
y +1/1/60+ y
Algorithms & Data Structures 2 (1DL231) Exam of 15 January 2020

Instructions: This is a multiple-choice exam, in order to save you the time of tidying
up the presentation of your answers. There is exactly one correct answer per assessed
question. You can keep this questionnaire and should hand in only the answer sheet :
you are not expected to explain your answers. Unfortunately, the head teacher cannot
attend this exam. Also read the instructions on the answer sheet before starting .

0 Information About You

Question -1: (not assessed) What is your study programme?

A DVK B IT C STS D master E exchange

Question 0: (not assessed) How many of the 13 lectures did you attend?

A 0 . . 1 B 2 . . 4 C 5 . . 7 D 8 . . 10 E 11 . . 13

1 String Matching

Question 1: On which of the following length-m patterns P does the näıve string match-
ing algorithm reach its worst-case runtime when looking for all occurrences of P in the
text T = 0n (that is, a string of n occurrences of the character ‘0’), with n ≥ m ≥ 3?

A 0m B 0(1m−1) C 1(0m−1) D 1m−10 E 1m

Question 2: For the Rabin-Karp string matching algorithm, let p denote the fingerprint
of the length-m pattern P , and let ts denote the fingerprint of the length-m substring Ts
for shift s in text T (of length at least m). On which assumption does the algorithm rely?

A p = ts ⇐ ∀k ∈ 1 . .m : P [k] = Ts[k]

B p = ts ⇔ ∀k ∈ 1 . .m : P [k] = Ts[k]

C p = ts ⇒ ∀k ∈ 1 . .m : P [k] = Ts[k]

D p 6= ts ⇐ ∃k ∈ 1 . .m : P [k] 6= Ts[k]

E p 6= ts ⇒ ∀k ∈ 1 . .m : P [k] 6= Ts[k]

Question 3: How many spurious hits does the Rabin-Karp string matching algorithm
encounter in the text T = “3141512659849792” when looking for all occurrences of the pat-
tern P = “26”, working modulo q = 11 and over the alphabet Σ = {‘0’, ‘1’, ‘2’, . . . , ‘9’}?

A 0 B 1 C 2 D 3 E 4

Question 4: On which of the following patterns P does the Rabin-Karp string matching
algorithm reach its worst-case runtime when looking for all occurrences of P in the
text T = 0n (that is, a string of n occurrences of the character ‘0’), with n ≥ 3, working
modulo q = 3 and over the alphabet Σ = {‘0’, ‘1’, ‘2’, . . . , ‘9’}?

A “660” B “300” C “099” D “007” E “006”

y y



y +1/2/59+ y
2 Greedy Algorithms

Consider n lectures `1, `2, . . . , `n. Each lecture `i has a start time si and a finish time fi,
where 0 ≤ si < fi <∞, and happens during the half-open time interval [si, fi). We wish
to find the minimum number of classrooms to schedule all lectures so that no two lectures
overlap in time in the same room. For example , consider the following set of lectures:

i 1 2 3 4 5 6 7 8 9 10

si 1 1 1 5 5 9 9 11 13 13
fi 4 8 4 8 11 12 12 16 16 16

The partition {{`1, `6, `9} , {`2, `8} , {`3, `4, `7} , {`5, `10}} uses 4 classrooms, but the parti-
tion {{`1, `5, `8} , {`2, `7, `9} , {`3, `4, `6, `10}} uses only 3 classrooms. The latter partition
uses the minimum number of classrooms; other such partitions swap its symmetric lectures
`1 and `3, or `6 and `7, or `9 and `10. Consider the following greedy-algorithm template:

Greedy-Lecture-Partition(n, [s1, . . . , sn], [f1, . . . , fn])

1 in-place sort the lectures by some criterion
2 c := 0 // c is the current number of allocated classrooms
3 for i := 1 to n
4 if `i does not overlap with any lecture in some already allocated room, say k ∈ 1 . . c
5 schedule lecture `i in classroom k
6 else
7 c := c+ 1; schedule lecture `i in classroom c
8 return the schedule

Question 5: Assume we in-place sort in line 1 the lectures by monotonically increasing
start time , giving s1 ≤ s2 ≤ · · · ≤ sn: on which inputs (such as the example above) does
the greedy algorithm above return a minimum partition?

A none B some, but not all C all

Question 6: Assume we in-place sort in line 1 the lectures by monotonically increasing
finish time , giving f1 ≤ f2 ≤ · · · ≤ fn: on which inputs (such as the example above)
does the greedy algorithm above return a minimum partition?

A none B some, but not all C all

Question 7: Assume we in-place sort in line 1 the lectures by monotonically increasing
duration , giving f1− s1 ≤ f2− s2 ≤ · · · ≤ fn− sn: on which inputs (such as the example
above) does the greedy algorithm above return a minimum partition?

A none B some, but not all C all

Question 8: Assume it is lecture `j that finishes last in a classroom k considered in the
loop over 1 . . c in line 4 of the algorithm in Question 6: how can one test the condition
in line 4 in constant time for that classroom k?

A fj < si B fi < sj C fj ≤ si D fi ≤ sj E impossible

Question 9: What is the tightest time complexity in which the for loop in lines 3 to 7
(without the sorting) of the greedy algorithm in Question 5 can be implemented to run?

