
Lecture slides by Kevin Wayne 
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2022-01-05 21:35

DATA STRUCTURES I, II, III, AND IV
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III. Fibonacci Heaps 

IV. Union–Find
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Appetizer

Goal.  Design a data structure to support all operations in O(1) time. 
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Goal.  Design a data structure to support all operations in O(1) time. 

・INIT(n):  create and return an initialized array (all zero) of length n. 

・READ(A, i):  return element i in array. 

・WRITE(A, i, value):  set element i in array to value.
 

Assumptions. 

・Can MALLOC an uninitialized array of length n in O(1) time. 

・Given an array, can read or write element i in O(1) time. 

Remark.  An array does INIT in Θ(n) time and READ and WRITE in Θ(1) time.
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Theorem.  A[i] is initialized iff both 1 ≤ B[i] ≤  k and C[B[i]] =  i.
Pf.   ⇐

・Suppose A[i] is uninitialized. 

・If B[i]  < 1 or B[i]  >  k, then A[i] clearly uninitialized.

・If 1 ≤  B[i]  ≤  k by coincidence, then we still can’t have C[B[i]] =  i 
because none of the entries C[1.. k] can equal i.  ▪  

7

1 2 3 4 5 6 7 8

? 22 55 99 ? 33 ? ?A[ ]

? 3 4 1 ? 2 ? ?B[ ]

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

k = 4

4 6 2 3 ? ? ? ?C[ ]



Lecture slides by Kevin Wayne 
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2022-01-05 21:35

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne


Amortized analysis

Worst-case analysis.  Determine worst-case running time of a data structure 

operation as function of the input size n.

9



Amortized analysis

Worst-case analysis.  Determine worst-case running time of a data structure 

operation as function of the input size n.

9

can be too pessimistic if the only way to 
encounter an expensive operation is when 

there were lots of previous cheap operations



Amortized analysis

Worst-case analysis.  Determine worst-case running time of a data structure 

operation as function of the input size n.

 

 

 

 

Amortized analysis.  Determine worst-case running time of a sequence 

of n data structure operations.

9

can be too pessimistic if the only way to 
encounter an expensive operation is when 

there were lots of previous cheap operations



Amortized analysis

Worst-case analysis.  Determine worst-case running time of a data structure 

operation as function of the input size n.

 

 

 

 

Amortized analysis.  Determine worst-case running time of a sequence 

of n data structure operations.

 

Ex.  Starting from an empty stack implemented with a dynamic table, any 

sequence of n push and pop operations takes O(n) time in the worst case.
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Amortized analysis:  applications

・Splay trees. 

・Dynamic table. 

・Fibonacci heaps. 

・Garbage collection. 

・Move-to-front list updating. 

・Push–relabel algorithm for max flow. 

・Path compression for disjoint-set union. 

・Structural modifications to red–black trees. 

・Security, databases, distributed computing, ...
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016

AMORTIZED COMPUTATIONAL COMPLEXITY*
ROBERT ENDRE TARJANt

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain "self-adjusting" data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05

1. Introduction. Webster’s [34] defines "amortize" as "to put money aside at
intervals, as in a sinking fund, for gradual payment of (a debt, etc.)." We shall adapt
this term to computational complexity, meaning by it "to average over time" or, more
precisely, "to average the running times of operations in a sequence over the sequence."
The following observation motivates our study of amortization: In many uses of data
structures, a sequence of operations, rather than just a single operation, is performed,
and we are interested in the total time of the sequence, rather than in the times of
the individual operations. A worst-case analysis, in which we sum the worst-case times
of the individual operations, may be unduly pessimistic, because it ignores correlated
effects of the operations on the data structure. On the other hand, an average-case
analysis may be inaccurate, since the probabilistic assumptions needed to carry out
the analysis may be false. In such a situation, an amortized analysis, in which we
average the running time per operation over a (worst-case) sequence of operations,
can yield an answer that is both realistic and robust.

To make the idea of amortization and the motivation behind it more concrete,
let us consider a very simple example. Consider the manipulation of a stack by a
sequence of operations composed of two kinds of unit-time primitives: push, which
adds a new item to the top of the stack, and pop, which removes and returns the top
item on the stack. We wish to analyze the running time of a sequence of operations,
each composed of zero or more pops followed by a push. Assume we start with an
empty stack and carry out m such operations. A single operation in the sequence can
take up to m time units, as happens if each of the first m- 1 operations performs no
pops and the last operation performs m 1 pops. However, altogether the m operations
can perform at most 2m pushes and pops, since there are only m pushes altogether
and each pop must correspond to an earlier push.

This example may seem too simple to be useful, but such stack manipulation
indeed occurs in applications as diverse as planarity-testing [14] and related problems
[24] and linear-time string matching [18]. In this paper we shall survey a number of
settings in which amortization is useful. Not only does amortized running time provide
a more exact way to measure the running time of known algorithms, but it suggests
that there may be new algorithms efficient in an amortized rather than a worst-case
sense. As we shall see, such algorithms do exist, and they are simpler, more efficient,
and more flexible than their worst-case cousins.

