Instructions: This is a multiple-choice exam, in order to save you the time of tidying up the presentation of your answers. There is exactly one correct answer per assessed question. You can keep this questionnaire and should hand in only the answer sheet: you are not expected to explain your answers. Unfortunately, the head teacher cannot attend this exam. Also read the instructions on the answer sheet before starting.

0 Information About You

Question -1: (not assessed) What is your study programme?
A DVK
B IT
(C) STS
(D) master
(E exchange

Question 0: (not assessed) How many of the 13 lectures did you attend?
(A) $0 . .1$
(B) $2 \ldots 4$
C $5 . .7$
(D $8 . .10$
E $11 . .13$

1 String Matching

Question 1: On which of the following length- m patterns P does the naïve string matching algorithm reach its worst-case runtime when looking for all occurrences of P in the text $T=0^{n}$ (that is, a string of n occurrences of the character ' 0 '), with $n \geq m \geq 3$?
(A) 0^{m}
(B) $0\left(1^{m-1}\right)$
C $1\left(0^{m-1}\right)$
(D) $1^{m-1} 0$
E 1^{m}

Question 2: For the Rabin-Karp string matching algorithm, let p denote the fingerprint of the length- m pattern P, and let t_{s} denote the fingerprint of the length- m substring T_{s} for shift s in text T (of length at least m). On which assumption does the algorithm rely?
(A) $p=t_{s} \Leftarrow \forall k \in 1 \ldots m: P[k]=T_{s}[k]$
(D) $p \neq t_{s} \Leftarrow \exists k \in 1 \ldots m: P[k] \neq T_{s}[k]$
B $p=t_{s} \Leftrightarrow \forall k \in 1 \ldots m: P[k]=T_{s}[k]$
C] $p=t_{s} \Rightarrow \forall k \in 1 \ldots m: P[k]=T_{s}[k]$
E $p \neq t_{s} \Rightarrow \forall k \in 1 \ldots m: P[k] \neq T_{s}[k]$

Question 3: How many spurious hits does the Rabin-Karp string matching algorithm encounter in the text $T=$ " 3141512659849792 " when looking for all occurrences of the pattern $P=" 26$ ", working modulo $q=11$ and over the alphabet $\Sigma=\left\{{ }^{\prime} 0\right.$ ', ' 1 ', ' 2 ', \ldots, ' 9 ' $\}$?
(A) 0
(B) 1
(C) 2
(D) 3
E 4

Question 4: On which of the following patterns P does the Rabin-Karp string matching algorithm reach its worst-case runtime when looking for all occurrences of P in the text $T=0^{n}$ (that is, a string of n occurrences of the character ' 0 '), with $n \geq 3$, working modulo $q=3$ and over the alphabet $\Sigma=\left\{{ }^{\prime} 0\right.$ ', ' 1 ', ' 2 ', $\ldots,{ }^{\prime} 9$ ' $\}$?
A " 660 "
(B) "300"
C "099"
D "007"
E "006"

2 Greedy Algorithms

Consider n lectures $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$. Each lecture ℓ_{i} has a start time s_{i} and a finish time f_{i}, where $0 \leq s_{i}<f_{i}<\infty$, and happens during the half-open time interval $\left[s_{i}, f_{i}\right)$. We wish to find the minimum number of classrooms to schedule all lectures so that no two lectures overlap in time in the same room. For example, consider the following set of lectures:

i	1	2	3	4	5	6	7	8	9	10
s_{i}	1	1	1	5	5	9	9	11	13	13
f_{i}	4	8	4	8	11	12	12	16	16	16

The partition $\left\{\left\{\ell_{1}, \ell_{6}, \ell_{9}\right\},\left\{\ell_{2}, \ell_{8}\right\},\left\{\ell_{3}, \ell_{4}, \ell_{7}\right\},\left\{\ell_{5}, \ell_{10}\right\}\right\}$ uses 4 classrooms, but the partition $\left\{\left\{\ell_{1}, \ell_{5}, \ell_{8}\right\},\left\{\ell_{2}, \ell_{7}, \ell_{9}\right\},\left\{\ell_{3}, \ell_{4}, \ell_{6}, \ell_{10}\right\}\right\}$ uses only 3 classrooms. The latter partition uses the minimum number of classrooms; other such partitions swap its symmetric lectures ℓ_{1} and ℓ_{3}, or ℓ_{6} and ℓ_{7}, or ℓ_{9} and ℓ_{10}. Consider the following greedy-algorithm template:
$\operatorname{Greedy-Lecture-Partition}\left(n,\left[s_{1}, \ldots, s_{n}\right],\left[f_{1}, \ldots, f_{n}\right]\right)$
in-place sort the lectures by some criterion
$c:=0 \quad / / c$ is the current number of allocated classrooms
for $i:=1$ to n
if ℓ_{i} does not overlap with any lecture in some already allocated room, say $k \in 1 . . c$ schedule lecture ℓ_{i} in classroom k
else $c:=c+1$; schedule lecture ℓ_{i} in classroom c
return the schedule
Question 5: Assume we in-place sort in line 1 the lectures by monotonically increasing start time, giving $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$: on which inputs (such as the example above) does the greedy algorithm above return a minimum partition?
(A) none
(B) some, but not all
C all

