
Algorithms and Data-Structures III : 1DL481
Lecture 1

Justin Pearson based on slides by Pierre Flener

Outline

1 What’s happening Today?

2 The End of Course AD2

3 Combinatorial Optimisation
Constraint Problems
Solving Technologies
Modelling
Solving

4 Course AD3
Contents
New Concepts
Learning Outcomes
Organisation

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 2 / 49

Today

From the end of AD2 to AD3. Solving NP problems
Some other approaches to NP problems (Model + Solve)
Overview of the course content
Mechanics

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 3 / 49

How To Communicate with us.

Please don’t use Studium’s message service.
If you have a question about the lecture material or course organisation, then
email me justin.pearson@it.uu.se.
If you have a question about the assignments or infrastructure, then contact the
assistants at a help session or solution session for an immediate answer.

Short clarification questions (that is: not about modelling or programming difficulties)
that are either emailed (it-ad3@lists.uu.se)

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 4 / 49

justin.pearson@it.uu.se
it-ad3@lists.uu.se

The End of AD2

During AD2 we spent a lot of time trying to find efficient algorithms to problems via
Dynamic programs, efficient greedy algorithms that are guaranteed to find a solution.

At the end of AD2 we got to complexity theory. We talk about the class P (polynomial time
solvable problems) and the class NP (non-deterministic polynomial time problems).

In this course we are going to look at algorithms to tackle problems in NP efficiently.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 5 / 49

Decision Problems

In a decision problem we seek a ‘yes’ / ‘no’ answer to an existence question. An instance
of a problem is given by its input data.

Example (Travelling salesperson: Decision TSP)
Given a budget b and a map with n cities, is there a route visiting each city exactly once,
returning to the starting city, and costing at most b ?

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 6 / 49

Decision Problems

A decision problem R is:
in NP if a witness to a ‘yes’ instance is checkable in time polynomial in the instance
size: checking is in P;
NP-complete if in NP and there is a reduction from each problem Q in NP, polytime
converting any instance of Q into a same-answer instance of R.

It is believed that NP-complete problems are intractable (or: hard), requiring
non-polynomial time to solve exactly.

Example
TSP is NP-complete as a witness is checkable in O(n) time and the NP-complete
Hamiltonian-Cycle problem reduces to it.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 7 / 49

Satisfaction Problems

In a satisfaction problem we seek a witness for a ‘yes’ answer.

Example (Satisfaction TSP)
Given a budget b and a map with n cities, find a route visiting each city exactly once,
returning to the starting city, and costing at most b.

Note that finding a witness of a solution could be harder than just deciding if a solution
exists or not.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 8 / 49

Optimisation Problems

In an optimisation problem we seek an optimal witness, according to some objective
function, for a ‘yes’ answer.

Example (Optimisation TSP)
Given a map with n cities, find a cheapest route visiting each city exactly once and
returning to the starting city.

In addition to decision problems that are at least as hard as every NP problem (as every
NP problem reduces to them), satisfaction and optimisation problems with NP-complete
decision versions are often also said to be NP-hard : they are unlikely to be easier than
their decision versions.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 9 / 49

What Now?

Several courses at Uppsala University teach techniques for addressing NP-hard
optimisation and satisfaction problems:

1TD184 Continuous Optimisation (period 2)
1DL451 Modelling for Combinatorial Optimisation (period 2)
1DL481 Algorithms and Data Structures 3 (period 3)

NP-hardness is not where the fun ends, but where it begins!

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 10 / 49

https://www.uu.se/en/study/course?query=1TD184
https://www.uu.se/en/study/course?query=1DL451

Example (Optimisation TSP over n cities)
A brute-force algorithm evaluates all n! candidate routes:

A computer of today evaluates 106 routes / second:
n time
11 40 seconds
14 1 day
18 203 years
20 77k years

Planck time is the shortest useful interval: ≈ 5.4 · 10−44 seconds; a Planck computer
would evaluate 1.8 · 1043 routes / second:

n time
37 0.7 seconds
41 20 days
48 1.5 · age of universe

The dynamic program by Bellman-Held-Karp “only” takes O(n2 · 2n) time: a computer of
today takes a day for n = 27, a year for n = 35, the age of the universe for n = 67, and
beats the O(n!) algo on Planck computer for n ≥ 44.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 11 / 49

Intelligent Search upon NP-Hardness

Do not give up but try to stay ahead of the curve: there is an instance size until which an
exact algorithm is fast enough!

