
Real Time Systems Le
ture 4 1

Slide 1
Response Time Cal
ulationDeadline Monotoni

al
ulation.T D CA 50 10 5B 500 500 250C 3000 3000 1000Let's
al
ulate the response times of the three pro
esses underdead-line monotoni
 priority assignment.First RA = 5 be
ause A is the highest priority task.

Slide 2
Task BTask B has task A as its only higher priority task. SoRB = 250 + �RB50 � 5Solving the re
urren
e relation we get that: R0B = 0,R1B = 250R2B = 250 + �25050 � 5 = 275R3B = 250 + �27550 � 5 = 280R4B = 250 + �28050 � 5 = 280

Real Time Systems Le
ture 4 2

Slide 3
Task CTask C is the lowest priority soRC = 1000 + �RC50 � 5 + �RC500� 250So R0C = 0,R1C = 1000 andR2C = 1000+ �100050 � 5 + �1000500 � 250 = 1600R3C = 1000+ �160050 � 5 + �1600500 � 250 = 2160R3C = 1000+ �216050 � 5 + �2160500 � 250 = 2470

Slide 4
Example
ontinuedR4C = 1000+ �247050 � 5 + �2470500 � 250 = 2500R5C = 1000+ �250050 � 5 + �2500500 � 250 = 2500Sin
e R5C = R4C we have found the response time. As ea
h tasksresponse time is less than its deadline we know that a priority baseddeadline-monotoni
 assignment well s
hedule the tasks.

Real Time Systems Le
ture 4 3

Slide 5
Sharing Resour
esSo far we have assumed that all the tasks have been independent.What happens if we have two tasks the require a

ess to the samepie
e of data?Sin
e we allow our tasks to be interrupted at arbitrary points, wehave to have some
ontrol over shared data.Why?Why didn't we have a problem the the Cy
li
 Exe
utive approa
h welooked at in le
ture 2?

Slide 6
SemaphoresA semaphore is a very simple me
hanism to allow
on
urrent a

essto data obje
t whi
h only allows one pro
ess to a

ess a sharedobje
t at a time. It is simply is an extra
ag to a data value:� if there is no pro
ess a

essing the data the
ag is set tounlo
ked� if a pro
ess wishes to a

esses the data and the
ag is set tounlo
ked the pro
ess must �rst set the
ag to lo
ked and thenpro
eed to a

ess the data then when �nished it must unlo
k thesemaphore.� If a a pro
esses attempts to a

esses the data obje
t and the
agis lo
ked by another pro
ess, it must wait until the
ag getsunlo
ked.

Real Time Systems Le
ture 4 4

Slide 7
Criti
al Se
tionsOn
e some pro
ess has lo
ked the semaphore the
ode (ortime-period) while that pro
ess has the lo
k is referred to as the
riti
al se
tion.When we
onsider worst-
ase response times of pro
esses we musttake into a

ount the extra time that a pro
esses
an be blo
ked theanother pro
ess a

essing shared data. (More later).

Slide 8
Priority Inversion an ExampleLet us go ba
k to our earlier task set.T D C RA 50 10 5 5B 500 500 250 280C 3000 3000 1000 2500Suppose tasks A and C share some
ommon data, ea
h requireda

ess to the data for at most 1ms of
omputation time. We shallrefer to the semaphore guarding the data as s.

Real Time Systems Le
ture 4 5

Slide 9
Priority Inversion an ExampleLet us suppose that task C is running and lo
ks s at some time t, justafter C lo
ks s, task A is a
tivated (be
ause it has a higher priority),then task B made runnable then at time t+3 task A needs the datathat C has
ontrol of be
ause it is lo
ked task B starts running(be
ause task B has higher priority than C). Task B then runs for250ms of time and �nishes at time 253, C
an now run it �nishes its
omputation so A starts running but A has missed its deadline.

