Exam in Algorithms & Data Structures 3 (1DL481)

Prepared by Pierre Flener

Monday 16 March 2020 from 14:00 to 17:00, at Bergsbrunnagatan 15, Sal 2

Materials: This is a closed-book exam, drawing from the book Introduction to Algorithms
by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, published in 3rd edition by the MIT
Press in 2009, and denoted by CLRS3 here. Differences from and additions to the CLRS3 version
are typeset between square brackets: [...]. The usage of electronic devices is not allowed.

Instructions: Question 1 is mandatory: you must earn at least half its points in order to
pass the exam. Start each answer on a new sheet of paper, and indicate there the question (and
exercise) number. Your answers must be written in English. Unreadable, unintelligible, and
irrelevant answers will not be considered. Provide only the requested information and nothing
else, but always show all the details of your reasoning, unless explicitly not requested, and
make explicit all your assumptions. Do not write anything into the following table:

Question Max Points Your Mark

1 7
2 3
3 6
4 4
Total 20

Help: Unfortunately, no teacher can attend this exam.

Grading: Your grade is as follows when your exam mark is e points, including at least 3.5 points
on Question 1:

Grade Condition

) 18 <e <20
4 14 <e<17
3 10<e <13
U 00 <e<09

Identity: Anonymous exam code (no dashes!):

Question 1: NP-Completeness (mandatory question!) (7 points)

Do one of the following exercises from CLRS3 and earn at least half its points:

A. Exercise 34.5-2: Given an integer m X n matrix A and an integer m-vector b, the 0-1
integer-programming problem asks whether there exists an integer n-vector = with
elements in the set {0,1} such that Az < b. Prove that 0-1 integer programming is NP-
complete. (Hint: Reduce from 3-CNF satisfiability, which asks whether a conjunction
of clauses, each of exactly three distinct literals, is satisfiable; a literal is an occurrence of
a Boolean variable or its negation.)

B. Problem 35-la: Bin packing. Suppose that we are given a set of n objects, where the
size s; of the ith object satisfies 0 < s; < 1. We wish to pack all the objects into the
minimum number of unit-size bins. Each bin can hold any subset of the objects whose
total size does not exceed 1. Prove that the problem of determining the minimum number
of bins required is NP-hard. (Hint: Reduce from the subset-sum problem, which, given
a finite set X of positive integers and an integer target ¢ > 0, asks whether there exists a
subset X’ C X whose elements sum to ¢; for example, if X = {7,9,8} and ¢ = 15, then
the subset X’ = {8, 7} is a solution, but there is no solution for ¢ = 14.)

Start your answer on a new sheet of paper, and indicate there the chosen exercise (1A or 1B).

Question 2: Probabilistic Analysis, Randomised Algorithms (3 points)

Do one of the following exercises from CLRS3:

A. Exercise 5.2-4: Use indicator random variables to solve the following problem, which is
known as the hat-check problem. Each of n customers gives a hat to a hat-check person
at a restaurant. The hat-check person gives the hats back to the customers in a random
order. What is the expected number of customers who get back their own hat? Are your
indicator random variables independent?

B. Exercise 5.3-4: Professor Armstrong suggests the following procedure for generating a
uniform random permutation [of its input array]:

PERMUTE-BY-CYCLIC(A)

n = A.length
let B[1..n] be a new array
offset = RANDOM(1,n) / RANDOM(4, u) returns a random number from ¢ to u
fori=1ton

dest = 1+ offset

if dest >n

dest = dest —n
Bldest] = Ali]

return B

© 00 O Ui W N

[What is the probability for] each element A[i] of winding up in any particular position
in B? [Is] the resulting permutation uniformly random?

Start your answer on a new sheet of paper, and indicate there the chosen exercise (2A or 2B).

Question 3: Approximation Algorithms (6 points)

Do one of the following exercises from CLRS3:

A. Exercise 35.1-5: [First consider some reminders.] For an undirected graph G = (V, E):

e A clique in G is a subset V' C V of vertices, each pair of which is connected by an
edge in E. The size of a clique is the number of vertices it contains. The clique
problem is the optimisation problem of finding a clique of maximum size in a graph.
[For example, a max-size clique of the graph in Figure (a) is {u, v, z,y}, of size 4.]

e A vertex cover of G is a subset V! C V such that if (u,v) € E, then u € V’
or v € V'’ (or both). The size of a vertex cover is the number of vertices in it.
The vertex-cover problem is to find a vertex cover of minimum size in a graph.
[For example, a min-size vertex cover of the graph in Figure (b) is {w, 2}, of size 2.]
Note that there is a polynomial-time 2-approximation algorithm for the vertex-cover
problem [and recall that we saw a polynomial-time 2-approximation algorithm (based
on LP rounding) for the weighted vertex-cover problem, both analyses being tight].

e The complement of Gis G = (V, E), where E = {(u,v) : u,v € V,u # v, (u,v) € E}.
[For example, the graphs in the following figure are each other’s complements:]

(a) (b)

[Now comes the exam question itself:] From the proof |[by reduction from a decision
version of the clique problem| of Theorem 34.12 [which states that a decision version of
the vertex-cover problem is NP-complete|, we know that the vertex-cover problem and
the clique problem are complementary in the sense that [a minimum-size| vertex cover is
the complement of a maximum-size clique in the complement graph. [For example, the
minimum-size vertex cover {w,z} of the graph in Figure (b) is the complement V' \ V'
of the maximum-size clique V' = {u,v,z,y} in the complement graph in Figure (a).]
Does this relationship imply that there is a polynomial-time approximation algorithm
with a constant approximation ratio for the clique problem? Justify your answer [and
state whether you use the CLRS3 or Princeton convention for maximisation problems].

B. Exercise 35.4-2: The input to the M A X-3-CNF satisfiability problem is the same as
for 3-CNF satisfiability (which asks whether a conjunction of clauses, each of exactly three
distinct literals, is satisfiable; a literal is an occurrence of a Boolean variable or its nega-
tion), and the goal is to return an assignment of the variables that maximises the number
of satisfied clauses. The MA X-CNF satisfiability problem is like MAX-3-CNF satis-
fiability, except that it does not restrict each clause to have exactly 3 literals. Give a ran-
domised 2-approximation algorithm for MAX-CNF satisfiability. [A high-level argument
for polynomial time suffices. The Princeton slides would call it a 1/2-approximation.]

Start your answer on a new sheet of paper, and indicate there the chosen exercise (3A or 3B).

Question 4: Amortised Analysis (4 points)
Do one of the following exercises from CLRS3:

A. Exercise 17.2-1: Suppose we perform a sequence of stack operations (PUsH or Pop) on a
stack whose size [somehow| never exceeds k. After every k operations, [a COPY operation
is invoked automatically to] make a copy of the entire stack for backup purposes|, but
without emptying the stack]. Use an accounting method of analysis to show that the cost
of n stack operations, including copying the stack, is O(n) by assigning suitable amortised
costs to the various stack operations.

B. Exercise 17.3-2: Suppose we perform a sequence of n operations on a data structure in
which the ith operation costs 7 if 7 is an exact power of 2, and 1 otherwise. Use a potential
method of analysis to determine the amortised cost per operation.

Start your answer on a new sheet of paper, and indicate there the chosen exercise (4A or 4B).

