

Algorithms & Data Structures 2 (1DL231) Exam of

Exam of 15 January 2020

Instructions: This is a multiple-choice exam, in order to save you the time of tidying up the presentation of your answers. There is exactly **one** correct answer per **assessed** question. You can keep this questionnaire and should **hand in only the answer sheet**: you are **not** expected to explain your answers. Unfortunately, the head teacher cannot attend this exam. **Also read the instructions on the answer sheet before starting**.

0 Information About You

Question -1: (not assessed) What is your study programme?

A DVK	BIT	C STS	D master	E exchange
Question 0: (not assessed) How	many of the 13 le	ctures did you atte	nd?
A 01	B 24	[C] 57	D 810	E 1113

1 String Matching

Question 1: On which of the following length-*m* patterns *P* does the naïve string matching algorithm reach its *worst-case* runtime when looking for *all* occurrences of *P* in the text $T = 0^n$ (that is, a string of *n* occurrences of the character '0'), with $n \ge m \ge 3$?

 A 0^m B $0(1^{m-1})$ C $1(0^{m-1})$ D $1^{m-1}0$ E 1^m

Question 2: For the Rabin-Karp string matching algorithm, let p denote the fingerprint of the length-m pattern P, and let t_s denote the fingerprint of the length-m substring T_s for shift s in text T (of length at least m). On which assumption does the algorithm rely?

$\boxed{\mathbf{A}} p = t_s \Leftarrow \forall k \in 1 \dots m : P[k] = T_s[k]$	$\boxed{D} p \neq t_s \Leftarrow \exists k \in 1 \dots m : P[k] \neq T_s[k]$
$\boxed{\mathbf{B}} \ p = t_s \Leftrightarrow \forall k \in 1 \dots m : P[k] = T_s[k]$	
$\boxed{C} p = t_s \Rightarrow \forall k \in 1 \dots m : P[k] = T_s[k]$	$E p \neq t_s \Rightarrow \forall k \in 1 \dots m : P[k] \neq T_s[k]$

Question 3: How many *spurious* hits does the Rabin-Karp string matching algorithm encounter in the text T = "3141512659849792" when looking for *all* occurrences of the pattern P = "26", working modulo q = 11 and over the alphabet $\Sigma = \{ '0', '1', '2', \ldots, '9' \}$?

Question 4: On which of the following patterns P does the Rabin-Karp string matching algorithm reach its *worst-case* runtime when looking for *all* occurrences of P in the text $T = 0^n$ (that is, a string of n occurrences of the character '0'), with $n \ge 3$, working modulo q = 3 and over the alphabet $\Sigma = \{ 0, 12, ..., 9\}$?

+1/2/59+

2 Greedy Algorithms

Consider *n* lectures $\ell_1, \ell_2, \ldots, \ell_n$. Each lecture ℓ_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$, and happens during the half-open time interval $[s_i, f_i)$. We wish to find the minimum number of classrooms to schedule all lectures so that no two lectures overlap in time in the same room. For **example**, consider the following set of lectures:

i	1	2	3	4	5	6	7	8	9	10
s_i	1	1	1	5	5	9	9	11	13	13
f_i	4	8	4	8	11	12	12	16	16	16

The partition $\{\{\ell_1, \ell_6, \ell_9\}, \{\ell_2, \ell_8\}, \{\ell_3, \ell_4, \ell_7\}, \{\ell_5, \ell_{10}\}\}$ uses 4 classrooms, but the partition $\{\{\ell_1, \ell_5, \ell_8\}, \{\ell_2, \ell_7, \ell_9\}, \{\ell_3, \ell_4, \ell_6, \ell_{10}\}\}$ uses only 3 classrooms. The latter partition uses the minimum number of classrooms; other such partitions swap its symmetric lectures ℓ_1 and ℓ_3 , or ℓ_6 and ℓ_7 , or ℓ_9 and ℓ_{10} . Consider the following greedy-algorithm template:

GREEDY-LECTURE-PARTITION $(n, [s_1, \ldots, s_n], [f_1, \ldots, f_n])$

1 in-place sort the lectures by some criterion

2 $c \coloneqq 0$ // c is the current number of allocated classrooms

3 for $i \coloneqq 1$ to n

4 **if** ℓ_i does not overlap with any lecture in some already allocated room, say $k \in 1..c$ 5 schedule lecture ℓ_i in classroom k

6 else

7

 $c \coloneqq c + 1$; schedule lecture ℓ_i in classroom c

8 return the schedule

Question 5: Assume we in-place sort in line 1 the lectures by monotonically increasing *start time*, giving $s_1 \leq s_2 \leq \cdots \leq s_n$: on which inputs (such as the example above) does the greedy algorithm above return a minimum partition?

