Instructions: This is a multiple-choice exam, in order to save you the time of tidying up the presentation of your answers. There is exactly one correct answer per question. You can keep the question sheets and should hand in only the answer sheet: you are not expected to explain your answers. Unfortunately, the head teacher cannot attend this exam. Also read the instructions on the answer sheet before starting.

0 Warming Up

Question 0: When do I read all the instructions on this page and the answer sheet? A at breakfast B if I get stuck C if I fail the exam D tonight E before starting

1 Maximum Flow

Consider the following flow network with source s and $\operatorname{sink} t$:

Question 1: After augmenting along the path $s \rightarrow a \rightarrow c \rightarrow t$, along $s \rightarrow a \rightarrow b \rightarrow c \rightarrow t$, and finally along $s \rightarrow b \rightarrow c \rightarrow d \rightarrow t$, what is the augmenting path of highest capacity?
(A) $s \rightarrow b \rightarrow a \rightarrow d \rightarrow t$, capacity 2
(D) $s \rightarrow b \rightarrow c \rightarrow d \rightarrow t$, capacity 1

B none, the reached flow value is optimal
C] $s \rightarrow b \rightarrow a \rightarrow c \rightarrow t$, capacity 2
E $s \rightarrow b \rightarrow c \rightarrow a \rightarrow d \rightarrow t$, capacity 1

Question 2: Are the flows across all cuts after the 3 augmentations of Question 1 equal?
A yes: 16
(B) yes: 17
C yes: 18
(D) yes: 19
E no

Question 3: What is the maximum flow value (after all possible augmentations)?
(A) 16
(B) 17
C 18
(D) 19
E 20

Question 4: Which is a source set S of a minimum-capacity (s, t)-cut (S, T) ?
A $\{s\}$
B] $\{s, a\}$
C $\{s, a, b\}$
D $\{s, a, c\}$
E] $\{s, a, b, c\}$

Question 5: What is the capacity of a minimum-capacity (s, t)-cut?
(A) 16
(B) 17
C 18
(D) 19
E 20

2 Greedy Algorithms

Consider lectures $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ for which the same classroom is requested. Each lecture ℓ_{i} has a start time s_{i} and a finish time f_{i}, where $0 \leq s_{i}<f_{i}<\infty$. We wish to select a largest subset of lectures of which no two overlap in time. If selected, then ℓ_{i} happens during the half-open time interval $\left[s_{i}, f_{i}\right.$). For example, consider the following set of lectures:

i	1	2	3	4	5	6	7	8	9	10	11
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	9	9	10	11	12	14	16

The subset $\left\{\ell_{3}, \ell_{9}, \ell_{11}\right\}$ has non-overlapping lectures but $\left\{\ell_{1}, \ell_{4}, \ell_{8}, \ell_{11}\right\}$ is larger. The latter is a largest subset of non-overlapping lectures; another largest subset is $\left\{\ell_{2}, \ell_{4}, \ell_{9}, \ell_{11}\right\}$. Consider the following greedy algorithm template:
$\operatorname{Greedy-Lecture-Selector}\left(n,\left[s_{1}, \ldots, s_{n}\right],\left[f_{1}, \ldots, f_{n}\right]\right)$

```
in-place sort the lectures by some criterion
    \(L:=\left\{\ell_{1}\right\} \quad / / L\) is the current subset of selected non-overlapping lectures
    for \(i:=2\) to \(n\)
    if lecture \(\ell_{i}\) does not overlap with any lecture already in \(L\)
        \(L:=L \cup\left\{\ell_{i}\right\}\)
    return \(L\)
```

Question 6: Assume we in-place sort in line 1 the lectures by monotonically increasing finish time, giving $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$: on which inputs (such as the example above) does the greedy algorithm above return a largest subset of non-overlapping lectures?
A all
(B) none
(C) some
(D) un-
E NP-hard decidable

Question 7: If lecture ℓ_{j} was most recently added to L, then how to test the Boolean condition in line 4 of the greedy algorithm in Question 6 in constant time and space?
A $f_{i}<s_{j}$
(B) $f_{i} \leq s_{j}$
(C) $f_{j}<s_{i}$
(D) $f_{j} \leq s_{i}$
E impossible