10 14 27 35 44 48
100

105
108

1013

1018

1 day
1 year

age of universe

n! (today) n! (Planck)

n2 · 2n (today)

ntim
e

(s
):

lo
g

sc
al

e!

Concorde TSP Solver beats Bellman-Held-Karp exact algorithm: it uses local search &
approximation algos, but sometimes proves exactness of its optima. The largest instance
solved exactly, in 136 CPU years in 2006, has n = 85900.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 12 / 49

https://www.math.uwaterloo.ca/tsp/concorde

Optimisation

Optimisation is a science of service: to scientists, to engineers, to artists, and to society.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 13 / 49

Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley
corn

millet
oats
rye

spelt
wheat

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 14 / 49

Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley ✓ ✓ ✓ – – – –
corn ✓ – – ✓ ✓ – –

millet ✓ – – – – ✓ ✓
oats – ✓ – ✓ – ✓ –
rye – ✓ – – ✓ – ✓

spelt – – ✓ ✓ – – ✓
wheat – – ✓ – ✓ ✓ –

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 14 / 49

Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A
Doctor B
Doctor C
Doctor D
Doctor E

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 15 / 49

Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A call none oper none oper none none
Doctor B appt call none oper none none call
Doctor C oper none call appt appt call none
Doctor D appt oper none call oper none none
Doctor E oper none oper none call none none

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 15 / 49

Example (Vehicle routing: parcel delivery)
Given a depot with parcels for clients and a vehicle fleet, find which vehicle visits which
client when.
Constraints to be satisfied:

1 All parcels are delivered on time.
2 No vehicle is overloaded.
3 Driver regulations are respected.
4 . . .

Objective function to be minimised:
Cost: the total fuel consumption and driver salary.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 16 / 49

Application Areas
School timetabling Sports tournament design

Security: SQL injection? Container packing

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 17 / 49

Applications in Programming and Testing

Robot programming Sensor-net configuration

Compiler design Base-station testing

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 18 / 49

Applications in Air Traffic Management

Demand vs capacity Airspace sectorisation

Contingency planning
Flow Time Span Hourly Rate
From: Arlanda 00:00 – 09:00 3
To: west, south 09:00 – 18:00 5

18:00 – 24:00 2
From: Arlanda 00:00 – 12:00 4
To: east, north 12:00 – 24:00 3
.

Workload balancing

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 19 / 49

Applications in Biology and Medicine

Phylogenetic supertree Haplotype inference

Medical image analysis Doctor rostering

gy

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 20 / 49

Definitions
In a constraint problem, values have to be found for all the unknowns, called variables (in
the mathematical sense; also called decision variables) and ranging over given sets,
called domains, so that:

All the given constraints on the decision variables are satisfied.
Optionally: A given objective function on the decision variables has an optimal value:
either a minimal cost or a maximal profit.

A candidate solution to a constraint problem maps each decision variable to a value within
its domain; it is:

feasible if all the constraints are satisfied;
optimal if the objective function takes an optimal value.

The search space consists of all candidate solutions. A solution to a satisfaction problem
is feasible. An optimal solution to an optimisation problem is feasible and optimal.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 21 / 49

Search spaces are often larger than the universe!

Many important real-life problems are NP-hard or worse: their real-life instances can only
be solved exactly and fast enough by intelligent search, unless P = NP. NP-hardness is
not where the fun ends, but where it begins!

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 22 / 49

A solving technology offers languages, methods, and tools for:

what: Modelling constraint problems in a declarative language.

and / or

how: Solving constraint problems intelligently:

Search: Explore the space of candidate solutions.

Inference: Reduce the space of candidate solutions.

Relaxation: Exploit solutions to easier problems.

A solver is an off-the-shelf program that takes any model and data as input
and tries to solve that problem instance.

Combinatorial (= discrete) optimisation covers satisfaction and optimisation problems for
variables ranging over discrete sets: combinatorial problems.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 23 / 49

Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley ✓ ✓ ✓ – – – –
corn ✓ – – ✓ ✓ – –

millet ✓ – – – – ✓ ✓
oats – ✓ – ✓ – ✓ –
rye – ✓ – – ✓ – ✓

spelt – – ✓ ✓ – – ✓
wheat – – ✓ – ✓ ✓ –

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 24 / 49

Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley 1 1 1 0 0 0 0
corn 1 0 0 1 1 0 0

millet 1 0 0 0 0 1 1
oats 0 1 0 1 0 1 0
rye 0 1 0 0 1 0 1

spelt 0 0 1 1 0 0 1
wheat 0 0 1 0 1 1 0

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 24 / 49

In a BIBD, the plots are called blocks and the grains are called varieties:

Example (BIBD integer model: ✓⇝ 1 and –⇝ 0)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties,Blocks] of var 0..1: BIBD; % BIBD[v,b]=1 iff v is in b
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize = count(BIBD[..,b], 1));
2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));
3 constraint forall(v, w in Varieties where v < w) (balance =

count([BIBD[v,b]+BIBD[w,b] | b in Blocks], 2));

Example (Instance data for our AED)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 25 / 49

Reconsider the model fragment:

2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));

This constraint is declarative (and by the way not within linear algebra), so read it using
only the verb “to be” or synonyms thereof:

for all varieties v, the count of occurrences of 1 in row v of BIBD must equal
sampleSize

The constraint is not procedural:

for all varieties v, we first count the occurrences of 1 in row v and then check if
that count equals sampleSize

The latter reading is appropriate for solution checking, but solution finding performs no
such procedural counting.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 26 / 49

Example (Idea for another BIBD model)
barley {plot1, plot2,plot3

, plot4,plot5, plot6,plot7

}
corn {plot1,

plot2, plot3,

plot4, plot5

, plot6,plot7

}
millet {plot1,

plot2, plot3,plot4, plot5,

plot6, plot7}
oats {

plot1,

plot2,

plot3,

plot4,

plot5,

plot6

, plot7

}
rye {

plot1,

plot2,

plot3, plot4,

plot5,

plot6,

plot7}
spelt {

plot1, plot2,

plot3, plot4,

plot5, plot6,

plot7}
wheat {

plot1, plot2,

plot3,

plot4,

plot5, plot6

, plot7

}

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 27 / 49

Example (BIBD set model: a block set per variety)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties] of var set of Blocks: BIBD; % BIBD[v] = blocks for v
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize =

sum(v in Varieties)(b in BIBD[v]));
2 constraint forall(v in Varieties) (sampleSize =

card(BIBD[v]));
3 constraint forall(v, w in Varieties where v < w) (balance =

card(BIBD[v] intersect BIBD[w]));

Example (Instance data for our AED)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 28 / 49

Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A call none oper none oper none none
Doctor B appt call none oper none none call
Doctor C oper none call appt appt call none
Doctor D appt oper none call oper none none
Doctor E oper none oper none call none none

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 29 / 49

Example (Doctor rostering)
-5 set of int: Days; % d mod 7 = 1 iff d is a Monday
-4 enum Doctors;
-3 enum ShiftTypes = {appt, call, oper, none};
-2 % Roster[i,j] = shift type of Dr i on day j:
-1 array[Doctors,Days] of var ShiftTypes: Roster;
0 solve minimize ...; % plug in an objective function
1 constraint forall(d in Days)(count(Roster[..,d],call) = 1);
2 constraint forall(d in Days where d mod 7 in 1..5)

(count(Roster[..,d],oper) <= 2);
3 constraint count(Roster,oper) >= 7;
4 constraint count(Roster,appt) >= 4;
5 constraint forall(d in Doctors)

(regular(Roster[d,..],"((oper none) | appt | call | none)*"));
6 ... % other constraints

Example (Instance data for our small hospital unit)
-5 Days = 1..7;
-4 Doctors = {Dr_A, Dr_B, Dr_C, Dr_D, Dr_E};

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 30 / 49

Example (Sudoku)

