Software Testing Lecture 7
Property Based Testing

Justin Pearson

2019

1/17

When are there enough unit tests?

Lets look at a really simple example.
import unittest

def add(x,y):
return x+y

class TestAddition(unittest. TestCase):
def test_add_1(self):
self.assertEqual(add(3,4).,7)

We could go on writing a lot of test cases. You can try to find edge
cases and then try to get some structural coverage of the code.

2/17

Random testing of addition

def test_add_random_single ():

x = randint(—sys.maxsize, sys.maxsize)
y = randint(—sys.maxsize,sys.maxsize)
assert(add(x,y) = x+tvy)

def test_add_random(max_iterations):
i = 0;
while (i<max_iterations):
test_add_random_single ()
i +=1
sys.stdout.write('.")
print ("\nRan.” ,max_iterations ,” _tests."”)

3/17

Random testing of addition

» We should not expect any of our tests for addition to fail.
Especially, since we implement addition with addition.
» But it does illustrate some important concepts.

» Test oracles: A mechanism for determining if a test has passed
or not.
» Test generator: A mechanism for generating test cases.

» Some thought has to go into both oracles and generators. For

generators you have to decide what sort of coverage you going
to give. More on this later.

4/17

Set intersection

The details are not important. | built a package! for representing
sets of integers compactly as trees. Operations such as intersection
were provided.

Write inefficient but correct code:

def intersection(11,12):
new_list = []
for i in I1:
if member(i, h I2):
new_list.append(i)
return(new_list)

This is not a very efficient way of doing set intersection, but we
can use it as an oracle together with randomly generated sets to
generate lots of test cases.

'https://bitbucket.org/justinkennethpearson/mdd

5/17

https://bitbucket.org/justinkennethpearson/mdd

Writing Test Oracles

It is the same problem as always; given some inputs how do we
know what the correct output is. Often, you use testing as a way
to think about the problem and try to understand what the output
will be for given inputs.
If you have lots of randomly generated tests then this is obviously
not practical. There are a number of techniques available.

» Specification based verification of the outputs.

» Redundant computations

» Consistency checks.

6/17

Specification based Verification
If you are lucky, then your software has a specification. If you are
less lucky, while trying to test the software and in dialogue with
the programmer you write a specification.
Given your specification there are a number of options.

P Use property based testing to derive test cases. More on this
later.

» Use techniques from formal methods such as model checking,
specification animation tools to generate test cases. This is
often much easier than using formal methods to verify the
software.

P Treat the specification as a combinatorial problem and use
techniques such as Constraint Programming, SAT or SMT to
model your problem and derive test cases (Take 1DL448).

> Write code that implements the specification and generates
test cases.

Techniques such as these are often referred to as model based

testing.
7/17

Redundant Computations

We have already seen two examples earlier. There are a number of
options.
> Write inefficient but correct code, and use this as an oracle.
Very similar to model based testing, but often more simple.
Never underestimate the power of a random number generator

and redundant computations. This can be a very good way of
finding faults in code.

» Parallel development of code. Very expensive and only used in
domains with high reliability requirements (aerospace). Has
its own problems. Psychology tells us that people make the
same sort of errors.

8/17

Consistency Checks

» Not really a test oracle, but often a good way to find errors.
> Make sure that the system satisfies any invariants.

> Make sure that the system ends up in a consistent state after
you have done a bunch of operations.

9/17

Model Based Testing

Models can come from a variety of sources:
» Finite state machines;
> UML designs;
» State charts;
» Or formal methods.

Either you have to design your own models or adapt existing
models so that they can be used to extract tests. There are various
tools and techniques out there to extract test cases from models.

10/17

Model Based Testing

» Time spent modelling your problem is not wasted time.

» You have a way to generate lots of test cases, and you
understand your problem better.

11/17

Property Based Testing

Started with QuickCheck?® which was a combinator library for
describing test cases.

Suppose we have a list reversing function then part of the
specification is

Vxs : list(int()) reverse(reverse(xs)) = xs

Then we turn the specification into code (via macros)

?FORALL (Xs,1list (int()),
reverse(reverse(Xs)) == Xs)

?Koen Claessen and John Hughes (2000). " QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs”
12/17

Property Based Testing

> ?FORALL takes three arguments: a variable, a generator and a
boolean valued expression (the test oracle).

» ?FORALL uses the generator to generate random instances, the
boolean expression then run with the randomly generated
instances.

> If it evaluates to false then we have found a failing test case.
There is some clever logic to reduce the size of the failing test
case.

Commercial and free implementations exist for many programming
languages, including Python.

13/17

Property Based Testing

This is not a realistic example, but it illustrates the generation
strategy.

?FORALL((x,y), (int,int) ,add(x,y)==x+y)

This would generate code something like:

error_found = false
while (not error_found):
x = random(int)

y = random(int)
error_found = (add(x,y) = x+y)

print (" Error_found”)

Note that (add(x,y) == x+y) means run the equality check
and return true or false. Again the beauty is that we use
executable code for our assertions.

14 /17

Property Based Testing

Quickcheck has inspired many property testing tools such as:
» PropEr3 for Erlang
» Hypthoesis* for Python.

» Quickcheck has been re-implemented in various languages.

*http://proper.softlab.ntua.gr/

*https://hypothesis.readthedocs.io/en /latest/
15/17

http://proper.softlab.ntua.gr/

Property Based Testing

There are interesting research questions with important practical
consequences:

» If you have a counter example, can you find a shorter more
human readable one.

» How do you specify and test concurrent behaviour?

16/17

Property Based Testing

> Most importantly, writing your tests as properties not only
generates you many more test cases, but it forces you to think
about the specification of the system.

17/17

