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Outline

◼ Definition of integer programming

◼ Formulating some classical problems with integer 

programming

◼ Linear programming

◼ Solution methods for integer programming

◼ Solvers and their interface

◼ Impact of modeling on problem solving
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Optimization and Programming

◼ Mathematical programming: to find the best solution from a set of 

alternatives

◼ Mathematical models for optimization problems

 Optimization variables encoding problem solution

 Constraints defined using mathematical functions and equation/inequality

 Objective function (a mathematical function of the variables) 

3

Definition of Integer Programming
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Types of Optimization Models

◼ (Nonlinear programming and integer nonlinear programming)

4

Definition of Integer Programming

Note: All combinatorial optimization problems can be formulated as (mixed) 

integer programming models

◼ Linear functions + continuous variables: linear programming

◼ Linear functions + integer variables: integer (linear) programming

 Mixed integer programming: Both integer and continuous variables

 Special case: Binary variables
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More on Mathematical Programming 

Models

◼ A mathematical programming model always uses mathematical 

functions to define constraints

◼ Examples of statements that do not qualify

 x != y

 If x > 0 then y = 1 (assuming y is binary; either 0 or 1)

 Either x or y must be zero

 max(x, y) >= 1

5

Definition of Integer Programming

◼ For combinatorial optimization, in many/most cases we can 

translate such conditions using functions and equality/inequality

 x <= M y, where M is a big enough number, will ensure y = 1 if x > 0

 x y = 0 implies at least one of the two must be zero (even though x y is a 

nonlinear function and hence not easy to deal with)
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Binary Knapsack

◼ Given:

 A set of     items, each with a value     and weight 

 A knapsack with a weight limit

◼ Select items to maximize the total value of the knapsack, without 

exceeding the weight limit

6

$25

5 kg

$24

3 kg

$10

1 kg

$12

2 kg

$11

2.5 kg

$30

4 kg

Modeling Some Classical Problems with Integer Programming 
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Coloring

◼ Given: a graph with nodes and edges

◼ Assign a color to each vertex (node); two adjacent vertexes must 

use different colors

◼ Minimize the total number of colors used

7

Modeling Some Classical Problems with Integer Programming
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Coloring (cont’d)

8

Modeling Some Classical Problems with Integer Programming

Node 1

Node 2
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Coloring (cont’d)

9

Modeling Some Classical Problems with Integer Programming

Node 1

Node 2
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Uncapacitated Facility Location

◼ Given:

 A set of candidate facility (e.g., warehouse) locations 

 A set of customers

 Opening a facility has a fixed charge

 Transportation cost between facility locations and customers

◼ Determine which facilities to deploy and the customers served by 

each deployed facility, minimizing the total cost

10

Modeling Some Classical Problems with Integer Programming

Facilities Customers
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Uncapacitated Facility Location (cont’d)
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Modeling Some Classical Problems with Integer Programming
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Traveling Salesman Problem

◼ Given: a graph with edge costs

◼ Find a tour visiting each node in a graph exactly once with 

minimum length

12

Modeling Some Classical Problems with Integer Programming
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Traveling Salesman Problem (cont’d)

13

Modeling Some Classical Problems with Integer Programming

◼ How to formulate this problem by integer programming?

Have we overlooked anything?

Potential drawback of the formulation?
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A Small Example

14

Linear Programming

2x

5

5

1x



In
fo

rm
a

ti
o

n
s
te

k
n

o
lo

g
i

Institutionen för informationsteknologi | www.it.uu.se

Linear Programming Relaxation

15

Linear Programming

◼ Relaxation: “removal” of some constraints/restrictions

◼ In general, the linear programming relaxation is an approximation 

of the integer model; the solution of the former may be fractional

◼ Which one is easier to solve?

◼ LP is in P
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Solving a Linear Programming Model

16

Linear Programming

◼ This is used by the Simplex Method for solving linear programs 

(visiting a sequence of objective-improving extreme points)

◼ There are other efficient, interior-point methods

◼ Fundamental property: Optimum is located at one of the 

extreme/corner points of the feasible region (why?)

Feasible region
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The Convex Hull

17

Linear Programming

◼ Convex hull: The minimum convex set containing the solution space

◼ Integer programming = linear programming on the convex hull of 

the integer points

◼ Convex hull exists, but its description is hard to derive in general

2x

1x

Convex hull of the 
previous example
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Computing the Global Optimum

18

Solution Methods for Integer Programming

◼ General-purpose method: Linear programming relaxation +

 Iterative improvement in approximating the convex hull, a.k.a. cutting 

planes (cf. inference)

 Divide-and-conquer, a.k.a. branch-and-bound (relaxation + search)

LP optimum LP optimum

◼ Optimality gap: The (relative) difference between the objective 

value of the best known integer solution and that of the best 

(“optimistic”) LP bound so far
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Cutting Planes: An Example

19

Solution Methods for Integer Programming

Knapsack problem instance:

Can we pack items 1, 4, 6, and 7 all in the knapsack? (5+6+6+5=22) 

The above inequality (referred to as a “cover cut”) is valid for integer 

solutions, but violated by the LP relaxation optimum
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Cutting Planes: An Example (cont’d)

20

Solution Methods for Integer Programming

Adding the cut to the linear programming relaxation:

Challenge for the solver: To time-efficiently find valid and useful cuts
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Branch-and-Bound: An Example

21

Solution Methods for Integer Programming

Same knapsack problem instance:
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Branch-and-Bound: An Example (cont’d)

22

Solution Methods for Integer Programming

LP = 29.16

x4 = 0:167 (one fractional variable)

x4 = 0 x4 = 1

LP = 28.75

x3 = 0:125

x3 = 0 x3 = 1

LP = 28.66

x2 = 0:167

LP = 25.5

x5 = 0:5
. . . . . .