Slide 10
Priority Inversion an Example

t+254

t+253

t+253

s is blocked by C

t+2

lock s

t

t

t

 C

 B

 A

Real Time Systems Le
ture 4 6

Slide 11
Priority inversionThe exe
ution of task B delays the exe
ution of task A even thoughit has a lower priority than task A. This e�e
t is known as priorityinversion where a lower priority task
an delay the exe
ution of ahigher priority task.In this example we only had one task B between A and C, if therewhere many tasks in between the the blo
king time
ould be mu
hworse.With blo
king �xed priority s
heduling degenerates into a FIFO(First In, First Out) queue in the worst
ase.

Slide 12 Priority Inheritan
eWhile task A is blo
ked by the semaphore it seems intuitive that taskC is more important than task B, sin
e task C is blo
king the
ompletion of task A whi
h is a higher priority task.So if we gave C a higher priority than B while C was in its
riti
alse
tion
ould we avoid the problem?

Real Time Systems Le
ture 4 7

Slide 13
Priority Inheritan
e an example

 A

 B

 C
t

t

t

lock s

t+2

s is blocked by C

t+2 t+3

C takes A’s priority

Slide 14
Deadlo
ks?Suppose we have two semaphores s1 and s2.� At time t task C (the lower priority task) lo
ks s1� just after this tasks A runs and lo
ks s2 and then tries to lo
k s1whi
h it
an't lo
k be
ause C is blo
king s1.� Task C then inherits the priority of A and starts running, task Ctries to lo
k s2 but task A already holds it, to neither task
anexe
ute hen
e we have a deadlo
k.

Real Time Systems Le
ture 4 8

Slide 15
The Priority Ceiling Proto
olSo we have to be
areful with priority inheritan
e. We need someme
hanism for priority whi
h does not deadlo
k.We will look at the Priority
eiling proto
ol developed by Sha,Rajkummar and Leho
zky whi
h is guaranteed not to deadlo
k on
ewe make some restri
tions. We will then be able to extend ourresponse time analysis
al
ulations to take into a

ount blo
kingtimes of tasks.

Slide 16
Priority Ceiling Proto
ol Task Restri
tionsWe need the following restri
tions on tasks.� A task must release any semaphores it has before it is
ompleted.A task
an not hold semaphores between invo
ations.� Tasks must lo
k and unlo
k semaphores in a sta
k like manner.Thuslo
k(s1) ... lo
k(s2) unlo
k(s2) ... unlo
k(s1)is o.k. Butlo
k(s1) ... lo
k(s2) unlo
k(s1) ... unlo
k(s2)is not.

Real Time Systems Le
ture 4 9

Slide 17
Priority Ceiling Proto
ol ContinuedWe need to assume that the time ea
h pro
ess needs to be in a
riti
al se
tion is bounded and known beforehand.We denote
si;sas the length of the
riti
al se
tion for task i holding semaphore s.We also need to assume that we know for a given task i a priori theset of semaphores it needs to be able to lo
k. Denote uses(i) as theset of semaphores that o

ur in task i.

Slide 18
CeilingsThe proto
ol uses the idea of a semaphore
eiling: the
eiling
eilingof a semaphores is the priority of the highest priority task the usesthat semaphore.Given a semaphore s denote the priority of the highest priority taskwhi
h uses s as
eil(s)

Real Time Systems Le
ture 4 10

Slide 19
Run time of a
tions of the proto
olAt run time we do the following: if a task i wants to lo
k asemaphore s, it
an only do so if the priority of i is stri
tly higherthan the
eilings of all semaphores
urrently lo
ked by other tasks. Ifthis
ondition is not met then task i is blo
ked.As before, when a task blo
ks on a semaphore s the task
urrentlyholding s inherits the priority of that task.

