
Real Time Systems Leture 4 1

Slide 1
Response Time CalulationDeadline Monotoni alulation.T D CA 50 10 5B 500 500 250C 3000 3000 1000Let's alulate the response times of the three proesses underdead-line monotoni priority assignment.First RA = 5 beause A is the highest priority task.

Slide 2
Task BTask B has task A as its only higher priority task. SoRB = 250 + �RB50 � 5Solving the reurrene relation we get that: R0B = 0,R1B = 250R2B = 250 + �25050 � 5 = 275R3B = 250 + �27550 � 5 = 280R4B = 250 + �28050 � 5 = 280

Real Time Systems Leture 4 2

Slide 3
Task CTask C is the lowest priority soRC = 1000 + �RC50 � 5 + �RC500� 250So R0C = 0,R1C = 1000 andR2C = 1000+ �100050 � 5 + �1000500 � 250 = 1600R3C = 1000+ �160050 � 5 + �1600500 � 250 = 2160R3C = 1000+ �216050 � 5 + �2160500 � 250 = 2470

Slide 4
Example ontinuedR4C = 1000+ �247050 � 5 + �2470500 � 250 = 2500R5C = 1000+ �250050 � 5 + �2500500 � 250 = 2500Sine R5C = R4C we have found the response time. As eah tasksresponse time is less than its deadline we know that a priority baseddeadline-monotoni assignment well shedule the tasks.

Real Time Systems Leture 4 3

Slide 5
Sharing ResouresSo far we have assumed that all the tasks have been independent.What happens if we have two tasks the require aess to the samepiee of data?Sine we allow our tasks to be interrupted at arbitrary points, wehave to have some ontrol over shared data.Why?Why didn't we have a problem the the Cyli Exeutive approah welooked at in leture 2?

Slide 6
SemaphoresA semaphore is a very simple mehanism to allow onurrent aessto data objet whih only allows one proess to aess a sharedobjet at a time. It is simply is an extra ag to a data value:� if there is no proess aessing the data the ag is set tounloked� if a proess wishes to aesses the data and the ag is set tounloked the proess must �rst set the ag to loked and thenproeed to aess the data then when �nished it must unlok thesemaphore.� If a a proesses attempts to aesses the data objet and the agis loked by another proess, it must wait until the ag getsunloked.

Real Time Systems Leture 4 4

Slide 7
Critial SetionsOne some proess has loked the semaphore the ode (ortime-period) while that proess has the lok is referred to as theritial setion.When we onsider worst-ase response times of proesses we musttake into aount the extra time that a proesses an be bloked theanother proess aessing shared data. (More later).

Slide 8
Priority Inversion an ExampleLet us go bak to our earlier task set.T D C RA 50 10 5 5B 500 500 250 280C 3000 3000 1000 2500Suppose tasks A and C share some ommon data, eah requiredaess to the data for at most 1ms of omputation time. We shallrefer to the semaphore guarding the data as s.

Real Time Systems Leture 4 5

Slide 9
Priority Inversion an ExampleLet us suppose that task C is running and loks s at some time t, justafter C loks s, task A is ativated (beause it has a higher priority),then task B made runnable then at time t+3 task A needs the datathat C has ontrol of beause it is loked task B starts running(beause task B has higher priority than C). Task B then runs for250ms of time and �nishes at time 253, C an now run it �nishes itsomputation so A starts running but A has missed its deadline.

Slide 10
Priority Inversion an Example

t+254

t+253

t+253

s is blocked by C

t+2

lock s

t

t

t

 C

 B

 A

Real Time Systems Leture 4 6

Slide 11
Priority inversionThe exeution of task B delays the exeution of task A even thoughit has a lower priority than task A. This e�et is known as priorityinversion where a lower priority task an delay the exeution of ahigher priority task.In this example we only had one task B between A and C, if therewhere many tasks in between the the bloking time ould be muhworse.With bloking �xed priority sheduling degenerates into a FIFO(First In, First Out) queue in the worst ase.

Slide 12 Priority InheritaneWhile task A is bloked by the semaphore it seems intuitive that taskC is more important than task B, sine task C is bloking theompletion of task A whih is a higher priority task.So if we gave C a higher priority than B while C was in its ritialsetion ould we avoid the problem?

Real Time Systems Leture 4 7

Slide 13
Priority Inheritane an example

 A

 B

 C
t

t

t

lock s

t+2

s is blocked by C

t+2 t+3

C takes A’s priority

Slide 14
Deadloks?Suppose we have two semaphores s1 and s2.� At time t task C (the lower priority task) loks s1� just after this tasks A runs and loks s2 and then tries to lok s1whih it an't lok beause C is bloking s1.� Task C then inherits the priority of A and starts running, task Ctries to lok s2 but task A already holds it, to neither task anexeute hene we have a deadlok.

Real Time Systems Leture 4 8

Slide 15
The Priority Ceiling ProtoolSo we have to be areful with priority inheritane. We need somemehanism for priority whih does not deadlok.We will look at the Priority eiling protool developed by Sha,Rajkummar and Lehozky whih is guaranteed not to deadlok onewe make some restritions. We will then be able to extend ourresponse time analysis alulations to take into aount blokingtimes of tasks.

