
Lecture 11 : String Matching

Justin Pearson

December 6, 2022

Justin Pearson Lecture 11 : String Matching December 6, 2022 1 / 25



Today’s topics

Naive string matching algorithm and analysis

Rabin-Karp algorithm for faster String Matching.

Two things to take away from today’s lecture.

Even something as simple searching for a sub-string can be improved.

The core idea of the Rabin-Karp algorithm is using a fingerprint
computed with a hash function to search for things. With some
imagination the technique can be used in other domains.

Justin Pearson Lecture 11 : String Matching December 6, 2022 2 / 25



Sub-string search or Matching

Given some longer string:
We are such stuff as dreams are made on, and our little life is
rounded with a sleep.

Find all occurrences of some sub string “life”.
We are such stuff as dreams are made on, and our little life is
rounded with a sleep.

Justin Pearson Lecture 11 : String Matching December 6, 2022 3 / 25



Applications and algorithms

Even though it is a simple problem it has had a lot of attention. Most
people use string search everyday in their text editor. Finding sub-strings
in DNA sequences can have important consequences in biology.
There are a lot of algorithms on the market:

Naive Algorithm : just search through the string.

Optimal skipping algorithms (Knuth-Morris-Pratt and Boyer-Moore
algorithms). When you make a mismatch try to work out how far
ahead you can skip.

Various algorithms based on finite automata.

Hashing based (Rabin-Karp) today’s main algorithm

Tries are special tree based data structures based on prefixes in a
string.

Justin Pearson Lecture 11 : String Matching December 6, 2022 4 / 25



Naive Brute Force Method

Find P[0], . . . ,P[m − 1] in T [0], . . . ,T [n − 1].

for s = 0, . . . , n −m do
j ← 0
while T [s + j ] = P[j ] do

j ← j + 1
if j = m then

return s
end if

end while
end for
return −1.

Justin Pearson Lecture 11 : String Matching December 6, 2022 5 / 25



Naive Brute Force Method

Find “ABRA”:

s j 0 1 2 3 4 5 6 7 8 9 10

txt → A B A C A D A B R A C
0 2 A B R
1 0 A
2 1 A B
3 0 A
4 1 A B
5 0 A
6 4 A B R A

Red denotes a mismatch.

Justin Pearson Lecture 11 : String Matching December 6, 2022 6 / 25



Complexity Analysis

Worst Case:

Outer loop n −m + 1 iterations

Inner loop max m constant-time iterations

Total (n −m + 1)m = O(nm) as m ≤ n.

Justin Pearson Lecture 11 : String Matching December 6, 2022 7 / 25



Worst case behaviour

Find “AAAAB” in “AAAAAAAAAB”

s j 0 1 2 3 4 5 6 7 8 9

txt → A A A A A A A A A B
0 4 A A A A B
1 4 A A A A B
2 4 A A A A B
3 4 A A A A B
4 4 A A A A B
5 5 A A A A

In general the naive algorithm is bad with patterns containing repeats. In
a lot of biological applications there will be lots of repeated patterns.
Try to think about how you would optimise the naive algorithm so that
you could skip ahead optimally (or backup as little as possible).

Justin Pearson Lecture 11 : String Matching December 6, 2022 8 / 25



Using Fingerprints

The bottleneck in the naive algorithm is using the inner loop. You cannot
really avoid going through the n positions of P[0], . . . ,P[n− 1] but we can
optimise the inner loop.

General idea assume that we have a finger print function , f , that takes m
characters then we can loop P and compare the fingerprint of
f (P[s], . . . ,P[s +m − 1]) with f (T [0], . . . ,T [m − 1]).

We want out fingerprint function to be correct that is

X [0] · · ·X [m − 1] = Y [0] · · ·Y [m − 1]

if and only if

f (X [0], . . . ,X [m − 1]) = f (Y [0], . . . ,Y [m − 1])

Justin Pearson Lecture 11 : String Matching December 6, 2022 9 / 25



Fingerprints

Find P[0], . . .P[m − 1] in T [0], . . . ,T [n − 1].

fP ← f (P[0], . . . ,P[m − 1]).
for s in 0 . . . n −m do

if fP = f (T [s], . . . ,T [s +m − 1]) then
return s

end if
end for
return -1

Justin Pearson Lecture 11 : String Matching December 6, 2022 10 / 25



Fingerprints

The catch is that useful fingerprint functions generally take O(m) steps to
evaluate.