A none

B some, but not all

|C| all

C all

Question 6: Assume we in-place sort in line 1 the lectures by monotonically increasing *finish time*, giving $f_1 \leq f_2 \leq \cdots \leq f_n$: on which inputs (such as the example above) does the greedy algorithm above return a minimum partition?

A none

B some, but not all

Question 7: Assume we in-place sort in line 1 the lectures by monotonically increasing *duration*, giving $f_1 - s_1 \leq f_2 - s_2 \leq \cdots \leq f_n - s_n$: on which inputs (such as the example above) does the greedy algorithm above return a minimum partition?

A none

 $[\mathbf{B}]$ some, but not all $[\mathbf{C}]$ all

Question 8: Assume it is lecture ℓ_j that finishes last in a classroom k considered in the loop over 1..c in line 4 of the algorithm in **Question 6**: how can one test the condition in line 4 in **constant** time for that classroom k?

A
$$f_j < s_i$$
B $f_i < s_j$ C $f_j \le s_i$ D $f_i \le s_j$ Eimpossible

Question 9: What is the *tightest* time complexity in which the **for** loop in lines 3 to 7 (without the sorting) of the greedy algorithm in *Question 5* can be implemented to run?

 $\fbox{A} \ \mathcal{O}(n^3) \qquad \qquad \fbox{B} \ \mathcal{O}(n^2 \cdot \lg n) \qquad \fbox{C} \ \mathcal{O}(n^2) \qquad \qquad \r{D} \ \mathcal{O}(n \cdot \lg n) \qquad \r{E} \ \mathcal{O}(n)$

+1/3/58+

3 Dynamic Programming

Consider the problem of finding the length of a longest common subsequence (LLCS) of two given sequences $\langle x_1, \ldots, x_m \rangle$ and $\langle y_1, \ldots, y_n \rangle$, whose lengths m and n may differ. For **example**, the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$ have common subsequences of length 4, such as $\langle B, C, B, A \rangle$ and $\langle B, D, A, B \rangle$, but no longer ones. Define the kth prefix of a sequence $Z = \langle z_1, \ldots, z_\ell \rangle$ as $Z_k = \langle z_1, \ldots, z_k \rangle$, for $k \in 0 \ldots \ell$. In our example, X_3 is $\langle A, B, C \rangle$ and X_0 is the empty sequence. Consider the following recurrence — with placeholders $\alpha_1, \alpha_2, \beta_1$, and β_2 — on a numeric quantity L(i, j):

$$L(i,j) = \begin{cases} 0 & \text{if } \neg \beta_1 \\ L(\alpha_1, \alpha_2) + 1 & \text{if } \beta_1 \text{ and } \beta_2 \\ \max \left\{ L(\alpha_1, j), \ L(i, \alpha_2) \right\} & \text{otherwise} \end{cases}$$

Question 10: If L(m, n) is returned by a correct algorithm for computing the LLCS of two given sequences $X = \langle x_1, \ldots, x_m \rangle$ and $Y = \langle y_1, \ldots, y_n \rangle$, then what is L(i, j), for $i \in 0 \ldots m$ and $j \in 0 \ldots n$?

A the LLCS of X and Y	$\boxed{\mathbf{C}}$ the LLCS of X_{i-1} and Y_{j-1}
B the LLCS of $\langle x_0, \ldots, x_i \rangle$	D the LLCS of X_{i+1} and Y_{j+1}
and $\langle y_0, \ldots, y_j \rangle$	$\boxed{\mathbf{E}}$ the LLCS of X_i and Y_j

Hint: For the remaining questions, think about how L(2,2) and L(3,3) can be computed.

Question 11: What is the Boolean placeholder β_1 ?

A $i \in 1..m$ Bi > mCi + j > 0D $i \cdot j > 0$ E $i \leq j$

Question 12: What is the Boolean placeholder β_2 ?

A $x_i \neq y_j$ B $x_i < y_j$ C $x_i \leq y_j$ D $x_i \geq y_j$ E $x_i = y_j$

Question 13: What is the index placeholder α_1 ?

 $\boxed{\mathbf{A}} \quad i-1 \qquad \qquad \boxed{\mathbf{B}} \quad i$

 $\boxed{C} i+1 \qquad \boxed{D} j-1 \qquad \boxed{E} j$

Question 14: What is the index placeholder α_2 ?

Ai-1BiCj-1DjEj+1

Question 15: What order of computing the L(i, j) by a bottom-up method only refers to already computed values?