Question 8: What is the tightest time complexity of the greedy algorithm in Question 6 ?
A $\mathcal{O}(n)$
(B) $\mathcal{O}(n \cdot \lg n)$
[C $\mathcal{O}\left(n^{2}\right)$
(D) $\mathcal{O}\left(n^{2} \cdot \lg n\right)$
(E $\mathcal{O}\left(n^{3}\right)$

Question 9: Assume we in-place sort in line 1 the lectures by monotonically increasing start time, giving $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$: on which inputs does the greedy algorithm above return a largest subset of non-overlapping lectures?
A all
(B) none
C some
(D un-
E NP-hard
decidable
Question 10: Assume we in-place sort in line 1 the lectures by monotonically increasing duration, giving $f_{1}-s_{1} \leq f_{2}-s_{2} \leq \cdots \leq f_{n}-s_{n}$: on which inputs does the greedy algorithm above return a largest subset of non-overlapping lectures?
A all
B none
C some
(D un-
E NP-hard decidable

3 Dynamic Programming

Consider the problem in Section 2 of selecting a largest subset of non-overlapping lectures. Assume the lectures are sorted by monotonically increasing finish time: $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$. Let $B_{i j}$ be the lectures that can happen between ℓ_{i} and ℓ_{j}; note that $B_{i j} \subseteq\left\{\ell_{i+1}, \ldots, \ell_{j-1}\right\}$. In the example of Section 2: $B_{2,9}=\left\{\ell_{4}\right\} ; B_{9,2}=\varnothing=B_{3,8}=B_{8,3}=B_{11,4} ; B_{4,11}=\left\{\ell_{8}, \ell_{9}\right\}$. Create two fictitious lectures ℓ_{0} and ℓ_{n+1} with $f_{0}=0$ and $s_{n+1}=f_{n}$. Consider the following recurrence, parametrised by $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \gamma\right\rangle$, on a numeric quantity $C[i, j]$:

$$
C[i, j]= \begin{cases}0 & \text { if and only if } \beta \\ \gamma\left\{C\left[\alpha_{1}, k\right]+\alpha_{2}+C\left[k, \alpha_{3}\right] \mid \ell_{k} \in B_{i j}\right\} & \text { if and only if } \neg \beta\end{cases}
$$

Question 11: If $C[0, n+1]$ is returned by a correct algorithm for computing the size of a largest subset of non-overlapping lectures, then what is $C[i, j]$, with $0 \leq i, j \leq n+1$?
(A) the size of $B_{i j}$
(B) the size of $\left\{\ell_{i}, \ell_{i+1}, \ldots, \ell_{j}\right\}$

C the size of $\left\{\ell_{i}, \ell_{i+1}, \ldots, \ell_{j}\right\} \backslash\left\{\ell_{0}, \ell_{n+1}\right\}$
D the size of a largest subset of non-overlapping lectures in $B_{i j}$
E the size of a largest subset of non-overlapping lectures in $\left\{\ell_{i}, \ell_{i+1}, \ldots, \ell_{j}\right\}$
Question 12: For the example of Section 2, what is the sum $\left|B_{1,11}\right|+C[1,11]$?
(A) 6
(B) 7
(C) 8
(D) 9
E other

Question 13: What is the Boolean condition β ?
A $i=j$
(B) $i>j$
C $i \geq j$
(D) $B_{i j}=\varnothing$
E $B_{i j} \neq \varnothing$

Question 14: What is the index expression α_{1} ?
(A) 1
(B) $i-1$
(C i
(D) $j-1$
E j

Question 15: What is the numeric expression α_{2} ?
(A -1
(B) +1
C size of $B_{k k}$
(D) $C[k, k]$
E $f_{k}-s_{k}$

Question 16: What is the index expression α_{3} ?
A $i-1$
(B) i
C $j-1$
D j
E n

Question 17: What is the single-argument set operator γ ?
(A) argmax
(B) average
(C) max
(D) median
E set-size

Question 18: Assuming the desired quantity $C[0, n+1]$ is in the upper-right corner of the table C, what is an ordering of filling C without referring to yet non-computed elements?
A columns left-to-right,
C rows top-down, left-to-right in rows bottom-up in the columns
D rows top-down, right-to-left in rows
(B) columns left-to-right, top-down in the columns
E rows bottom-up, right-to-left in rows

