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Response Time Cal
ulationDeadline Monotoni
 
al
ulation.T D CA 50 10 5B 500 500 250C 3000 3000 1000Let's 
al
ulate the response times of the three pro
esses underdead-line monotoni
 priority assignment.First RA = 5 be
ause A is the highest priority task.
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Task BTask B has task A as its only higher priority task. SoRB = 250 + �RB50 � 5Solving the re
urren
e relation we get that: R0B = 0,R1B = 250R2B = 250 + �25050 � 5 = 275R3B = 250 + �27550 � 5 = 280R4B = 250 + �28050 � 5 = 280
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Task CTask C is the lowest priority soRC = 1000 + �RC50 � 5 + �RC500� 250So R0C = 0,R1C = 1000 andR2C = 1000+ �100050 � 5 + �1000500 � 250 = 1600R3C = 1000+ �160050 � 5 + �1600500 � 250 = 2160R3C = 1000+ �216050 � 5 + �2160500 � 250 = 2470

Slide 4
Example 
ontinuedR4C = 1000+ �247050 � 5 + �2470500 � 250 = 2500R5C = 1000+ �250050 � 5 + �2500500 � 250 = 2500Sin
e R5C = R4C we have found the response time. As ea
h tasksresponse time is less than its deadline we know that a priority baseddeadline-monotoni
 assignment well s
hedule the tasks.
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Sharing Resour
esSo far we have assumed that all the tasks have been independent.What happens if we have two tasks the require a

ess to the samepie
e of data?Sin
e we allow our tasks to be interrupted at arbitrary points, wehave to have some 
ontrol over shared data.Why?Why didn't we have a problem the the Cy
li
 Exe
utive approa
h welooked at in le
ture 2?
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SemaphoresA semaphore is a very simple me
hanism to allow 
on
urrent a

essto data obje
t whi
h only allows one pro
ess to a

ess a sharedobje
t at a time. It is simply is an extra 
ag to a data value:� if there is no pro
ess a

essing the data the 
ag is set tounlo
ked� if a pro
ess wishes to a

esses the data and the 
ag is set tounlo
ked the pro
ess must �rst set the 
ag to lo
ked and thenpro
eed to a

ess the data then when �nished it must unlo
k thesemaphore.� If a a pro
esses attempts to a

esses the data obje
t and the 
agis lo
ked by another pro
ess, it must wait until the 
ag getsunlo
ked.
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Criti
al Se
tionsOn
e some pro
ess has lo
ked the semaphore the 
ode (ortime-period) while that pro
ess has the lo
k is referred to as the
riti
al se
tion.When we 
onsider worst-
ase response times of pro
esses we musttake into a

ount the extra time that a pro
esses 
an be blo
ked theanother pro
ess a

essing shared data. (More later).
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Priority Inversion an ExampleLet us go ba
k to our earlier task set.T D C RA 50 10 5 5B 500 500 250 280C 3000 3000 1000 2500Suppose tasks A and C share some 
ommon data, ea
h requireda

ess to the data for at most 1ms of 
omputation time. We shallrefer to the semaphore guarding the data as s.
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Priority Inversion an ExampleLet us suppose that task C is running and lo
ks s at some time t, justafter C lo
ks s, task A is a
tivated (be
ause it has a higher priority),then task B made runnable then at time t+3 task A needs the datathat C has 
ontrol of be
ause it is lo
ked task B starts running(be
ause task B has higher priority than C). Task B then runs for250ms of time and �nishes at time 253, C 
an now run it �nishes its
omputation so A starts running but A has missed its deadline.
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Priority Inversion an Example
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Priority inversionThe exe
ution of task B delays the exe
ution of task A even thoughit has a lower priority than task A. This e�e
t is known as priorityinversion where a lower priority task 
an delay the exe
ution of ahigher priority task.In this example we only had one task B between A and C, if therewhere many tasks in between the the blo
king time 
ould be mu
hworse.With blo
king �xed priority s
heduling degenerates into a FIFO(First In, First Out) queue in the worst 
ase.

