
Exam in Algorithms & Data Structures 3 (1DL481)

Prepared by Pierre Flener

Friday 10 March 2017 from 14:00 to 17:00, at Bergsbrunnagatan 15

Materials: This is a closed -book exam, drawing from the book Introduction to Algorithms
by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, published in 3rd edition by the MIT
Press in 2009, and denoted by CLRS3 below. The usage of electronic devices is not allowed.

Instructions: Question 1 is mandatory : you must earn at least half its points in order
to pass the exam. Answer two of Questions 2 to 4. Your answers must be written in English.
Unreadable, unintelligible, and irrelevant answers will not be considered. Provide only the
requested information and nothing else, but always show all the details of your reasoning,
unless explicitly not requested, and make explicit all your assumptions. Answer each question
only on the indicated pages. Do not write anything into the following table:

Question Max Points Your Mark

1 8
2 6
3 6
4 6

Total 20

Help: Unfortunately, no teacher can attend this exam.

Grading: Your grade is as follows, when your exam mark is e points, including at least 4
points on Question 1, and you have earned a pass grade ( p = pass) on your oral presentation
and attendance to the oral presentations of the other students:

Grade Condition

5 18 ≤ e ≤ 20 ∧ p = pass
4 14 ≤ e ≤ 17 ∧ p = pass
3 10 ≤ e ≤ 13 ∧ p = pass
U 00 ≤ e ≤ 09 ∨ p 6= pass

We will grade your first two answers in case you address all of Questions 2 to 4.

Identity: Your anonymous exam code:



Answer to Question 1:



Question 1: NP-Completeness (mandatory question!) (8 points)

Do one of the following exercises from CLRS3 and earn at least half its points:

A. Exercise 34.5-7: The longest-simple-cycle problem is the problem of determining a
simple cycle (no repeated vertices) of maximum length in a graph. Formulate a related
decision problem, and show that the decision problem is NP-complete.

B. Problem 34-1a: An independent set of a graph G = (V,E) is a subset V ′ ⊆ V of vertices
such that each edge in E is incident on at most one vertex in V ′. The independent-set
problem is to find a maximum-size independent set in G.

To the left is an independent-set instance (V,E), where
the vertices of V are the 10 black and white points and
the edges of E are depicted by lines. A maximum-size
independent set consists of the 6 black vertices: each
edge in E is incident on at most one black vertex.

Formulate a related decision problem for the independent-set problem, and prove that
it is NP-complete, by reducing from the clique problem , whose decision version asks if
an undirected graph G = (V,E) contains a clique of size k, that is a subset V ′ ⊆ V of
k vertices, each pair of which being connected by an edge in E.

C. Exercise 35.3-2: An instance (X,F) of the set-covering problem consists of a finite
set X and a family F of subsets of X, such that every element of X belongs to at least
one subset in F : X =

⋃
Si∈F Si. We say that a subset Si ∈ F covers its elements.

The problem is to find a minimum-size subset C ⊆ F whose members cover all of X:
X =

⋃
Si∈C Si.

To the left is a set-covering instance (X,F),
where X consists of the 12 black points
and F = {S1, S2, S3, S4, S5, S6}. A minimum-
size set cover is C = {S3, S4, S5}, with size 3.

Show that the decision version of the set-covering problem is NP-complete by reducing it
from the vertex-cover problem , which asks to find a minimum-size vertex cover in a
given undirected graph G = (V,E), that is a minimum-size subset V ′ ⊆ V such that if
(u, v) ∈ E, then either u ∈ V ′ or v ∈ V ′ (or both).

Chosen exercise: . . . . . . . . .

Continued answer (you should start on the previous side):



Answer to Question 2:



Question 2: Probabilistic Analysis and Randomised Algorithms
(3 + 3 points)

Do both of the following short exercises from CLRS3:

A. Exercise 5.2-1: The procedure Hire-Assistant, given below, expresses a strategy for
hiring the best applicant among candidates numbered 1 through n:

Hire-Assistant(n)

1 best = 0 // candidate 0 is a least-qualified dummy candidate
2 for i = 1 to n
3 interview candidate i
4 if candidate i is better than candidate best
5 fire candidate best
6 best = i
7 hire candidate i

In Hire-Assistant, assuming that the n candidates are presented in a random order,
what is the probability that you hire exactly one time? What is the probability that you
hire exactly n times?

B. Exercise 5.3-2: Professor Kelps decides to write a procedure that produces at random
any permutation of the array A[i . . n] besides the identity permutation. He proposes the
following procedure:

Permute-Without-Identity(A)

1 n = A. length
2 for i = 1 to n− 1 // Random(`, u) returns a random number from ` to u
3 swap A[i] with A[Random(i + 1, n)]

Does this code do what Professor Kelps intends?

Continued answer (you should start on the previous side):



Answer to Question 3:



Question 3: Amortised Analysis (6 points)

Do one of the following exercises from CLRS3:

A. Exercise 17.1-3: Suppose we perform a sequence of n operations on a data structure in
which the ith operation costs i if i is an exact power of 2, and 1 otherwise. Use aggregate
analysis to determine the amortised cost per operation.

B. Exercise 17.2-1: Suppose we perform a sequence of stack operations (Push or Pop) on a
stack whose size never exceeds k. After every k operations, a Copy operation is invoked
automatically to make a copy of the entire stack for backup purposes. Use an accounting
method of analysis to show that the cost of n stack operations, including copying the
stack, is O(n) by assigning suitable amortised costs to the various stack operations.

Chosen exercise: . . . . . . . . .

Continued answer (you should start on the previous side):



Answer to Question 4:



Question 4: Approximation Algorithms (6 points)

Do one of the following exercises from CLRS3:

A. Exercise 35.4-2: The input to the MAX-3-CNF satisfiability problem is the same
as for 3-CNF-SAT (which asks whether a conjunction of disjunctions, each of exactly
3 distinct literals, is satisfiable; a literal is an occurrence of a Boolean variable or its
negation), and the goal is to return an assignment of the variables that maximises the
number of satisfied disjunctions. The MAX-CNF satisfiability problem is like the
MAX-3-CNF satisfiability problem, except that it does not restrict each disjunction to
have exactly 3 literals. Give a randomised 2-approximation algorithm for the MAX-CNF
satisfiability problem. [A high-level argument suffices for the proof of 2-approximation.
The used Princeton lecture slides would call it a 1/2-approximation.]

B. Problem 35-3: Weighted set-covering problem : Suppose that we generalise the set-
covering problem (see Question 1C) so that each set Si in the family F has an associated
weight wi and the weight of a cover C is

∑
Si∈C wi. We wish to determine a minimum-

weight cover. Section 35.3 handles the case in which wi = 1 for all i, giving the following
greedy set-covering heuristic:

Greedy-Set-Cover(X,F)

1 U = X // the set U maintains the set of remaining uncovered elements
2 C = ∅ // the set C maintains the cover being constructed
3 while U 6= ∅
4 select an Si ∈ F that maximises |Si ∩ U |
5 U = U − Si

6 C = C ∪ {Si}
7 return C

On the instance of Question 1C, this heuristic produces a sub-optimal cover of size 4 by
selecting either the sets S1, S4, S5, and S3 or the sets S1, S4, S5, and S6, in order. Show
how to generalise this heuristic in a natural manner to provide an approximate solution
for any instance of the weighted set-covering problem. Does the CLRS3 analysis for the
unweighted case still carry through, establishing that the generalised heuristic also is a
polynomial-time (ln |X|+1)-approximation algorithm? [A yes/no answer with a high-level
argument suffices for the last question.]

Chosen exercise: . . . . . . . . .

Continued answer (you should start on the previous side):



Spare page for answers (or nice cartoons!)