8

3 6

7 9 2

5 7

4 5 7

1 3

1 6 8

8 5 1

9 4

8 1 2 7 5 3 6 4 9

9 4 3 6 8 2 1 7 5

6 7 5 4 9 1 2 8 3

1 5 4 2 3 7 8 9 6

3 6 9 8 4 5 7 2 1

2 8 7 1 6 9 5 3 4

5 2 1 9 7 4 3 6 8

4 3 8 5 2 6 9 1 7

7 9 6 3 1 8 4 5 2

-2 array[1..9,1..9] of var 1..9: Sudoku;
-1 ... % load the hints
0 solve satisfy;
1 constraint forall(row in 1..9)(all_different(Sudoku[row,..]));
2 constraint forall(col in 1..9)(all_different(Sudoku[..,col]));
3 constraint forall(i,j in {0,3,6}) (all_different(Sudoku[i+1..i+3,j+1..j+3]));

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 31 / 49

Modelling Languages
The following fully declarative modelling languages are powerful enough to encode
NP-hard problems:

Mixed integer programming (MIP): satisfy a set of linear equalities (=) and
inequalities (<, ≤, ≥, >), but not disequalities (̸=), over real-number decision
variables and integer decision variables weighted by real-number constants, such
that a linear objective function is optimised.

Boolean satisfiability solving (SAT): satisfy a set of disjunctions of possibly negated
Boolean decision variables.

SAT modulo theories (SMT) and constraint programming (CP) do not have such
small standardised low-level modelling languages, but enable the higher level of the
previous sample models.
In course 1DL451: Modelling for Combinatorial Optimisation, we use such
higher-level models in order to drive CP, MIP, SAT, SMT, . . . solvers.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 32 / 49

https://www.uu.se/en/study/course?query=1DL451

Examples (Solving technologies)
With general-purpose solvers, taking model and data as input:

(Mixed) integer linear programming (IP and MIP)
Boolean satisfiability (SAT)
SAT (resp. optimisation) modulo theories (SMT and OMT)
Constraint programming (CP)
. . .
Hybrid technologies (LCG = CP + SAT, . . .)

Methodologies, usually without modelling and solvers:
Dynamic programming (DP)
Greedy algorithms
Approximation algorithms
Stochastic local search (SLS)
. . .

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 33 / 49

Examples (Solving technologies)
With general-purpose solvers, taking model and data as input:

(Mixed) integer linear programming (IP and MIP) in AD3
Boolean satisfiability (SAT) in AD3
SAT (resp. optimisation) modulo theories (SMT and OMT) SMT in AD3
Constraint programming (CP) via 1DL705
. . .
Hybrid technologies (LCG = CP + SAT, . . .)

Methodologies, usually without modelling and solvers:
Dynamic programming (DP) in 1DL231: AD2
Greedy algorithms in 1DL231: AD2
Approximation algorithms in AD3
Stochastic local search (SLS) in AD3
. . .

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 33 / 49

https://www.uu.se/en/study/course?query=1DL705

Solvers

Black-box solvers (for SAT, SMT, OMT, IP, MIP, . . .)
have general-purpose search + inference + relaxation
that is difficult to influence by the modeller.

AD3

Glass-box solvers (for CP, LCG, . . .)
have general-purpose search + inference + relaxation
that is easy to influence, if desired, by the modeller.

via 1DL705

Special-purpose solvers (for TSP, . . .)
exist for pure problems (that is: problems without side constraints).

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 34 / 49

https://www.uu.se/en/study/course?query=1DL705

Modelling is an Art

There are good and bad models for each constraint problem:
AD3 and 1DL451: Modelling

Different models of a problem may take different time on the same solver for the
same instance.

Different models of a problem may scale differently on the same solver for instances
of growing size.

Different solvers may take different time on the same model for the same instance.

Good modellers are worth their weight in gold!

Use solvers: based on decades of cutting-edge research, they are very hard to beat on
exact solving.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 35 / 49

https://www.uu.se/en/study/course?query=1DL451

Common Thread: Coping with NP-Hardness
1 Mixed integer programming (MIP)
2 Stochastic local search (SLS)
3 Amortised analysis (CLRS4: Chapter 16)
4 Probabilistic analysis (Chapter 5)
5 Randomised algorithms: (Chapter 5) universal hashing, . . . (Section 11.3.4)
6 Proving NP-completeness by reduction (Chapter 34)
7 Approximation algorithms (Chapter 35)
8 Boolean satisfiability (SAT)
9 SAT modulo theories (SMT)

CLRS4 Textbook:
Introduction to Algorithms (4th edition) (errata).
T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein.
The MIT Press, 2022.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 36 / 49

https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/11599/e4-bugs.html

In a probabilistic algorithm analysis, we use probability theory: knowing or assuming the
distribution of the inputs, we compute the average-case time (as opposed to the
worst-case time) of a deterministic algorithm.

