Starting from an empty dynamic table, any sequence of n `INSERT` operations takes $O(n)$ time.

Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0 .
- Amortized cost per `INSERT` = 3.
- Total actual cost of n operations \leq sum of amortized cost $\leq 3n$. ▀

↑
accounting method theorem

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

1	2	3	4	5	6		
---	---	---	---	---	---	--	--

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

1	2	3	4	5	6		
---	---	---	---	---	---	--	--

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

↑
number of elements ↑
capacity of array

1	2	3	4	5	6		
---	---	---	---	---	---	--	--

size = 6
capacity = 8
 $\Phi = 4$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.

1	2	3	4	5	6		
---	---	---	---	---	---	--	--

$$\begin{aligned} \text{size} &= 6 \\ \text{capacity} &= 8 \\ \Phi &= 4 \end{aligned}$$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i . ← immediately after doubling
 $\text{capacity}(D_i) = 2 \text{ size}(D_i)$

1	2	3	4	5	6		
---	---	---	---	---	---	--	--

size = 6
capacity = 8
 $\Phi = 4$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 0. [first insertion]

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 0. [first insertion]

- Actual cost $c_1 = 1$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 0. [first insertion]

- Actual cost $c_1 = 1$.
- $\Phi(D_1) - \Phi(D_0) = (2 \text{ size}(D_1) - \text{capacity}(D_1)) - (2 \text{ size}(D_0) - \text{capacity}(D_0)) = 1$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 0. [first insertion]

- Actual cost $c_1 = 1$.
- $\Phi(D_1) - \Phi(D_0) = (2 \text{ size}(D_1) - \text{capacity}(D_1)) - (2 \text{ size}(D_0) - \text{capacity}(D_0)) = 1$.
- Amortized cost $\hat{c}_1 = c_1 + (\Phi(D_1) - \Phi(D_0)) = 1 + 1 = 2$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 1. [no array expansion] $\text{capacity}(D_i) = \text{capacity}(D_{i-1})$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 1. [no array expansion] $\text{capacity}(D_i) = \text{capacity}(D_{i-1})$.

- Actual cost $c_i = 1$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 1. [no array expansion] $\text{capacity}(D_i) = \text{capacity}(D_{i-1})$.

- Actual cost $c_i = 1$.
- $$\begin{aligned} \Phi(D_i) - \Phi(D_{i-1}) &= (2 \text{ size}(D_i) - \text{capacity}(D_i)) - (2 \text{ size}(D_{i-1}) - \text{capacity}(D_{i-1})) \\ &= 2. \end{aligned}$$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 1. [no array expansion] $\text{capacity}(D_i) = \text{capacity}(D_{i-1})$.

- Actual cost $c_i = 1$.
- $\Phi(D_i) - \Phi(D_{i-1}) = (2 \text{ size}(D_i) - \text{capacity}(D_i)) - (2 \text{ size}(D_{i-1}) - \text{capacity}(D_{i-1}))$
 $= 2$.
- Amortized cost $\hat{c}_i = c_i + (\Phi(D_i) - \Phi(D_{i-1}))$
 $= 1 + 2$
 $= 3$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 2. [array expansion] $\text{capacity}(D_i) = 2 \text{ capacity}(D_{i-1})$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 2. [array expansion] $\text{capacity}(D_i) = 2 \text{ capacity}(D_{i-1})$.

- Actual cost $c_i = 1 + \text{capacity}(D_{i-1})$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 2. [array expansion] $\text{capacity}(D_i) = 2 \text{ capacity}(D_{i-1})$.

- Actual cost $c_i = 1 + \text{capacity}(D_{i-1})$.
- $$\begin{aligned} \Phi(D_i) - \Phi(D_{i-1}) &= (2 \text{ size}(D_i) - \text{capacity}(D_i)) - (2 \text{ size}(D_{i-1}) - \text{capacity}(D_{i-1})) \\ &= 2 - \text{capacity}(D_i) + \text{capacity}(D_{i-1}) \\ &= 2 - \text{capacity}(D_{i-1}). \end{aligned}$$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

Case 2. [array expansion] $\text{capacity}(D_i) = 2 \text{ capacity}(D_{i-1})$.

