
Propositional Satisfiability (SAT):
Introduction

Tjark Weber

+ slides by Daniel Le Berre

Tjark Weber (UU) Introduction 1 / 1



Introduction to SAT
History, Algorithms, Practical considerations

Daniel Le Berre1

CNRS - Université d’Artois

SAT-SMT summer school
Semmering, Austria, July 10-12, 2014

1Contains material provided by Joao Marques Silva, Armin Biere, Takehide
Soh

1/117



Disclaimer

I Not a complete view of the
subject

I Limited to one branch of SAT
research (CDCL solvers)

I From an AI background point of
view

I From a SAT solver designer

I For a broader picture of the
area, see the handbook edited in
2009 by the community

3/117



Disclaimer: continued

I The best solvers for practical SAT solving in the 90’s were
based on local search or randomized DPLL

I Since then, the best performing solvers are based on the
Conflict Driven Clause Learning architecture.

I The current challenge is to create a new kind of solvers
targeting parallel architectures ...

4/117



Context: SAT receives much attention since a decade
Why are we all here today?

I Most companies doing software or hardware verification are
now using SAT solvers.

I SAT technology indirectly reaches our everyday life:
I Intel core I7 processor designed with the help of SAT solvers

[Kaivola et al, CAV 2009]
I Windows 7 device drivers verified using SAT related technology

(Z3, SMT solver) [De Moura and Bjorner, IJCAR 2010]
I The Eclipse open platform uses SAT technology for solving

dependencies between components [Le Berre and Rapicault,
IWOCE 2009]

I Many SAT solvers are available from academia or the industry.

I SAT solvers can be used as a black box with a simple
input/ouput language (DIMACS).

I The consequence of a new kind of SAT solver designed in
2001 (Chaff)



The SAT problem: theoretical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: Is there an assignment of the n variables that satisfies all
those clauses?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

7/117



The SAT problem: theoretical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: Is there an assignment of the n variables that satisfies all
those clauses?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

7/117



The SAT problem solver: practical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, one answer is {a, b, c}, for C2 the answer is C2

8/117



The SAT problem solver: practical point of view

Definition

Input: A set of clauses C built from a propositional language with
n variables.
Output: If there is an assignment of the n variables that satisfies
all those clauses, provide such assignment, else provide a subset of
C which cannot be satisfied.

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c
For C1, one answer is {a, b, c}, for C2 the answer is C2

8/117



SAT is important in theory ...

I Canonical NP-Complete problem [Cook, 1971]
I Threshold phenomenon on randomly generated k-SAT

instances [Mitchell,Selman,Levesque, 1992]

Example: 1 to 9 ratio #clauses
#variables for k = 3

9/117



... in practice: Computer Aided Verification Award 2009

awarded to

Conor F. Madigan
Sharad Malik
Joao Marques-Silva
Matthew Moskewicz
Karem Sakallah
Lintao Zhang
Ying Zhao

for

fundamental contributions to the
development of high-performance
Boolean satisfiability solvers.

Authors of GRASP SAT solver
Authors of CHAFF SAT solver

10/117



... TACAS 2014 most influential paper in the first 20 years

awarded to

A. Biere
A. Cimatti
E. Clarke
Y. Zhu

for

Symbolic Model Checking without
BDDs

11/117



Evolution of the performance of some SAT solvers

12/117



Where can we find SAT technology today?

I Formal methods:
I Hardware model checking; Software model checking;

Termination analysis of term-rewrite systems; Test pattern
generation (testing of software & hardware); etc.

I Artificial intelligence:
I Planning; Knowledge representation; Games (n-queens,

sudoku, social golfers, etc.)
I Bioinformatics:

I Haplotype inference; Pedigree checking; Analysis of Genetic
Regulatory Networks ; etc.

I Design automation:
I Equivalence checking; Delay computation; Fault diagnosis;

Noise analysis; etc.
I Security:

I Cryptanalysis; Inversion attacks on hash functions; etc.

13/117



Where can we find SAT technology today? II

I Computationally hard problems:
I Graph coloring; Traveling salesperson; etc.

I Mathematical problems:
I van der Waerden numbers; Quasigroup open problems; etc.

I Core engine for other solvers: 0-1 ILP/Pseudo Boolean; QBF;
#SAT; SMT; MAXSAT; ...

I Integrated into theorem provers: HOL; Isabelle; ...
I Integrated into widely used software:

I Suse 10.1 dependency manager based on a custom SAT solver.
I Eclipse provisioning system based on a Pseudo Boolean solver.
I Eiffel language uses Z3 to check contracts.

14/117