* Received by the editors December 29, 1983. This work was presented at the SIAM Second Conference
on the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

t Bell Laboratories, Murray Hill, New Jersey 07974.
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Binary counter

Goal.  Increment a k-bit binary counter (mod 2k).
Representation.  A[ j] = j th least significant bit of counter.
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0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 11
0 0 0 0 0 0 1 02
0 0 0 0 0 0 1 13
0 0 0 0 0 1 0 04
0 0 0 0 0 1 0 15
0 0 0 0 0 1 1 06
0 0 0 0 0 1 1 17
0 0 0 0 1 0 0 08
0 0 0 0 1 0 0 19
0 0 0 0 1 0 1 010
0 0 0 0 1 0 1 111
0 0 0 0 1 1 0 012
0 0 0 0 1 1 0 113
0 0 0 0 1 1 1 014
0 0 0 0 1 1 1 115
0 0 0 1 0 0 0 016

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]
Counter

value
Total
cost

1
3
4
7
8

10
11
15
16
18
19
22
23
25
26
31

0

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT
operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is
shown at the right. Notice that the total cost is always less than twice the total number of INCREMENT
operations.

operations on an initially zero counter causes AŒ1! to flip bn=2c times. Similarly,
bit AŒ2! flips only every fourth time, or bn=4c times in a sequence of n INCREMENT
operations. In general, for i D 0; 1; : : : ; k ! 1, bit AŒi ! flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i " k,
bit AŒi ! does not exist, and so it cannot flip. The total number of flips in the
sequence is thus
k!1X

iD0

j n

2i

k
< n

1X

iD0

1

2i

D 2n ;

by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.
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Aggregate method.  Analyze cost of a sequence of operations.
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Remark. Theorem may be false if initial counter is not zero.
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SECTION 17.4

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table
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Exceptions.  We assume POP throws an exception if stack is empty.
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・MULTI-POP(S, k):  remove the most-recently added k elements.

 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.
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・PUSH(S, x):  add element x to stack S.

・POP(S):  remove and return the most-recently added element.
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Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.

 

Pf.

・An element is popped at most once for each time that it is pushed.

・There are ≤ n PUSH operations.
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(including those made within MULTI-POP).   ▪
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- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future

・POP(S):  charge 0 credits.

・MULTIPOP(S, k):  charge 0 credits.

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time. 

Pf.

・Invariant  ⇒  number of credits in data structure  ≥  0. 

・Amortized cost per operation  ≤  2. 

・Total actual cost of n operations ≤  sum of amortized costs  ≤  2n.  ▪
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・Φ(Di)  ≥  0 for each Di.

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
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Pf.  [putting everything together] 

・Amortized cost ĉi   ≤  2.

・Sum of amortized costs ĉi  of the n operations  ≤  2 n.
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SECTION 17.4

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table



Dynamic table

Goal.  Store items in a table (e.g., for hash table, binary heap). 

・Two operations:  INSERT and DELETE. 

- too many items inserted  ⇒  expand table. 

- too many items deleted   ⇒  contract table. 

・Requirement:  if table contains m items, then space = Θ(m).
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Dynamic table:  insert only

・When inserting into an empty table, allocate a table of capacity 1. 

・When inserting into a full table, allocate a new table of twice the 

capacity and copy all items. 

・Insert item into table. 

 

 

 

 

 

 

 

 

 

 

 

Cost model.  Number of items written (due to insertion or copy).
40

insert old 
capacity

new 
capacity

insert  
cost

copy
cost

1 0 1 1 –

2 1 2 1 1

3 2 4 1 2

4 4 4 1 –

5 4 8 1 4

6 8 8 1 –

7 8 8 1 –

8 8 8 1 –

9 8 16 1 8

⋮ ⋮ ⋮ ⋮ ⋮



Dynamic table:  insert only (aggregate method)

Theorem.  [via aggregate method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.
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Insert.  Charge 3 credits (use 1 credit to insert; save 2 with new item). 

Invariant.  2 credits with each item in right half of table; none in left half.

Dynamic table demo:  insert only (accounting method)

42

insert N

A B C D E F G H I

capacity = 16

J L MK
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- these k credits pay for the work needed to copy the k items
- now, all k items are in left half of table (and have 0 credits)
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Insert.  Charge 3 credits (use 1 credit to insert; save 2 with new item).

 

Invariant.  2 credits with each item in right half of table; none in left half.

Pf.  [by induction]

・Each newly inserted item gets 2 credits.

・When table doubles from k to 2k, k / 2 items in the table have 2 credits.
- these k credits pay for the work needed to copy the k items
- now, all k items are in left half of table (and have 0 credits)

 

Theorem.  [via accounting method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

Pf. 

・Invariant ⇒  number of credits in data structure  ≥  0. 

・Amortized cost per INSERT =  3. 

・Total actual cost of n operations  ≤  sum of amortized cost ≤ 3n.   ▪
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Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.
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Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.
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Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di.
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Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.
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・Φ(Di)  ≥  0 for each Di.

 

Case 1.  [no array expansion]  capacity(Di)  = capacity(Di–1).
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Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di.

 

Case 1.  [no array expansion]  capacity(Di)  = capacity(Di–1).