Question 6: Assume we in-place sort in line 1 the lectures by monotonically increasing finish time, giving $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$: on which inputs (such as the example above) does the greedy algorithm above return a minimum partition?
(A) none
(B) some, but not all
C all

Question 7: Assume we in-place sort in line 1 the lectures by monotonically increasing duration, giving $f_{1}-s_{1} \leq f_{2}-s_{2} \leq \cdots \leq f_{n}-s_{n}$: on which inputs (such as the example above) does the greedy algorithm above return a minimum partition?
(A) none
B some, but not all
C all

Question 8: Assume it is lecture ℓ_{j} that finishes last in a classroom k considered in the loop over 1..c in line 4 of the algorithm in Question 6: how can one test the condition in line 4 in constant time for that classroom k ?
(A) $f_{j}<s_{i}$
(B) $f_{i}<s_{j}$
C $f_{j} \leq s_{i}$
(D) $f_{i} \leq s_{j}$
E impossible

Question 9: What is the tightest time complexity in which the for loop in lines 3 to 7 (without the sorting) of the greedy algorithm in Question 5 can be implemented to run?
A $\mathcal{O}\left(n^{3}\right)$
(B) $\mathcal{O}\left(n^{2} \cdot \lg n\right)$
[C $\mathcal{O}\left(n^{2}\right)$
(D) $\mathcal{O}(n \cdot \lg n)$
E $\mathcal{O}(n)$

3 Dynamic Programming

Consider the problem of finding the length of a longest common subsequence (LLCS) of two given sequences $\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $\left\langle y_{1}, \ldots, y_{n}\right\rangle$, whose lengths m and n may differ. For example, the sequences $X=\langle A, B, C, B, D, A, B\rangle$ and $Y=\langle B, D, C, A, B, A\rangle$ have common subsequences of length 4 , such as $\langle B, C, B, A\rangle$ and $\langle B, D, A, B\rangle$, but no longer ones. Define the k th prefix of a sequence $Z=\left\langle z_{1}, \ldots, z_{\ell}\right\rangle$ as $Z_{k}=\left\langle z_{1}, \ldots, z_{k}\right\rangle$, for $k \in 0 \ldots \ell$. In our example, X_{3} is $\langle A, B, C\rangle$ and X_{0} is the empty sequence. Consider the following recurrence - with placeholders $\alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2} - on a numeric quantity $L(i, j)$:

$$
L(i, j)= \begin{cases}0 & \text { if } \neg \beta_{1} \\ L\left(\alpha_{1}, \alpha_{2}\right)+1 & \text { if } \beta_{1} \text { and } \beta_{2} \\ \max \left\{L\left(\alpha_{1}, j\right), L\left(i, \alpha_{2}\right)\right\} & \text { otherwise }\end{cases}
$$

Question 10: If $L(m, n)$ is returned by a correct algorithm for computing the LLCS of two given sequences $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, then what is $L(i, j)$, for $i \in 0 \ldots m$ and $j \in 0 . . n$?
(A the LLCS of X and Y
C the LLCS of X_{i-1} and Y_{j-1}
B the LLCS of $\left\langle x_{0}, \ldots, x_{i}\right\rangle$ D the LLCS of X_{i+1} and Y_{j+1} and $\left\langle y_{0}, \ldots, y_{j}\right\rangle$
E the LLCS of X_{i} and Y_{j}

Hint: For the remaining questions, think about how $L(2,2)$ and $L(3,3)$ can be computed.
Question 11: What is the Boolean placeholder β_{1} ?
(A $i \in 1 \ldots m$
(B) $i>m$
C $i+j>0$
D $i \cdot j>0$
E $i \leq j$

Question 12: What is the Boolean placeholder β_{2} ?
(A) $x_{i} \neq y_{j}$
(B) $x_{i}<y_{j}$
C $x_{i} \leq y_{j}$
(D $x_{i} \geq y_{j}$
(E $x_{i}=y_{j}$

