Exam in Real Time Systems

Justin Pearson 30 May 2003

Cover Sheet

Problem no.	Solution provided	Max	Your points
1		5	
2		8	
3		4	
4		4	
5		8	
6		4	
7		4	
8		11	
	Total:	33/44	

Name:	
Pers.no. :	

Exam Rubric

All answers should be written in English or Swedish (English is preferred). A mark of 50% is required for a G a mark of 85% is required for a VG. If you are registered on the 5 point version of this course you must answer all questions are your final mark will be calculated out of 44. If you are on the 4 point version of the course you do not need to answer question 8 and your final mark will be calculated out of 33.

Hjälpmedel:

Pen, pencil, ruler, rubber, dictionary.

Obs

Please indicate if you are registered for MN1 (5 points) or DV1 (4 points).

- 1. General Questions on Real-time systems.
 - (a) What is the distinction between a hard and a soft real time system? Give at least one example of each. (**points 2**)
 - (b) Discuss the following statement "A Real-time systems is a fast system". (points 2)
 - (c) Why might a real-time programmer not use dynamic memory allocation in a real-time system. (points 1)
- 2. Types of Schedules.
 - (a) What is a static schedule and what are the advantages and disadvantages of using a static schedule. To get all the points in this question you should give an example of a Static Schedule. (**points** 4)
 - (b) What is the difference between a fixed priority schedule and an Earliest Deadline First (EDF) Schedule. Why might a fixed priority schedule be used over a fixed priority schedule? (**points** 3)
 - (c) How and why can aperiodic processes be incorporated in fixed priority scheduling analysis? (**points 1**)
- 3. Consider the processes below. Determine if they are schedule when using a fixed priority rate-monotonic schedule (assuming independence, etc..)

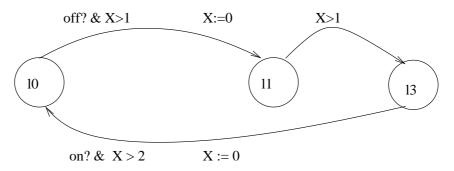
Process	Execution time	Period	
P_1	2	10	
P_2	2	14	(noints 1)
P_3	3	5	(points 4)
P_4	2	6	
P_5	4	13	

4. Assume a (hard) real-time system with the three processes P_1 , P_2 , and P_4 executing on a CPU. The following system parameters are known:

Process	Period	Deadline	wcet
P_1	10	5	1
P_2	12	9	2
P_3	7	7	3

(a) Which is the optimal priority order (and why?)? (points 1)

- (b) Calculate the worst case response time for P_1 , P_2 , (**points 2**) and P_3 .
- (c) Are the processes schedulable? (points 1)
- 5. Assume a (hard) real-time system with the four processes P_1 , P_2 , P_3 and P_4 executing on a CPU. The processes share some resources guarded by the semaphores S_1 , S_2 and S_3 . The following system parameters are known:


Process	Period	Deadline	WCET	Max time in CS		
				S_1	S_2	S_3
P_1	12	10	3	_	_	1
P_2	7	4	2	1	_	0.1
P_3	20	19	1	1	2	0.5
P_4	5	5	1	0.2	0.3	_

Assume deadline monotonic priority order and that the immediate inheritance protocol is used.

- (a) What is the priority order for the task set? (**points 1**)
- (b) What is the blocking factor for each task? (points 3)
- (c) What is the worst case response time for each task? (points 3)
- (d) Is the task set schedulable? (points 1)
- 6. The CAN Bus.
 - (a) Briefly describe the CAN arbitration mechanism? (points 2)
 - (b) When doing scheduling on the CAN bus messages are non-preemptive describe what this means and how it affects the analysis. (**points 2**).

7. Timed Automata

(a) Given the following timed automata:

Which has one real-time clock X assuming that the automata starts in state l0 is it possible to be in location l3 with the clock X having value 4. You should justify your answer with a sequence of timed transitions. (**points 2**)

- (b) What is the minimum and maximum time that the system has to wait in location 13? Justify your answer (**points 2**)
- 8. Consider the following task set:

Task	T_i	C_i	D_i
1	7	1	7
2	10	2	10
3	20	6	12

- (a) What is the total CPU utilisation of the task set? (points 1)
- (b) Assign priorities according to deadline monotonic. What is the priority order? (**points 1**)
- (c) Calculate the response times. What are the response times and will all deadlines be met? (**points 2**)
- (d) Now, lets assume the task set is to be scheduled by a non-preemptive scheduler. Derive the response-time equation to calculate response times in a non-preemptive system. (**points 5**)
- (e) Calculate the response times for the tasks in a non-preemptive system. What are the response times and will all deadlines be met? (points 2)

Hint 1: You have seen analysis for non-preemptive systems when we studied analysis of the CAN bus.

Hint 2: Even if you cannot derive the response-time equation in this you may find the response-times by doing a manual critical instant simulation.

Good Luck