- Actual cost $c_i = 1 + \text{capacity}(D_{i-1})$.
- $$\begin{aligned} \Phi(D_i) - \Phi(D_{i-1}) &= (2 \text{ size}(D_i) - \text{capacity}(D_i)) - (2 \text{ size}(D_{i-1}) - \text{capacity}(D_{i-1})) \\ &= 2 - \text{capacity}(D_i) + \text{capacity}(D_{i-1}) \\ &= 2 - \text{capacity}(D_{i-1}). \end{aligned}$$
- Amortized cost $\hat{c}_i = c_i + (\Phi(D_i) - \Phi(D_{i-1}))$
$$\begin{aligned} &= 1 + \text{capacity}(D_{i-1}) + (2 - \text{capacity}(D_{i-1})) \\ &= 3. \end{aligned}$$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

[putting everything together]

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

$$\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$$

↑
number of elements ↑
 capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

[putting everything together]

- Amortized cost per operation $\hat{c}_i \leq 3$.

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n `INSERT` operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

↑
number of elements ↑
capacity of array

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i .

[putting everything together]

- Amortized cost per operation $\hat{c}_i \leq 3$.
- Total actual cost of n operations \leq sum of amortized cost $\leq 3n$. ■

↑
potential method theorem

Dynamic table: doubling and halving

Thrashing.

- **INSERT:** when inserting into a full table, double capacity.
- **DELETE:** when deleting from a table that is $\frac{1}{2}$ -full, halve capacity.

Dynamic table: doubling and halving

Thrashing.

- **INSERT:** when inserting into a full table, double capacity.
- **DELETE:** when deleting from a table that is $\frac{1}{2}$ -full, halve capacity.

Efficient solution.

- When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
- **INSERT:** when inserting into a full table, double capacity.
- **DELETE:** when deleting from a table that is $\frac{1}{4}$ -full, halve capacity.

Dynamic table: doubling and halving

Thrashing.

- **INSERT:** when inserting into a full table, double capacity.
- **DELETE:** when deleting from a table that is $\frac{1}{2}$ -full, halve capacity.

Efficient solution.

- When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
- **INSERT:** when inserting into a full table, double capacity.
- **DELETE:** when deleting from a table that is $\frac{1}{4}$ -full, halve capacity.

Memory usage. A dynamic table uses $\Theta(n)$ memory to store n items.

Dynamic table: doubling and halving

Thrashing.

- **INSERT:** when inserting into a full table, double capacity.
- **DELETE:** when deleting from a table that is $\frac{1}{2}$ -full, halve capacity.

Efficient solution.

- When inserting into an empty table, initialize table size to 1;
when deleting from a table of size 1, free the table.
- **INSERT:** when inserting into a full table, double capacity.
- **DELETE:** when deleting from a table that is $\frac{1}{4}$ -full, halve capacity.

Memory usage. A dynamic table uses $\Theta(n)$ memory to store n items.

Pf. Table is always between 25% and 100% full. ▀

Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

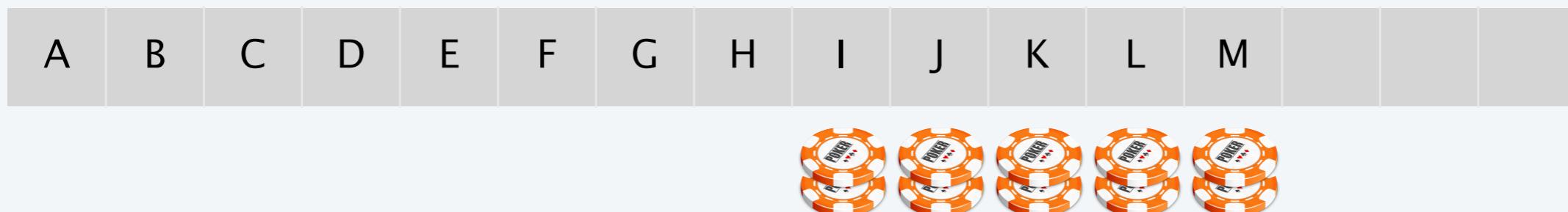
Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.

Invariant 2. 1 credit with each empty slot in left half of table.

delete M

capacity = 16



Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.

Invariant 2. 1 credit with each empty slot in left half of table.

delete M

capacity = 16

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table.

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table.

Invariant 2. 1 credit with each empty slot in left half of table.

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table. \leftarrow to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table.

Theorem. [via accounting method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table. \leftarrow to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. \leftarrow to pay for contraction

Theorem. [via accounting method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf.