Branching generates a search tree

We can stop branching here if the integer solution of value 29 is known (why?)

Can we stop branching here because of an integer solution of value 28?

Opt. gap = ?

Opt. gap = ?

Opt. gap = ?
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Optimization Solver 

23

Solvers and Their Interface

◼ Solver: software implementing methods for solving optimization 

models (here: integer programming models)

◼ Interface + optimization engine

◼ Many solvers: Gurobi, CPLEX, FICO Express, SCIP, MINTO, …

◼ Using Python to interact with solvers has become quite popular

- C/C++/C#, Python, Java, … 

- Command line

- CPLEX OPL, AMPL, GAMS...

CPLEX optimization engine

- C/C++, Python (Gurobipy),  Java, R, ...

- Command line

- AMPL, GAMS...

Gurobi optimization engine

Solver interface
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Sample of Solver Log

24

Solvers and Their Interface
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Uncapacitated Facility Location

25

Impact of Modeling on Problem Solving

Can we reduce the model size?
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Uncapacitated Facility Location (cont’d)

26

Impact of Modeling on Problem Solving

Facilities

50

Aggregated Model

(seconds) 

70

30

69.67

2362.67

5.55

19.42

764.30

1.6

Customers

500

700

300

Disaggregate Model

(seconds) 

20 1.19 0.39200

AMPL Version 20060626 (Linux 2.6.9-5.EL)
.  .  .
Node log . . .
Best integer =   4.704366e+04  Node =   0  Best node =   
2.203318e+04
Best integer =   2.295632e+04  Node =   0  Best node =   
2.203318e+04
Heuristic still looking.
Best integer =   2.267411e+04  Node =   0  Best node =   
2.203529e+04
Heuristic complete.

Gomory fractional cuts applied:  3
Using devex.
Times (seconds):
Solve =  764.304
CPLEX 10.1.0: optimal integer solution; objective 22674.11
157501 MIP simplex iterations
36 branch-and-bound nodes

AMPL Version 20060626 (Linux 2.6.9-5.EL)
.  .  .
Node log . . .
Best integer =   1.433808e+05  Node =    0  Best node =   
1.687869e+04
Best integer =   2.293498e+04  Node =    0  Best node =   
1.687869e+04
Heuristic still looking.
Heuristic still looking.
Heuristic complete.
Best integer =   2.276127e+04  Node =  828  Best node =   
1.831542e+04
Best integer =   2.267411e+04  Node = 1000 Best node =   
1.838685e+04
Implied bound cuts applied:  2292
Flow cuts applied:  18
.  .  .
Times (seconds):
Solve =  2362.67
CPLEX 10.1.0: optimal integer solution within mipgap or 
absmipgap; objective 22674.11
1048766 MIP simplex iterations
16865 branch-and-bound nodes
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Coloring

27

Impact of Modeling on Problem Solving

Is this a good formulation? Other formulations?

- Symmetry: Solution search becomes inefficient  
- Alternative model of set-covering type

Node 1

Node 2
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Coloring (cont’d)

28

Impact of Modeling on Problem Solving

Nodes

20

30

40

50

60

10

Best Solution

16

21

15

28

31

10

Time

1s

≥10h

≥10h

≥10h

≥10h

0.1s

Model I (previous slide) Model II (not shown)

3s

7s

32s

1m19s

4m31s

0.1s

16

21

15

23

26

10

Best Solution

Sample results for an extension of graph coloring:

Time

It may matter (a lot) which mathematical model you use
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Final Remarks

29

◼ Integer linear programming (ILP) provides one tool (and a powerful 

one in many cases) for combinatorial optimization

◼ An ILP model: Linear functions of integer/binary

◼ How to solve it: linear programming relaxation, cutting planes, and 

branch-and-bound, implemented in modern solvers

◼ Modeling (how to express your problem as ILP) may be very crucial 

for solution efficiency

◼ Recent trends include interaction of ILP and machine learning (ML)

 ML for ILP: How to branch? What cutting planes to use?

 ILP for ML: Robustness check– can we find some noise pattern (within bounds), 

such that a trained neural network gives a wrong answer?
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Appendix: Introduction to Modeling with 

AMPL

30
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Modeling Language: Separation between 

Model and Data

31

Appendix: Introduction to Modeling with AMPL

knapsack.mod
knapsack6.dat
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Command Script: An Example

32

Appendix: Introduction to Modeling with AMPL
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AMPL+ Solver

33

Model

- Sets

- Parameters

- Variables

- Objective function

- Constraints

Command 
script

AMPL

- Model and data specification

- Solver options

- Display options

- etc.

- Set elements

- Parameter values

Data

Solver

◼ Feasible solution?

◼ Optimal solution?

◼ Optimum and variable value

◼ Solution time

◼ etc.

Result analysis

Appendix: Introduction to Modeling with AMPL
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AMPL Sets

34

◼ Simple sets (numbers or symbols)

◼ Indexed collection of sets

Appendix: Introduction to Modeling with AMPL
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AMPL Basics: Parameters

35

◼ Scalar parameter and parameters for set elements

◼ Bounds and default value

◼ Symbolic parameters

Appendix: Introduction to Modeling with AMPL
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AMPL Basics: Variables

36

◼ Similar to declaration of numerical parameters

◼ May have value and/or type restrictions

Appendix: Introduction to Modeling with AMPL
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AMPL Basics: Objective Function and 

Constraints

37

◼ Integer linear programming: The objective  is a linear expression  

of the variables

◼ Single constraint

◼ Indexed collections of constraints (with condition)

Appendix: Introduction to Modeling with AMPL
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AMPL Basics: A Complete Model for Set 

Covering

38

Appendix: Introduction to Modeling with AMPL