A O(n3) B O(n2 ·lg n) C O(n2) D O(n · lg n) E O(n)y y



y +1/3/58+ y

3 Dynamic Programming

Consider the problem of finding the length of a longest common subsequence (LLCS) of
two given sequences 〈x1, . . . , xm〉 and 〈y1, . . . , yn〉, whose lengths m and n may differ.
For example , the sequences X = 〈A,B,C,B,D,A,B〉 and Y = 〈B,D,C,A,B,A〉 have
common subsequences of length 4, such as 〈B,C,B,A〉 and 〈B,D,A,B〉, but no longer
ones. Define the kth prefix of a sequence Z = 〈z1, . . . , z`〉 as Zk = 〈z1, . . . , zk〉, for k ∈ 0 . . `.
In our example, X3 is 〈A,B,C〉 and X0 is the empty sequence. Consider the following
recurrence — with placeholders α1, α2, β1, and β2 — on a numeric quantity L(i, j):

L(i, j) =


0 if ¬β1
L(α1, α2) + 1 if β1 and β2

max {L(α1, j), L(i, α2)} otherwise

Question 10: If L(m,n) is returned by a correct algorithm for computing the LLCS of two
given sequences X = 〈x1, . . . , xm〉 and Y = 〈y1, . . . , yn〉, then what is L(i, j), for i ∈ 0 . .m
and j ∈ 0 . . n?

A the LLCS of X and Y

B the LLCS of 〈x0, . . . , xi〉
and 〈y0, . . . , yj〉

C the LLCS of Xi−1 and Yj−1

D the LLCS of Xi+1 and Yj+1

E the LLCS of Xi and Yj

Hint: For the remaining questions, think about how L(2, 2) and L(3, 3) can be computed.

Question 11: What is the Boolean placeholder β1?

A i ∈ 1 . .m B i > m C i+ j > 0 D i · j > 0 E i ≤ j

Question 12: What is the Boolean placeholder β2?

A xi 6= yj B xi < yj C xi ≤ yj D xi ≥ yj E xi = yj

Question 13: What is the index placeholder α1?

A i− 1 B i C i+ 1 D j − 1 E j

Question 14: What is the index placeholder α2?

A i− 1 B i C j − 1 D j E j + 1

Question 15: What order of computing the L(i, j) by a bottom-up method only refers
to already computed values?

A for j = 0 to n for i = m downto 0

B for j = 0 to n for i = 0 to m

C for j = n downto 0 for i = 0 to m

D for i = m downto 0 for j = 0 to n

E for i = 0 to m for j = n downto 0

y y



y +1/4/57+ y
4 Complexity

Question 16: If the best-known solution checker for a decision problem D takes O(kn)
time on an instance of size n, for a constant k > 1, then what is the tightest time
complexity class of D, according to this knowledge?

A P B NP C NP-
complete

D NP-hard E none of
the others

Question 17: Consider the following decision version of the LLCS problem of Section 3:
is the LLCS of two given sequences X = 〈x1, . . . , xm〉 and Y = 〈y1, . . . , yn〉 at least a
given natural number `? Assuming m ≥ n ≥ `, a brute-force decision algorithm tests
in O(m · 2n) time every subsequence of Y whether it has at least ` characters and is a
subsequence of X. What is the tightest time complexity class of this problem , according
to current knowledge?

A P B NP C NP-
complete

D NP-hard E none of
the others

Question 18: There exists an algorithm that generates the list [0, 1, 2, . . . , n− 1] for a
given natural number n in Θ(n) time: what is the most accurate description of this time
complexity?

A loga-
rithmic

B linear C pseudo-
polynomial

D super-
exponential

E none of
the others

Question 19: There exists an algorithm that computes the power an of a given number a
for a given natural number n in Θ(log2 n) time: what is the most accurate description of
this time complexity?

A loga-
rithmic

B linear C pseudo-
polynomial

D super-
exponential

E none of
the others

Question 20: In order to prove that a decision problem D is NP-complete, one can:

A prove that D reduces to (often denoted by ≤P) some known problem in P

B prove that D reduces to some known NP-complete problem

C prove that D reduces to some known NP-complete problem and that D is in NP

D prove that some known NP-complete problem reduces to D and that D is in NP

E prove that some known NP-complete problem reduces to D

y y



y +1/5/56+ y
Answer Sheet — AD2 Exam (1DL231) of 15 January 2020

Instructions: Do not alter the drawing above. Using a very dark colour, fill in en-
tirely (only like this: �) at most one answer box (A to E) per question: we will use an
optical character recognition (OCR) system that ignores circles, crosses, ticks, etc. Trans-
fer your answers from the questionnaire to this answer sheet just before handing in ;
if an answer becomes ambiguous to an OCR system, then request another answer sheet.
Every correct answer to an assessed question gives 1.5 points. Every multiple answer
or incorrect answer gives 0 points. Partial credit of 0.5 points or 1 point may be given
in exceptional circumstances. If you think a question is unclear or faulty, then mark its
number with a ? on this sheet and explain on the backside of this sheet what your
difficulty with the question is and what additional assumption underlies the candidate
answer that you have chosen or the new answer that you indicate.

Grading: Your grade is as follows, when your mark is e points:

Grade Condition

5 25.0 ≤ e ≤ 30.0
4 20.0 ≤ e ≤ 24.5
3 15.0 ≤ e ≤ 19.5
U 00.0 ≤ e ≤ 14.5

0 Information About You

Question -1: A B C D E

Question 0: A B C D E

1 String Matching

Question 1: A B C D E

Question 2: A B C D E

Question 3: A B C D E

Question 4: A B C D E

2 Greedy Algorithms

Question 5: A B C

Question 6: A B C

Question 7: A B C

Question 8: A B C D E

Question 9: A B C D E

3 Dynamic Programming

Question 10: A B C D E

Question 11: A B C D E

Question 12: A B C D E

Question 13: A B C D E

Question 14: A B C D E

Question 15: A B C D E

4 Complexity

Question 16: A B C D E

Question 17: A B C D E

Question 18: A B C D E

Question 19: A B C D E

Question 20: A B C D E

Again : Use a very dark colour to fill in your chosen boxes entirely (like this: �)!

Your anonymous exam code:

y y