Example
The brute-force string matching algorithm for finding all occurrences of a pattern P of
length m within a text T of length n ≥ m takes O(n − m + 1) time on average when P and
T are random strings, but this is a completely unreasonable assumption. (Chapter 32 in
CLRS4)

Probabilistic analysis helps gain insight into a problem and helps design an efficient
algorithm for it, when we have a reasonable assumption on the distribution of the inputs.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 37 / 49

A randomised algorithm (as opposed to a deterministic algorithm) itself makes random
choices, independently of the actual distribution of the inputs. We refer to the time of a
randomised algorithm as expected time (not: average time).

Examples
A randomised algorithm by Karger-Klein-Tarjan (1993) computes in O(V + E)
expected time a minimum spanning tree (MST) of a connected undirected graph with
vertex set V and edge set E . (Chapter 21)
A randomised algorithm computes in O(m) expected time a prime number larger
than m for fingerprinting in the Rabin-Karp string matcher.

(Chapter 32)

Many randomised algorithms have no worst-case input!

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 38 / 49

In an amortised analysis, we compute the worst-case time of a chain of data-structure
operations, and average it over the operations. We refer to this time as an amortised time
(as opposed to an average-case time, as no probability is used here, and to the possibly
non-tight worst-case time).

Examples
A chain of m find-and-compress-paths or union-by-rank operations on disjoint sets of
n items takes O(m · lg∗ n) time, where lg∗ n ≤ 5 in practice. (Chapter 19)
In a Fibonacci heap of n items, extracting a minimum takes O(lg n) amortised time,
and decreasing a key takes O(1) amortised time. (online chapter; not in AD2)
Prim’s MST algorithm takes at worst O(E + V lgV) time when using a Fibonacci
heap. (Chapter 21)

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 39 / 49

Dealing in polynomial time with (instances of) optimisation problems where brute-force or
exact solving is too costly:

A greedy algorithm builds a feasible solution decision variable by decision variable,
making locally optimal choices in the hope of reaching an optimal solution. Greedy
algorithms build either provably optimal solutions (for example, Prim’s MST algorithm
and Dijkstra’s single-source shortest paths algorithm) or at-best optimal solutions.

A local search algorithm repairs a possibly infeasible candidate solution, by
reassigning some decision variables at every iteration, until an allocated resource
(such as an iteration count or a time budget) is exhausted, in the hope of reaching a
feasible or even optimal solution.

An approximation algorithm for an NP-hard optimisation problem builds a feasible
solution whose objective value is provably within a known factor of the optimum.

All techniques are orthogonal: there exist randomised local search algorithms, greedy
approximation algorithms, etc.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 40 / 49

In order to pass, the student must be able to:

analyse NP-completeness of an algorithmic problem;

use advanced algorithm analysis methods, such as amortised analysis and
probabilistic analysis;

use advanced algorithm design methods in order to approach hard algorithmic
problems in a pragmatic way, such as by using:

▶ randomised algorithms: universal hashing, . . .
▶ approximation algorithms
▶ stochastic local search: simulated annealing, tabu search, . . .
▶ mixed integer programming (MIP)
▶ Boolean satisfiability (SAT)
▶ SAT modulo theories (SMT)

present and discuss topics related to the course content orally and in writing with a
skill appropriate for the level of education written reports and oral resubmissions!

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 41 / 49

Course Organisation and Suggested Time Budget

Period 3: January to March, budget = 133.3 hours:

12 lectures, including a mandatory guest lecture, budget = 21 hours

2 assignments with 3 help sessions, 1 grading session, 1 solution session per
assignment, on 2 problems each, on non-exam topics, to be done by student-chosen
duo team: suggested budget = average of 30 hours / assignment / student (2 credits)

1 written closed-book exam of 3 hours, to be done individually: suggested budget =
52 hours (3 credits)

Prerequisites: Algorithms and Data Structures 2 (AD2) (course 1DL231) or
equivalent

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 42 / 49

https://www.uu.se/en/study/course?query=1DL231

Examination
Modelling / programming, experimenting, and reporting:

Mixed integer programming (MIP): Assignment 1

Stochastic local search (SLS): Assignment 1

Boolean satisfiability (SAT): Assignment 2

SAT modulo theories (SMT): Assignment 2

Theory questions, drawn from a published list of potential exam questions:

Amortised analysis and probabilistic analysis: exam

Randomised algorithms: exam

NP-completeness: 50% threshold at exam

Approximation algorithms: exam

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 43 / 49

https://ad3-uu-se.github.io/

2 Assignment Cycles of 3 Weeks

help session a: attendance strongly recommended!

help session b: attendance strongly recommended!

help session c: attendance strongly recommended!

Withing 10 days of the deadline at 16:00: your initial score aij ∈ 0..5 points for each
Problem j of Assignment i , with j ∈ 1..2

after publication teamwise oral grading session on some Problems j where
aij ∈ {1,2}: possibility of earning 1 extra point for your final score; otherwise final
score = initial score

solution session and help session a

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 44 / 49

2 Assignment Credits and Overall Influence

Let aij be your final score on Problem j of Assignment i , with i , j ∈ 1..2:

20% threshold: ∀i , j ∈ 1..2 : aij ≥ 20% · 5 = 1 (< 3) You may not catastrophically fail
on individual problems

30% threshold: ∀i : ai = ai1 + ai2 ≥ 30% · (5 + 5) = 3 (< 5) You can partially fail on
individual problems or entire assignments

50% threshold: a = a1 + a2 ≥ 50% · 2 · (5 + 5) = 10 The formula for your assignment
grade in 3..5 is at the course homepage

Worth going full-blast: Your assignment score a is meshed with
your exam score e in order to determine your overall course grade in 3..5, if
10 ≤ a ≤ 20 and 10 ≤ e ≤ 20: see the formula at the course homepage

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 45 / 49

https://ad3-uu-se.github.io/
https://ad3-uu-se.github.io/

Caution!

There is a huge jump from AD2 (or equivalent) — with its mostly (pseudo-)polytime
algorithms — to AD3, where only NP-hard problems are considered.

Correctness is required (unlike in AD2), but very easy to achieve with the help of our
provided polytime solution checkers or some revealed optima: we grade for speed
(and memory usage).

Especially the MIP, SAT, and SMT modelling tasks are totally unlike anything most of
you have ever seen, and this takes time to wrap one’s head around.

Ease or success with the assignments in AD2 does not imply the same ease or the
same level of success with the assignments in AD3: the help sessions are strongly
recommended, and there is almost no internet help.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 46 / 49

https://www.uu.se/en/study/course?query=1DL231

Assignment Rules

Register a team by Sunday 25 January at 23:59 on Studium:
Duo team: Two consenting teammates sign up

Random partner? join the group I want to be randomly assigned.

If you don’t register for a team or ask to be randomly assigned by the deadline, then I will
assume that you are not participating in the course.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 47 / 49

Other considerations

Teammate scores may differ if no-show or passivity at grading session

No freeloader: Implicit honour declaration in reports that each partner can
individually explain everything; random checks will be made by us

No plagiarism: Implicit honour declaration in reports; extremely powerful detection
tools will be used by us; suspected cases of using or providing must be reported! No
use of LLMs or coding assistants. You need to learn the material yourself.

Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 48 / 49

What To Do Now?

Bookmark and read the entire AD3 website1, especially the FAQ list.

Get started on Assignment 1 and have questions ready for the first help session,
which is on the 27th January.

Register a duo team by Sunday 25 January at 23:59.
Install AMPL (see Studium for a free download with the classroom license) on your
own hardware, if you have any.

1https://ad3-uu-se.github.io/
Justin Pearson based on slides by Pierre Flener Algorithms and Data-Structures III : 1DL481 49 / 49

https://ad3-uu-se.github.io/
https://ad3-uu-se.github.io/

	What's happening Today?
	The End of Course AD2
	Combinatorial Optimisation
	Constraint Problems
	Solving Technologies
	Modelling
	Solving

	Course AD3
	Contents
	New Concepts
	Learning Outcomes
	Organisation