4 Complexity

Question 19: Assuming $d=\max \left\{f_{i}-s_{i} \mid 1 \leq i \leq n\right\}$ is the duration of a longest lecture among the n lectures in the problem of Sections 2 and 3, what is the tightest time complexity of a dynamic program for the recurrence on $C[i, j]$ of Section 3? (This question can be answered without knowing the correct answer to any question of Section 3!)
A $\mathcal{O}\left(n^{2}\right)$
(B) $\mathcal{O}\left(n^{2} \cdot \lg n\right)$
C $\mathcal{O}\left(n^{2} \cdot d\right)$
[D $\mathcal{O}\left(n^{3}\right)$
E $\mathcal{O}\left(n^{3} \cdot d\right)$

Question 20: If the best known algorithm for solving a decision problem D takes $\mathcal{O}\left(k^{n}\right)$ time on an instance of size n, for a constant $k>1$, then what is the tightest complexity class of D, according to current knowledge?
(A) P
(B) NP
C NP-
(D NP-hard complete
E we cannot conclude

Question 21: If the best known solution checker for a decision problem D takes $\mathcal{O}\left(n^{k}\right)$ time on an instance of size n, for a constant $k>0$, then what is the tightest complexity class of D, according to current knowledge?
(A) P
B NP
(C NP-
(D NP-hard
E we do complete not know

Question 22: The classical algorithm for computing naïvely (without knowledge of arithmetic progressions) the sum $1+2+\cdots+n$ for a given natural number n takes $\Theta(n)$ time: what is the most accurate description of this time complexity?
A
(B) linear logarithmic
C pseudopolynomial
D superexponential
E we do not know

Question 23: In order to prove that a decision problem D is NP-complete, one has to:
A prove that D reduces to (denoted by \leq_{P}) some known problem in P
B prove that D reduces to some known NP-complete problem
[C prove that D reduces to some known NP-complete problem and that D is in NP
(D) prove that some known NP-complete problem reduces to D

E prove that some known NP-complete problem reduces to D and that D is in NP

Corrected

Answer Sheet - AD2 Exam (1DL231) of 5 January 2018

Instructions: Do not alter the drawing above. Using a very dark colour, fill in entirely at most one answer box (A to E) per question: we will use an optical character recognition (OCR) system that ignores circles, crosses, ticks, etc. Transfer your answers from the question sheets to this answer sheet just before handing in; if an answer becomes ambiguous to an OCR system, then please request another answer sheet. Every correct answer gives 2 points. Every multiple answer or incorrect answer gives 0 points. Partial credit of 1 point may be given in exceptional circumstances. If you think a question is unclear or wrong, then mark its number with a \star on this sheet, and explain on the backside of this sheet what your difficulty with the question is and what additional assumption underlies the candidate answer that you have chosen or the new answer that you indicate.

		Grade	Condition
	Grading: Your grade is as follows, when your mark is e points:	$38 \leq e \leq 46$	
4	$30 \leq e \leq 37$		
3	$23 \leq e \leq 29$		
	U	$00 \leq e \leq 22$	

1 Maximum Flow

Question 1: \square B C D
Question 2: A C \square E
Question 3: $A \operatorname{B}|C| D$
Question 4: $\square \mathrm{B} \quad \mathrm{C} \mid \mathrm{D}$
Question 5: $A \operatorname{B}|C| D$

2 Greedy Algorithms

Question 6: \square B C D E
Question 7: $A \operatorname{B}|C| E$
Question 8: A C \square E
Question 9: $A, B \quad D \mid D$
Question 10: A B D E

3 Dynamic Programming

Question 11: A B C E
Question 12: A Q $\mathrm{C} \mid \mathrm{D}$ E
Question 13: A B C — E
Question 14: A B $\square \mathrm{D}$ E
Question 15: A C D E
Question 16: A A B C $\quad \mathrm{E}$
Question 17: A B $\square \mathrm{D}$
Question 18: $\square B \in D \mid E$

4 Complexity

Question 19: A B C D

Question 21: A C C D
Question 22: A B $\square \mathrm{D}$ E
Question 23: A B B C \square

Again: Please use a very dark colour to fill in your chosen boxes entirely!