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table. \leftarrow to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. \leftarrow to pay for contraction

Theorem. [via accounting method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf.

- Invariants \Rightarrow number of credits in data structure ≥ 0 .

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table. \leftarrow to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. \leftarrow to pay for contraction

Theorem. [via accounting method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf.

- Invariants \Rightarrow number of credits in data structure ≥ 0 .
- Amortized cost per operation ≤ 3 .

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table. \leftarrow to pay for expansion

Invariant 2. 1 credit with each empty slot in left half of table. \leftarrow to pay for contraction

Theorem. [via accounting method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf.

- Invariants \Rightarrow number of credits in data structure ≥ 0 .
- Amortized cost per operation ≤ 3 .
- Total actual cost of n operations \leq sum of amortized cost $\leq 3n$. \blacksquare

accounting method theorem

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n INSERT and DELETE operations takes $O(n)$ time.

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n INSERT and DELETE operations takes $O(n)$ time.

Pf sketch.

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha(D_i) = \text{size}(D_i) / \text{capacity}(D_i)$.

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha(D_i) = \text{size}(D_i) / \text{capacity}(D_i)$.
- Define $\Phi(D_i) = \begin{cases} 2 \text{size}(D_i) - \text{capacity}(D_i) & \text{if } \alpha(D_i) \geq 1/2 \\ \frac{1}{2} \text{capacity}(D_i) - \text{size}(D_i) & \text{if } \alpha(D_i) < 1/2 \end{cases}$

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha(D_i) = \text{size}(D_i) / \text{capacity}(D_i)$.
- Define $\Phi(D_i) = \begin{cases} 2 \text{size}(D_i) - \text{capacity}(D_i) & \text{if } \alpha(D_i) \geq 1/2 \\ \frac{1}{2} \text{capacity}(D_i) - \text{size}(D_i) & \text{if } \alpha(D_i) < 1/2 \end{cases}$
- $\Phi(D_0) = 0, \Phi(D_i) \geq 0$. [a potential function]

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha(D_i) = \text{size}(D_i) / \text{capacity}(D_i)$.
- Define $\Phi(D_i) = \begin{cases} 2 \text{size}(D_i) - \text{capacity}(D_i) & \text{if } \alpha(D_i) \geq 1/2 \\ \frac{1}{2} \text{capacity}(D_i) - \text{size}(D_i) & \text{if } \alpha(D_i) < 1/2 \end{cases}$
- $\Phi(D_0) = 0, \Phi(D_i) \geq 0$. [a potential function]
- When $\alpha(D_i) = 1/2, \Phi(D_i) = 0$. [zero potential after resizing]

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n **INSERT** and **DELETE** operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha(D_i) = \text{size}(D_i) / \text{capacity}(D_i)$.
- Define $\Phi(D_i) = \begin{cases} 2 \text{size}(D_i) - \text{capacity}(D_i) & \text{if } \alpha(D_i) \geq 1/2 \\ \frac{1}{2} \text{capacity}(D_i) - \text{size}(D_i) & \text{if } \alpha(D_i) < 1/2 \end{cases}$
- $\Phi(D_0) = 0, \Phi(D_i) \geq 0$. [a potential function]
- When $\alpha(D_i) = 1/2$, $\Phi(D_i) = 0$. [zero potential after resizing]
- When $\alpha(D_i) = 1$, $\Phi(D_i) = \text{size}(D_i)$. [can pay for expansion]

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n INSERT and DELETE operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha(D_i) = \text{size}(D_i) / \text{capacity}(D_i)$.
- Define $\Phi(D_i) = \begin{cases} 2 \text{size}(D_i) - \text{capacity}(D_i) & \text{if } \alpha(D_i) \geq 1/2 \\ \frac{1}{2} \text{capacity}(D_i) - \text{size}(D_i) & \text{if } \alpha(D_i) < 1/2 \end{cases}$
- $\Phi(D_0) = 0, \Phi(D_i) \geq 0$. [a potential function]
- When $\alpha(D_i) = 1/2$, $\Phi(D_i) = 0$. [zero potential after resizing]
- When $\alpha(D_i) = 1$, $\Phi(D_i) = \text{size}(D_i)$. [can pay for expansion]
- When $\alpha(D_i) = 1/4$, $\Phi(D_i) = \text{size}(D_i)$. [can pay for contraction]
- ...