Slide 20
An example T D C priorityA 50 10 5 highB 500 500 250 mediumC 3000 3000 1000 lowSuppose we have three semaphores s1,s2 and s3 with the followinglo
king pattern:� Task A: lo
k(s1) : : : unlo
k(s1)� Task B: lo
k(s2) : : : lo
k(s3) : : : unlo
k(s3) : : : unlo
k(s2)� Task C: lo
k(s3) : : : lo
k(s2) : : : unlo
k(s2) : : : unlo
k(s3)

Real Time Systems Le
ture 4 11

Slide 21
So we have that:�
eil(s1) = H�
eil(s2) = M�
eil(s3) = M
si;s s1 s2 s3A 5B 10 5C 10 25

Slide 22
Cal
ulating the response timeBefore we
al
ulated the response time of a task as:Ri = Ci + X8j2hp(i)�RiTj �CjWe want to in
lude some term Bi whi
h tells us how long the task isblo
ked by semaphores.Ri = Ci +Bi + X8j2hp(i)�RiTj �Cj

Real Time Systems Le
ture 4 12

Slide 23
Blo
king TimeHow do we
al
ulate the blo
king time? A task
an be blo
ked in oneof two ways:� normal blo
king where a task tries to a

ess a semaphore whi
his lo
ked.�
eiling blo
king where the
eilings of the
urrently blo
kedsemaphores is too high.A task
an also be blo
ked when exe
uting non
riti
al-se
tion
odewhen a lower priority task inherits a higher priority. This is
alledpush through.

Slide 24
Blo
king Time
ontinuedSo in summary a given task i is blo
ked by at most one
riti
alse
tion of any lower priority task lo
king a semaphore with priority
eiling greater than or equal to the priority of task i.Bi = maxf
sk;sjk 2 lp(i) ^ s 2 uses(k) ^
eil(s) � pri(i)gwhere lp(i) is the set of all lower priority tasks than i.

Real Time Systems Le
ture 4 13

Slide 25
Example
ontinued BABa
k to our example, �rst lets try and
al
ulate the blo
king timeBA. First lp(BA) is the set fB;Cg. But A is the highest priority taskand sin
e it doesn't share any lo
ks with B and C the
eilings of thetasks in uses(B) and uses(C) are never equal to the priority of A.Thus the set:f
sk;sjk 2 fB;Cg ^ s 2 uses(k) ^
eil(s) � pri(A)gis empty (the maximum of an empty set is normally de�ned to bezero by
onvention). So BA is 0.

Slide 26
Example
ontinued BB and BCTask B has only one lower priority task, task C, whi
h
an onlya

esses semaphores s2 and s3. Again we look at the setf
sC;sjs 2 uses(B) ^
eil(s) �Mgboth s2 and s3 have a priority
eiling equal to M so BB is 25.Task C has no lower priority tasks so BC will be zero.

Real Time Systems Le
ture 4 14

Slide 27
Cal
ulating the response times, RA and RCFirst RA = 5 +BA = 5next RC = 1000 +BC + �RC50 � 5 + �RC500� 250so RC = 2500.

Slide 28 Cal
ulating the response times, RBRB = 250 +RB + �RB50 � 5whi
h gives: RB = 275 + �RB50 � 5

Real Time Systems Le
ture 4 15

Slide 29
Cal
ulating the response times, RBUsing iteration R1B = 275 andR2B = 275 + �27550 � 5 = 305R3B = 275 + �30550 � 5 = 310R4B = 275 + �31050 � 5 = 310Thus RB is less than B's deadline (310 � 500) hen
e the task set
anbe s
heduled using the priority
eiling proto
ol.

Slide 30
ProblemsThe priority
eiling proto
ol is quite
ompli
ated, and
an be diÆ
ultto implement in pra
tise.The operating system has to keep tra
k of inherited priorities it alsohas to work out if a task is blo
king be
ause of the priority
eiling.But we have a
hieved a lot by showing how it is possible to extendour response time
al
ulation to in
lude blo
king times.

Real Time Systems Le
ture 4 16

Slide 31
The Immediate Inheritan
e Proto
olWe assume the same semaphore lo
king model we use the followingrun time behaviour:When a task i want to lo
k a semaphore s, the taskimmediately sets the priority to the maximum of the
urrentpriority and the
eiling priority of s. When the task �nisheswith s it sets it priority ba
k to what is was before.That's it. This proto
ol has the same worst-
ase response time aswith the priority
eiling proto
ol (this means our previous
al
ulations) are still valid.