・Actual cost ci  = 1.
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 = 2.
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 = 3.

46

number of 
elements

capacity of 
array



Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di. 

Case 2.  [array expansion]   capacity(Di)  = 2 capacity(Di–1).
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Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di. 

Case 2.  [array expansion]   capacity(Di)  = 2 capacity(Di–1).

・Actual cost ci  = 1 + capacity(Di–1).
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Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di. 

Case 2.  [array expansion]   capacity(Di)  = 2 capacity(Di–1).

・Actual cost ci  = 1 + capacity(Di–1).

・Φ(Di) –  Φ(Di–1)  = (2 size(Di)  – capacity(Di))  –  (2 size(Di–1)  – capacity(Di–1)) 
 = 2 – capacity(Di) + capacity(Di–1) 
 = 2 – capacity(Di–1).
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Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di. 

Case 2.  [array expansion]   capacity(Di)  = 2 capacity(Di–1).

・Actual cost ci  = 1 + capacity(Di–1).

・Φ(Di) –  Φ(Di–1)  = (2 size(Di)  – capacity(Di))  –  (2 size(Di–1)  – capacity(Di–1)) 
 = 2 – capacity(Di) + capacity(Di–1) 
 = 2 – capacity(Di–1).

・Amortized cost ĉi   =  ci  +  (Φ(Di)  –  Φ(Di–1)) 
 = 1 + capacity(Di–1) + (2 – capacity(Di–1)) 
 = 3.
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Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di.

 

[putting everything together] 
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Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time.

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0.

・Φ(Di)  ≥  0 for each Di.

 

[putting everything together] 

・Amortized cost per operation ĉi ≤  3.

・Total actual cost of n operations  ≤  sum of amortized cost  ≤  3 n.   ▪
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Dynamic table:  doubling and halving

Thrashing. 

・INSERT: when inserting into a full table, double capacity. 

・DELETE: when deleting from a table that is ½-full, halve capacity.
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Dynamic table:  doubling and halving

Thrashing. 

・INSERT: when inserting into a full table, double capacity. 

・DELETE: when deleting from a table that is ½-full, halve capacity.

 

 

Efficient solution. 

・When inserting into an empty table, initialize table size to 1; 

when deleting from a table of size 1, free the table. 

・INSERT: when inserting into a full table, double capacity. 

・DELETE: when deleting from a table that is ¼-full, halve capacity.

 

 

Memory usage.  A dynamic table uses Θ(n) memory to store n items.

Pf.  Table is always between 25% and 100% full.  ▪
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Insert.  Charge 3 credits (1 to insert; save 2 with item if in right half). 

Delete.  Charge 2 credits (1 to delete; save 1 in empty slot if in left half). 

 

Invariant 1.  2 credits with each item in right half of table. 

Invariant 2.  1 credit with each empty slot in left half of table.

Dynamic table demo:  insert and delete (accounting method)
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Dynamic table:  insert and delete (accounting method)

Insert.  Charge 3 credits (1 to insert; save 2 with item if in right half).
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Dynamic table:  insert and delete (accounting method)

Insert.  Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete.  Charge 2 credits (1 to delete; save 1 in empty slot if in left half). 

 

Invariant 1.  2 credits with each item in right half of table.

Invariant 2.  1 credit with each empty slot in left half of table.

 

 

Theorem.  [via accounting method]  Starting from an empty dynamic table, 

any intermixed sequence of n INSERT and DELETE operations takes O(n) time. 

Pf. 

・Invariants ⇒  number of credits in data structure  ≥  0. 

・Amortized cost per operation ≤ 3. 

・Total actual cost of n operations  ≤  sum of amortized cost ≤ 3n.   ▪
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Dynamic table:  insert and delete (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

 

Pf sketch.

・Let α(Di) = size(Di) / capacity(Di). 

・Define 

 

・Φ(D0) =  0, Φ(Di)  ≥  0.      [a potential function]
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Dynamic table:  insert and delete (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

 

Pf sketch.

・Let α(Di) = size(Di) / capacity(Di). 

・Define 

 

・Φ(D0) =  0, Φ(Di)  ≥  0.      [a potential function]

・When α(Di) = 1/2, Φ(Di) = 0.    [zero potential after resizing]
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Dynamic table:  insert and delete (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

 

Pf sketch.

・Let α(Di) = size(Di) / capacity(Di). 

・Define 

 

・Φ(D0) =  0, Φ(Di)  ≥  0.      [a potential function]

・When α(Di) = 1/2, Φ(Di) = 0.    [zero potential after resizing]

・When α(Di) = 1, Φ(Di) = size(Di).   [can pay for expansion]
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Dynamic table:  insert and delete (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

 

Pf sketch.

・Let α(Di) = size(Di) / capacity(Di). 

・Define 

 

・Φ(D0) =  0, Φ(Di)  ≥  0.      [a potential function]

・When α(Di) = 1/2, Φ(Di) = 0.    [zero potential after resizing]

・When α(Di) = 1, Φ(Di) = size(Di).   [can pay for expansion]

・When α(Di) = 1/4, Φ(Di) = size(Di).  [can pay for contraction] 

...
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