For the fingerprint function to be useful it must depend on all the
characters. If it did not then it would not work for all strings

It is both easy and hard (depending on how much you think about it) that
a good fingerprint function must look all the characters in the string, and
so a lower bound on its complexity will be Ω(m).

Proving this rigorously is very hard, you have to work out what your
assumptions are.

Justin Pearson Lecture 11 : String Matching December 6, 2022 11 / 25



Fingerprints

So we need a finger print function where we can calculate
f (T [s], . . . ,T [s +m − 1]) from f (T [s − 1], . . . ,T [s − 1 +m − 1]) in
constant time.

fP ← f (P[0], . . . ,P[m − 1]) — O(m)
fT ← f (T [0], . . . ,T [m − 1]) — O(m)
for s in 0 . . . n −m do

if fP = fT then
return s

end if
fT ← f (T [s + 1], . . . ,T [s + 1 +m − 1]) using fT in constant time

— O(1)
end for
return -1

Justin Pearson Lecture 11 : String Matching December 6, 2022 12 / 25



Horner’s Method

There is a trick find fingerprint functions where we can compute
fT ← f (T [s + 1], . . . ,T [s + 1 +m − 1]) using fT in constant time.

There is a trick known as Horner’s method that was invented much earlier
by Lagrange (everything named after somebody was usually discovered by
someone else), and it can be found in ancient Chinese and Persian
mathematics texts.

It is a fast way of evaluating polynomials that has many applications.

The polynomial
a0 + a1x + a2x

2 + · · ·+ anx
n

equals
a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(an1 + xan) · · · )))

You only need n multiplications and n additions.

Justin Pearson Lecture 11 : String Matching December 6, 2022 13 / 25



Horner’s method

Given a base 10 number say

56232 = 10000 · 5 + 1000 · 6 + 100 · 2 + 10 · 3 + 2

Then 62323 is
(56232− 10000 · 5) · 10 + 3

You are shifting the digits by using properties of base 10 representations.
Or you can think of your base 10 number as a polynomial.

Justin Pearson Lecture 11 : String Matching December 6, 2022 14 / 25



Horner’s method

Given two base R numbers:

xi = tiR
M−1 + ti+1R

M−2 + · · ·+ ti+M−1R
0

xi+1 = ti+1R
M−1 + ti+2R

M−2 + · · ·+ ti+MR0

Then
xi+1 = (xi − tiR

M−1)R + ti+M

Justin Pearson Lecture 11 : String Matching December 6, 2022 15 / 25



Rolling Fingerprints

Assume that f (t0, . . . , tm−1) = t0 · RM−1 + t1 · RM−2 + · · · tm−1R
0, where

R is the size of our alphabet.

fP ← f (P[0], . . . ,P[m − 1]).
fT ← f (T [0], . . . ,T [m − 1]).
for s in 0 . . . n −m do

if fP = fT then
return s

end if
fT ← (fT − T [s]RM−1)R + T [s +m].

end for
return -1

If all goes well the running time is O(n).

Justin Pearson Lecture 11 : String Matching December 6, 2022 16 / 25



What’s the catch?

With a large character set and long patterns then
f (T [s], . . . ,T [s +m − 1]) gets very large.

We cannot assume that f (T [s], . . . ,T [s +m − 1]) fits into one machine
word (32 bits, 64 bits or whatever). This means that we cannot assume
that the arithmetic works in O(1) time.

You would have to implement some multi-precision library and the
computation time would depend on the size of the number that you are
computing.

Justin Pearson Lecture 11 : String Matching December 6, 2022 17 / 25



Modular Arithmetic

Use the ring of integers mod k .
We say that

a ≡ b mod k

if there exists some integer c such that a− b = ck .

For example 38 ≡ 14 mod 12 because 38− 14 = 24 = 2 · 12.