- $[\underline{\mathbf{A}}] \mathbf{ for } j = 0 \mathbf{ to } n \mathbf{ for } i = m \mathbf{ downto } 0$
- $[\underline{B}] \text{ for } j = 0 \text{ to } n \text{ for } i = 0 \text{ to } m$
- C for j = n downto 0 for i = 0 to m
- $[\underline{D}] \text{ for } i = m \text{ downto } 0 \text{ for } j = 0 \text{ to } n$
- **E** for i = 0 to m for j = n downto 0

+1/4/57+

4 Complexity

Question 16: If the best-known solution checker for a decision problem D takes $\mathcal{O}(k^n)$ time on an instance of size n, for a constant k > 1, then what is the **tightest** time complexity class of D, according to this knowledge?

A P	B NP	C NP-	D NP-hard	E none of
		$\operatorname{complete}$		the others

Question 17: Consider the following decision version of the LLCS problem of Section 3: is the LLCS of two given sequences $X = \langle x_1, \ldots, x_m \rangle$ and $Y = \langle y_1, \ldots, y_n \rangle$ at least a given natural number ℓ ? Assuming $m \ge n \ge \ell$, a brute-force decision algorithm tests in $\mathcal{O}(m \cdot 2^n)$ time every subsequence of Y whether it has at least ℓ characters and is a subsequence of X. What is the *tightest* time complexity class of this *problem*, according to current knowledge?

 A P
 B NP
 C NP D NP-hard
 E none of the others

Question 18: There exists an algorithm that generates the list [0, 1, 2, ..., n-1] for a given natural number n in $\Theta(n)$ time: what is the most accurate description of this time complexity?

Question 19: There exists an algorithm that computes the power a^n of a given number a for a given natural number n in $\Theta(\log_2 n)$ time: what is the most accurate description of this time complexity?

Question 20: In order to prove that a decision problem D is NP-complete, one can:

A prove that D reduces to (often denoted by $\leq_{\rm P}$) some known problem in P

B prove that D reduces to some known NP-complete problem

 \bigcirc prove that D reduces to some known NP-complete problem and that D is in NP

[D] prove that some known NP-complete problem reduces to D and that D is in NP

 $|\mathbf{E}|$ prove that some known NP-complete problem reduces to D

+1/5/56+

Answer Sheet — AD2 Exam (1DL231) of 15 January 2020

Instructions: Do *not* alter the drawing above. Using a *very dark* colour, *fill in* entirely (only like this: \blacksquare) *at most one* answer box (A to E) per question: we will use an optical character recognition (OCR) system that ignores circles, crosses, ticks, etc. Transfer your answers from the questionnaire to this answer sheet *just before handing in*; if an answer becomes ambiguous to an OCR system, then request another answer sheet. Every correct answer to an *assessed* question gives 1.5 points. Every multiple answer or incorrect answer gives 0 points. Partial credit of 0.5 points or 1 point may be given in exceptional circumstances. If you think a question is unclear or faulty, then mark its number with a \star on *this sheet* and explain *on the backside of this sheet* what your difficulty with the question is *and* what additional assumption underlies the candidate answer that you have chosen or the new answer that you indicate.

answer that you have chosen or the new answer that you indicate.					
	Grade Condition				
	$5 \qquad 25.0 \le e \le 30.0$				
Grading: Your grade is as follows, when your	$ \text{mark is } e \text{ points:} 4 20.0 \le e \le 24.5 $				
	$3 \qquad 15.0 \le e \le 19.5$				
	$U \qquad 00.0 \le e \le 14.5$				
0 Information About You	Question 9: A B C E				
Question -1:	3 Dynamic Programming				
Question 0:	Question 10: $A B C D$				
1 String Matching	Question 11: $A B C \blacksquare E$				
	Question 12: $A B C D$				
Question 1: \square \square \square \square \square \square \square \square	Question 13:				
Question 2: \square \square \square \square \square \square \square	Question 14: A B D E				
Question 3: A B C E	Question 15: A C D E				
Question 4: A B C D					
	4 Complexity				
2 Greedy Algorithms					
v O	Question 16: A B C D				
Question 5: A B	Question 17: \blacksquare B C D E				
Question 6: A \Box C	Question 18: $A B \square D E$				
Question 7: $A \square C$	Question 19: $A \square C D E$				

Question 8:AB \blacksquare DEQuestion 20:ABC \blacksquare Again:Use a very dark colour to fill in your chosen boxes entirely (like this: \blacksquare)!

Your anonymous exam code: