Exam in Algorithms & Data Structures 3 (1DL481)

Prepared by Pierre Flener

Wednesday 13 March 2024 from 14:00 to 17:00 in hall 1 at Bergsbrunnagatan 15

Materials: This is a closed-book exam, drawing from the book Introduction to Algorithms
by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, published in 4th edition by The
MIT Press in 2022, and denoted by CLRS4 here. No means of help are allowed.

Instructions: Question 1 is mandatory: you must earn at least half of its points in order
to pass this exam (see Grading below). Start each answer on a new sheet, and indicate there
the question number. Your answers must be written in English. Unreadable, unintelligible, and
irrelevant answers will not be considered. Provide only the requested information and nothing
else, but always show all the details of your reasoning, unless explicitly not requested, and
make explicit all your additional assumptions. Do not write anything into the following table:

Question Max Points Your Mark

1 7
2 4
3 4
4 5
Total 20

Help: No teacher will attend the exam. If you think a question is unclear, then explain your
difficulty with the question and state the assumption that underlies your answer.

Grading: Your grade is as follows when your exam mark is e points, including at least 3.5 points
on Question 1:

Grade  Condition
5 18 <e <20

4 14 <e<17
3 10<e <13
U 00<e<09

Identity: Your anonymous exam code:

L7 F2/B-00 =




Question 1: NP-Completeness (mandatory question!) (7 points)

Exercise 34.5-2: Given an integer m X n matrix A and an integer m-vector b, the 0-1 integer-
programmsing problem asks whether there exists an integer n-vector x with elements in the
set {0,1} such that Az < b. Prove that 0-1 integer programming is NP-complete, by using
a single reduction, directly from 3-CNF satisfiability, which asks whether a conjunction of
clauses, each of exactly three distinct literals, is satisfiable; a literal is an occurrence of a Boolean
variable or its negation.

Start your answer on a new sheet. You must earn at least half of the points of this question.
You must use the identifiers A, m, n, b, and z of the question.

Question 2: Probabilistic Analysis (4 points)

Exercise 5.2-5: Use indicator random variables to solve the following problem, which is known as
the hat-check problem. Each of n customers gives a hat to a hat-check person at a restaurant.
The hat-check person gives the hats back to the customers in a random order. What is the
expected number of customers who get back their own hat? Are your indicator random variables
independent?

Start your answer on a new sheet.

Question 3: Amortised Analysis (4 points)

Exercise 16.2-2: Suppose we perform a sequence of n operations on a data structure in which
the ith operation costs ¢ if ¢ is an exact power of 2, and 1 otherwise. Use an accounting method
of analysis (also known as the banker’s method) to determine the amortised cost per operation.

Start your answer on a new sheet.



Question 4: Approximation Algorithms (5 points)

Exercise 35.1-5: [First consider some reminders.] For an undirected graph G = (V, E):

e A clique in G is a subset V' C V of vertices, each pair of which is connected by an edge
in E. The size of a clique is the number of vertices it contains. The clique problem is
the optimisation problem of finding a clique of maximum size in a graph. For example, a
maximum-size clique of the graph in Figure (a) is {u, v, z,y}, of size 4.

e A vertex cover of G is a subset V' C V such that if (u,v) € E, then u € V' or v € V'
(or both). The size of a vertex cover is the number of vertices in it. The vertex-cover
problem is the optimisation problem of finding a vertex cover of minimum size in a given
graph. For example, a minimum-size vertex cover of the graph in Figure (b) is {w, z}, of
size 2. Note that there is a polynomial-time 2-approximation algorithm for the vertex-
cover problem and recall that we saw a polynomial-time 2-approximation algorithm (based
on LP rounding) for the weighted vertex-cover problem, both analyses being tight.

e The complement of G is G = (V, E), where E = {(u,v) : u,v € V,u # v, (u,v) € E}.
For example, the graphs in the following figure are each other’s complements:

(@ (b)

[Now comes the exam question itself:] The proof (by reduction from a decision version of the
clique problem) of Theorem 34.12, which states that a decision version of the vertex-cover
problem is NP-complete, illustrates that the vertex-cover problem and the NP-complete clique
problem are complementary in the sense that a minimum-size vertex cover is the complement
of a maximum-size clique in the complement graph. For example, the minimum-size vertex
cover {w, z} of the graph in Figure (b) is the complement V'\ V’ of the maximum-size clique V' =
{u,v,2z,y} in the complement graph in Figure (a). Does this relationship imply that there is
a polynomial-time approximation algorithm with a constant approximation ratio for the clique
problem? Justify your answer, and first clarify whether you use the CLRS4 convention or the
Princeton convention for the approximation of maximisation problems.

Start your answer on a new sheet. You must use the identifiers and notation G, V, E, V', G,
and E of the question.