Question 13: What is the index placeholder α_{1} ?
A $i-1$
(B) i
C $i+1$
D $j-1$
E j

Question 14: What is the index placeholder α_{2} ?
A $i-1$
(B) i
C $j-1$
(D) j
E $j+1$

Question 15: What order of computing the $L(i, j)$ by a bottom-up method only refers to already computed values?
(A) for $j=0$ to n for $i=m$ downto 0
(D) for $i=m$ downto 0 for $j=0$ to n
(B) for $j=0$ to n for $i=0$ to m
[C for $j=n$ downto 0 for $i=0$ to m
E for $i=0$ to m for $j=n$ downto 0

4 Complexity

Question 16: If the best-known solution checker for a decision problem D takes $\mathcal{O}\left(k^{n}\right)$ time on an instance of size n, for a constant $k>1$, then what is the tightest time complexity class of D, according to this knowledge?
(A) P
B NP
C NP-
(D NP-hard
E none of
complete
the others

Question 17: Consider the following decision version of the LLCS problem of Section 3: is the LLCS of two given sequences $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$ at least a given natural number ℓ ? Assuming $m \geq n \geq \ell$, a brute-force decision algorithm tests in $\mathcal{O}\left(m \cdot 2^{n}\right)$ time every subsequence of Y whether it has at least ℓ characters and is a subsequence of X. What is the tightest time complexity class of this problem, according to current knowledge?
A P
(B) NP
C NP-
D NP-hard complete
E none of the others

Question 18: There exists an algorithm that generates the list $[0,1,2, \ldots, n-1]$ for a given natural number n in $\Theta(n)$ time: what is the most accurate description of this time complexity?
(A loga-
(B) linear rithmic
C pseudopolynomial
(D) superexponential
E] none of the others

Question 19: There exists an algorithm that computes the power a^{n} of a given number a for a given natural number n in $\Theta\left(\log _{2} n\right)$ time: what is the most accurate description of this time complexity?
(A) logarithmic
(B) linear
C pseudopolynomial
D super- E none of exponential the others

Question 20: In order to prove that a decision problem D is NP-complete, one can:
A prove that D reduces to (often denoted by \leq_{P}) some known problem in P
B prove that D reduces to some known NP-complete problem
[C prove that D reduces to some known NP-complete problem and that D is in NP
D prove that some known NP-complete problem reduces to D and that D is in NP
E prove that some known NP-complete problem reduces to D

Answer Sheet - AD2 Exam (1DL231) of 15 January 2020

Instructions: Do not alter the drawing above. Using a very dark colour, fill in entirely (only like this: ■) at most one answer box (A to E) per question: we will use an optical character recognition (OCR) system that ignores circles, crosses, ticks, etc. Transfer your answers from the questionnaire to this answer sheet just before handing in; if an answer becomes ambiguous to an OCR system, then request another answer sheet. Every correct answer to an assessed question gives 1.5 points. Every multiple answer or incorrect answer gives 0 points. Partial credit of 0.5 points or 1 point may be given in exceptional circumstances. If you think a question is unclear or faulty, then mark its number with $\mathrm{a} \star$ on this sheet and explain on the backside of this sheet what your difficulty with the question is and what additional assumption underlies the candidate answer that you have chosen or the new answer that you indicate.

$$
\begin{array}{cc}
\text { Grade } & \text { Condition } \\
\hline 5 & 25.0 \leq e \leq 30.0 \\
4 & 20.0 \leq e \leq 24.5 \\
3 & 15.0 \leq e \leq 19.5 \\
\mathrm{U} & 00.0 \leq e \leq 14.5
\end{array}
$$

Grading: Your grade is as follows, when your mark is e points:

0 Information About You

Question -1: $\square \square \square \square \square$
Question 0: $\square \square \square \square \square$

1 String Matching

Question 1: \square B C D E
Question 2: \square B C D E
Question 3: $A B C$ E
Question 4: A B C D

2 Greedy Algorithms

Question 5: A B
Question 6: $\mathrm{A} \square \mathrm{C}$
Question 7: A C
Question 8: A B D E

Question 9: A B C \square

3 Dynamic Programming

Question 10: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$
Question 11: A B C \square
Question 12: A B C D \square
Question 13: \square B C D E
Question 14: A B ■ D E
Question 15: A ■ C D E

4 Complexity

Question 16: A B C D
Question 17: \square B C D E
Question 18: A B D E
Question 19: A C D E
Question 20: A B C \quad E

Again: Use a very dark colour to fill in your chosen boxes entirely (like this: ■)!

Your anonymous exam code: | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