Pick a good value of k , do your arithmetic mod k and everything will fit in
a machine word.

For example 6 +12 10 = 16 ≡ 4 mod 12.

Justin Pearson Lecture 11 : String Matching December 6, 2022 18 / 25



Fingerprint algorithm using Modular Arithmetic

Assume that f (t0, . . . , tm−1) = t0 · RM−1 +k t1 · RM−2 +k · · · tm−1R
0,

where R is the size of our alphabet.

fP ← f (P[0], . . . ,P[m − 1]).
fT ← f (T [0], . . . ,T [m − 1]).
for s in 0 . . . n −m do

if fP = fT then
return s

end if
fT ← (fT −k T [s]RM−1)R +k T [s +m].

end for
return -1

What’s the catch?

Justin Pearson Lecture 11 : String Matching December 6, 2022 19 / 25



Fingerprint algorithm using Modular Arithmetic

When we were not using modular arithmetic then we had the property
that:

X [0] · · ·X [m − 1] = Y [0] · · ·Y [m − 1]

if and only if

f (X [0], . . . ,X [m − 1]) = f (Y [0], . . . ,Y [m − 1])

If we are doing modular arithmetic mod k then on most inputs k << Rm.
This is a simple application of the pigeon hole principle. You are trying to
put a large number of items in a smaller number of boxes, this means that
some boxes will have more than one item in.

Justin Pearson Lecture 11 : String Matching December 6, 2022 20 / 25



Pigeon Hole Principle1

1Picture taken from Wikipedia
Justin Pearson Lecture 11 : String Matching December 6, 2022 21 / 25



Recovering from the catch

With our modular arithmetic version we still have that:

X [0] · · ·X [m − 1] = Y [0] · · ·Y [m − 1]

implies
f (X [0] · · ·X [m − 1]) = f (Y [0] · · ·Y [m − 1])

So if
f (X [0] · · ·X [m − 1]) ̸= f (Y [0] · · ·Y [m − 1])

then
X [0] · · ·X [m − 1] ̸= Y [0] · · ·Y [m − 1].

This means that we only have to check for mistakes when the fingerprints
are equal.

Justin Pearson Lecture 11 : String Matching December 6, 2022 22 / 25



Hash Functions

The general theory is complicated, but hash functions appear all over
computer science.

If you do arithmetic modulo some prime number q then you reduce the
number of unnecessary clashes.

Then the fingerprint function

f (t0, . . . , tm−1) = t0R
m−1 +q · · ·+q tm−1

is not such a bad hash function.

If q is the about mn2 then the probability of a false collision is about 1/n.

Justin Pearson Lecture 11 : String Matching December 6, 2022 23 / 25



Rabin-Karp Algorithm

Finding P in T .

q → a large enough prime.
fP ← f (P[0], . . . ,P[m − 1]).
fT ← f (T [0], . . . ,T [m − 1]).
for s in 0 . . . n −m do

if fP = fT then
if P[0..m − 1] = T [s..s +m − 1] then

return s
end if

end if
fT ← (fT −k T [s]RM−1)R +k T [s +m].

end for
return -1

Justin Pearson Lecture 11 : String Matching December 6, 2022 24 / 25



Rabin-Karp Algorithm

Again we back to the worst-case running time of O(nm) but that is
only if you make false matches.

As above If you pick a large enough prime, but not too large (to avoid
overflow), then the probability of collision is going to be 1/n.

This means the expected running time of the algorithm is roughly
O(n), because the 1/n probability will result in the average only one
collision per loop through n. This is not really true, but a good
enough lie.

Easier to implement and less memory intensive than some of the
alternatives.

Lots of extensions of the same idea: two-dimensional searching,
multiple pattern search. Using a hash function to filter out things
that are not equal quickly is a powerful idea.

Justin Pearson Lecture 11 : String Matching December 6, 2022 25 / 25



Alternatives

Knuth-Morris-Pratt and Boyer-Moore optimal skipping.

Automaton based methods.

Regular expression matching (extensions of Automaton).

Approximate matching.

Justin Pearson Lecture 11 : String Matching December 6, 2022 26 / 25