Slide 16
Priority Ceiling Protool Task RestritionsWe need the following restritions on tasks.� A task must release any semaphores it has before it is ompleted.A task an not hold semaphores between invoations.� Tasks must lok and unlok semaphores in a stak like manner.Thuslok(s1) ... lok(s2) unlok(s2) ... unlok(s1)is o.k. Butlok(s1) ... lok(s2) unlok(s1) ... unlok(s2)is not.

Real Time Systems Leture 4 9

Slide 17
Priority Ceiling Protool ContinuedWe need to assume that the time eah proess needs to be in aritial setion is bounded and known beforehand.We denote si;sas the length of the ritial setion for task i holding semaphore s.We also need to assume that we know for a given task i a priori theset of semaphores it needs to be able to lok. Denote uses(i) as theset of semaphores that our in task i.

Slide 18
CeilingsThe protool uses the idea of a semaphore eiling: the eiling eilingof a semaphores is the priority of the highest priority task the usesthat semaphore.Given a semaphore s denote the priority of the highest priority taskwhih uses s as eil(s)

Real Time Systems Leture 4 10

Slide 19
Run time of ations of the protoolAt run time we do the following: if a task i wants to lok asemaphore s, it an only do so if the priority of i is stritly higherthan the eilings of all semaphores urrently loked by other tasks. Ifthis ondition is not met then task i is bloked.As before, when a task bloks on a semaphore s the task urrentlyholding s inherits the priority of that task.

Slide 20
An example T D C priorityA 50 10 5 highB 500 500 250 mediumC 3000 3000 1000 lowSuppose we have three semaphores s1,s2 and s3 with the followingloking pattern:� Task A: lok(s1) : : : unlok(s1)� Task B: lok(s2) : : : lok(s3) : : : unlok(s3) : : : unlok(s2)� Task C: lok(s3) : : : lok(s2) : : : unlok(s2) : : : unlok(s3)

Real Time Systems Leture 4 11

Slide 21
So we have that:� eil(s1) = H� eil(s2) = M� eil(s3) = M si;s s1 s2 s3A 5B 10 5C 10 25

Slide 22
Calulating the response timeBefore we alulated the response time of a task as:Ri = Ci + X8j2hp(i)�RiTj �CjWe want to inlude some term Bi whih tells us how long the task isbloked by semaphores.Ri = Ci +Bi + X8j2hp(i)�RiTj �Cj

Real Time Systems Leture 4 12

Slide 23
Bloking TimeHow do we alulate the bloking time? A task an be bloked in oneof two ways:� normal bloking where a task tries to aess a semaphore whihis loked.� eiling bloking where the eilings of the urrently blokedsemaphores is too high.A task an also be bloked when exeuting non ritial-setion odewhen a lower priority task inherits a higher priority. This is alledpush through.

Slide 24
Bloking Time ontinuedSo in summary a given task i is bloked by at most one ritialsetion of any lower priority task loking a semaphore with priorityeiling greater than or equal to the priority of task i.Bi = maxfsk;sjk 2 lp(i) ^ s 2 uses(k) ^ eil(s) � pri(i)gwhere lp(i) is the set of all lower priority tasks than i.

Real Time Systems Leture 4 13

Slide 25
Example ontinued BABak to our example, �rst lets try and alulate the bloking timeBA. First lp(BA) is the set fB;Cg. But A is the highest priority taskand sine it doesn't share any loks with B and C the eilings of thetasks in uses(B) and uses(C) are never equal to the priority of A.Thus the set:fsk;sjk 2 fB;Cg ^ s 2 uses(k) ^ eil(s) � pri(A)gis empty (the maximum of an empty set is normally de�ned to bezero by onvention). So BA is 0.

Slide 26
Example ontinued BB and BCTask B has only one lower priority task, task C, whih an onlyaesses semaphores s2 and s3. Again we look at the setfsC;sjs 2 uses(B) ^ eil(s) �Mgboth s2 and s3 have a priority eiling equal to M so BB is 25.Task C has no lower priority tasks so BC will be zero.

Real Time Systems Leture 4 14

Slide 27
Calulating the response times, RA and RCFirst RA = 5 +BA = 5next RC = 1000 +BC + �RC50 � 5 + �RC500� 250so RC = 2500.

Slide 28 Calulating the response times, RBRB = 250 +RB + �RB50 � 5whih gives: RB = 275 + �RB50 � 5

Real Time Systems Leture 4 15

Slide 29
Calulating the response times, RBUsing iteration R1B = 275 andR2B = 275 + �27550 � 5 = 305R3B = 275 + �30550 � 5 = 310R4B = 275 + �31050 � 5 = 310Thus RB is less than B's deadline (310 � 500) hene the task set anbe sheduled using the priority eiling protool.

Slide 30
ProblemsThe priority eiling protool is quite ompliated, and an be diÆultto implement in pratise.The operating system has to keep trak of inherited priorities it alsohas to work out if a task is bloking beause of the priority eiling.But we have ahieved a lot by showing how it is possible to extendour response time alulation to inlude bloking times.

Real Time Systems Leture 4 16

Slide 31
The Immediate Inheritane ProtoolWe assume the same semaphore loking model we use the followingrun time behaviour:When a task i want to lok a semaphore s, the taskimmediately sets the priority to the maximum of the urrentpriority and the eiling priority of s. When the task �nisheswith s it sets it priority bak to what is was before.That's it. This protool has the same worst-ase response time aswith the priority eiling protool (this means our previousalulations) are still valid.

