Exam in Real Time Systems - TF/EIP omtenta

Justin Pearson

2004-12-20 15-20.

Cover Sheet

This sheet should be handed in together with the exam.

Each problem must be solved on a separate sheet. Write your name on each sheet. Indicate below which questions you have answered.

Problem no.	Solution provided	Max	Your points
1		5	
2		3	
3		4	
4		3	
5		7	
6		6	
7		5	
8		7	
	Total:	28/40	

Name :

Pers.no.:

Exam Rubric

All answers should be written in English or Swedish (English is preferred). A mark of 50% is required for a G a mark of 85% is required for a VG or a similar scheme for 3,4,5. If you are a TF student then you must only answer question 1-6 (other questions will not be marked). If you are doing the 5 point version you must answer all questions. If you are a distance student, you must do all the questions.

Hjälpmedel:

Pen,pencil, ruler,rubber, dictionary.

- 1. General Questions on Realtime systems.
 - (a) What is the distinction between a soft and a hard real-time system? Give at least one example of each type of system. (points 2)
 - (b) What is the difference between static scheduling and dynamic scheduling? (**points 2**)
 - (c) What sort of schedules are required for aperiodic tasks? (points 1)
- 2. Consider the processes below. Determine if they are schedulable when using rate-monotonic scheduling (assuming independence, etc..)

$\mathbf{Process}$	Execution time	Period	
P_1	2	10	
P_2	4	30	(points 3)
P_3	1	20	
P_4	2	10	

- 3. Describe with example Earliest First Deadline (EDF) Scheduling. You should try to illustrate the difference between (EDF) Scheduling and fixed priority scheduling with your example. (**points 4**).
- 4. Assume a (hard) real-time system with the three processes P_1 , P_2 , and P_4 executing on a CPU. The following system parameters are known:

Process	Period	Deadline	wcet
P_1	15	14	2
P_2	12	7	2
P_3	12	5	1

- (a) Which is the optimal priority order (and why?)? (**points 1**)
- (b) Calculate the worst case response time for P₁, P₂, (**points 2**) and P₃.
- 5. Assume a (hard) real-time system with the four processes P_1 , P_2 , P_3 and P_4 executing on a CPU. The processes share some resources guarded by the semaphores S_1 , S_2 and S_3 . The following system parameters are known:

Process	Period	Deadline	WCET	Max time in CS		
				S_1	S_2	S_3
P_1	15	10	3	_	—	1
P_2	8	4	2	1	_	0.1
P_3	20	20	5	1	2	0.5
P_4	5	5	1	0.2	0.3	—

Assume *deadline monotonic* priority order and that the immediate inheritance protocol is used.

- (a) What is the priority order for the task set? (**points 1**)
- (b) What is the blocking factor for each task? (points 3)
- (c) What is the worst case response time for each task? (points 3)
- 6. The CAN Bus.
 - (a) Explain in detail (with examples) the CAN-bus arbitration mechanism. (points 4)
 - (b) Assume a CAN-like network using 5-bit identifiers and with a fixed frame/packet transmission time (including arbitration etc.) of 7ms. In the beginning of an arbitration cycle frames with the following identifiers enter arbitration from different nodes:
 - i. 11001
 - ii. 01101
 - iii. 01110
 - iv. 01010
 - v. 11100
 - vi. 00100

Assuming that no other frames will enter arbitration, after how long time will the transmission of frame with identifier 11001 be completed? (**points 2**)

Stop here if you are a TF Student!.

7. Consider the following task set with Jitter.

Task	T_i	C_i	D_i	$J_i^{smallest}$	$J_i^{biggest}$
1	6	2	5	1	1
2	5	1	3	1	2
3	20	5	15	2	3

- (a) What is the optimal priority ordering? (points 2)
- (b) What is the response-times for each task? (points 3)
- 8. Questions on Timed Automata.
 - (a) Given the following timed automata:

is it possible to reach the state l3 with the clock X equal to 0.5. Justify you answer with a sequence of timed transitions. (**points** 2)

(b) You are to model a system using timed automata which is to act as a parental guard on a mobil phone. If the system is in the location disabled then the phone will not work. A mobil phone call can be upto 3 minutes after a phone call has been made the user must wait at least 5 minutes to use to the phone again. Model making the call with two events startcall? and endcall?. (points 5)