

# Propositional Satisfiability (SAT): Modelling

Tjark Weber



# Propositional Formulas

A **propositional formula** is defined over a set of propositional **variables**  $x_1, x_2, \dots$ , using the standard propositional **connectives**  $\neg$ ,  $\wedge$  and  $\vee$ .

Example:  $(\neg x_1 \vee x_3) \wedge (x_2 \vee x_3) \wedge (\neg x_2 \vee x_3)$

The domain of propositional variables is  $\{\text{True}, \text{False}\}$ .

A **literal** is a propositional variable or its negation.

Examples:  $x_1, \neg x_2$

A **clause** is a disjunction of literals.

Example:  $\neg x_1 \vee x_3$

# Conjunctive Normal Form (CNF)

A formula in conjunctive normal form (CNF) is a conjunction of clauses.

Example:  $(\neg x_1 \vee x_3) \wedge (x_2 \vee x_3) \wedge (\neg x_2 \vee x_3)$

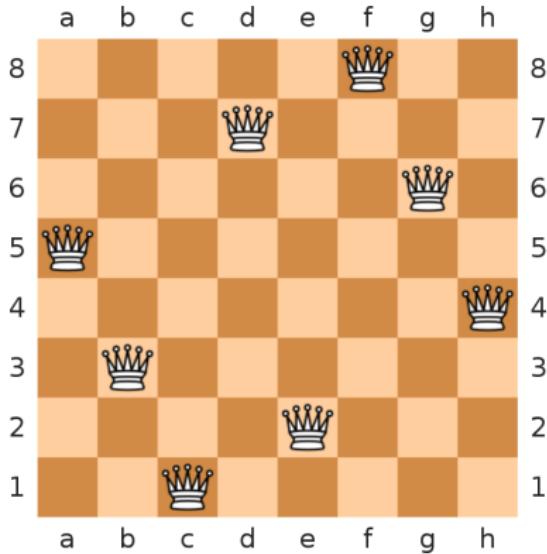
- An empty conjunction of clauses  $\wedge \emptyset$  is trivially true (satisfied by every assignment).
- An empty clause (disjunction of literals)  $\vee \emptyset$  is trivially false (satisfied by no assignment).

Notation:

- $\top$  is the trivially true formula.
- $\perp$  is the trivially false formula.
- $\varphi \models \psi$ :  $\varphi$  implies  $\psi$

# The $n$ -Queens Problem

Given a positive integer  $n$ , place  $n$  chess queens on an  $n \times n$  chessboard so that no two queens are in the same row, column, or diagonal.



# Encoding the $n$ -Queens Problem in SAT

## Idea:

Construct a propositional formula (in conjunctive normal form, CNF) such that each

satisfying assignment

corresponds to a

solution to the  $n$ -queens problem.

# Encoding the 2-Queens Problem in SAT

Propositional variables:

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

Constraints:

- There is (at least) a queen in row 1:

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12}$
- There is (at least) a queen in row 2:

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12}$
- There is (at least) a queen in row 2:  $x_{21} \vee x_{22}$
- There are no two queens in the same row:

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12}$
- There is (at least) a queen in row 2:  $x_{21} \vee x_{22}$
- There are no two queens in the same row:

$$\neg(x_{11} \wedge x_{12}) \wedge \neg(x_{21} \wedge x_{22})$$

that is in CNF:

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12}$
- There is (at least) a queen in row 2:  $x_{21} \vee x_{22}$
- There are no two queens in the same row:  
 $\neg(x_{11} \wedge x_{12}) \wedge \neg(x_{21} \wedge x_{22})$   
that is in CNF:  $(\neg x_{11} \vee \neg x_{12}) \wedge (\neg x_{21} \vee \neg x_{22})$
- There are no two queens in the same column:

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12}$
- There is (at least) a queen in row 2:  $x_{21} \vee x_{22}$
- There are no two queens in the same row:  
 $\neg(x_{11} \wedge x_{12}) \wedge \neg(x_{21} \wedge x_{22})$   
that is in CNF:  $(\neg x_{11} \vee \neg x_{12}) \wedge (\neg x_{21} \vee \neg x_{22})$
- There are no two queens in the same column:  
 $(\neg x_{11} \vee \neg x_{21}) \wedge (\neg x_{12} \vee \neg x_{22})$
- There are no two queens in the same diagonal:

# Encoding the 2-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 2$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12}$
- There is (at least) a queen in row 2:  $x_{21} \vee x_{22}$
- There are no two queens in the same row:  
 $\neg(x_{11} \wedge x_{12}) \wedge \neg(x_{21} \wedge x_{22})$   
that is in CNF:  $(\neg x_{11} \vee \neg x_{12}) \wedge (\neg x_{21} \vee \neg x_{22})$
- There are no two queens in the same column:  
 $(\neg x_{11} \vee \neg x_{21}) \wedge (\neg x_{12} \vee \neg x_{22})$
- There are no two queens in the same diagonal:  
 $(\neg x_{11} \vee \neg x_{22}) \wedge (\neg x_{12} \vee \neg x_{21})$

One could also add constraints expressing that there is (at least) a queen in each column. These are optional: they are implied by the constraints above.

# Encoding the 3-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 3$ ).

# Encoding the 3-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 3$ ).

Constraints:

- There is (at least) a queen in row 1:

# Encoding the 3-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 3$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12} \vee x_{13}$
- Likewise for rows 2 and 3.
- There are no two queens in row 1:

# Encoding the 3-Queens Problem in SAT

Propositional variables:

Let  $x_{r,c}$  mean “there is a queen in row  $r$  and column  $c$ ” (for  $1 \leq r, c \leq 3$ ).

Constraints:

- There is (at least) a queen in row 1:  $x_{11} \vee x_{12} \vee x_{13}$
- Likewise for rows 2 and 3.
- There are no two queens in row 1:  
 $(\neg x_{11} \vee \neg x_{12}) \wedge (\neg x_{11} \vee \neg x_{13}) \wedge (\neg x_{12} \vee \neg x_{13})$
- Likewise for rows 2 and 3, all three columns, and all diagonals.

Exercise: Generalise this encoding to the  $n$ -queens problem.