Slide 12 Priority Inheritan
eWhile task A is blo
ked by the semaphore it seems intuitive that taskC is more important than task B, sin
e task C is blo
king the
ompletion of task A whi
h is a higher priority task.So if we gave C a higher priority than B while C was in its 
riti
alse
tion 
ould we avoid the problem?
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Priority Inheritan
e an example
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Deadlo
ks?Suppose we have two semaphores s1 and s2.� At time t task C (the lower priority task) lo
ks s1� just after this tasks A runs and lo
ks s2 and then tries to lo
k s1whi
h it 
an't lo
k be
ause C is blo
king s1.� Task C then inherits the priority of A and starts running, task Ctries to lo
k s2 but task A already holds it, to neither task 
anexe
ute hen
e we have a deadlo
k.
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The Priority Ceiling Proto
olSo we have to be 
areful with priority inheritan
e. We need someme
hanism for priority whi
h does not deadlo
k.We will look at the Priority 
eiling proto
ol developed by Sha,Rajkummar and Leho
zky whi
h is guaranteed not to deadlo
k on
ewe make some restri
tions. We will then be able to extend ourresponse time analysis 
al
ulations to take into a

ount blo
kingtimes of tasks.

Slide 16
Priority Ceiling Proto
ol Task Restri
tionsWe need the following restri
tions on tasks.� A task must release any semaphores it has before it is 
ompleted.A task 
an not hold semaphores between invo
ations.� Tasks must lo
k and unlo
k semaphores in a sta
k like manner.Thuslo
k(s1) ... lo
k(s2) .... unlo
k(s2) ... unlo
k(s1)is o.k. Butlo
k(s1) ... lo
k(s2) .... unlo
k(s1) ... unlo
k(s2)is not.
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Priority Ceiling Proto
ol ContinuedWe need to assume that the time ea
h pro
ess needs to be in a
riti
al se
tion is bounded and known beforehand.We denote 
si;sas the length of the 
riti
al se
tion for task i holding semaphore s.We also need to assume that we know for a given task i a priori theset of semaphores it needs to be able to lo
k. Denote uses(i) as theset of semaphores that o

ur in task i.
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CeilingsThe proto
ol uses the idea of a semaphore 
eiling: the 
eiling 
eilingof a semaphores is the priority of the highest priority task the usesthat semaphore.Given a semaphore s denote the priority of the highest priority taskwhi
h uses s as 
eil(s)
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Run time of a
tions of the proto
olAt run time we do the following: if a task i wants to lo
k asemaphore s, it 
an only do so if the priority of i is stri
tly higherthan the 
eilings of all semaphores 
urrently lo
ked by other tasks. Ifthis 
ondition is not met then task i is blo
ked.As before, when a task blo
ks on a semaphore s the task 
urrentlyholding s inherits the priority of that task.

Slide 20
An example T D C priorityA 50 10 5 highB 500 500 250 mediumC 3000 3000 1000 lowSuppose we have three semaphores s1,s2 and s3 with the followinglo
king pattern:� Task A: lo
k(s1) : : : unlo
k(s1)� Task B: lo
k(s2) : : : lo
k(s3) : : : unlo
k(s3) : : : unlo
k(s2)� Task C: lo
k(s3) : : : lo
k(s2) : : : unlo
k(s2) : : : unlo
k(s3)
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So we have that:� 
eil(s1) = H� 
eil(s2) = M� 
eil(s3) = M 
si;s s1 s2 s3A 5B 10 5C 10 25
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Cal
ulating the response timeBefore we 
al
ulated the response time of a task as:Ri = Ci + X8j2hp(i)�RiTj �CjWe want to in
lude some term Bi whi
h tells us how long the task isblo
ked by semaphores.Ri = Ci +Bi + X8j2hp(i)�RiTj �Cj
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Blo
king TimeHow do we 
al
ulate the blo
king time? A task 
an be blo
ked in oneof two ways:� normal blo
king where a task tries to a

ess a semaphore whi
his lo
ked.� 
eiling blo
king where the 
eilings of the 
urrently blo
kedsemaphores is too high.A task 
an also be blo
ked when exe
uting non 
riti
al-se
tion 
odewhen a lower priority task inherits a higher priority. This is 
alledpush through.
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Blo
king Time 
ontinuedSo in summary a given task i is blo
ked by at most one 
riti
alse
tion of any lower priority task lo
king a semaphore with priority
eiling greater than or equal to the priority of task i.Bi = maxf
sk;sjk 2 lp(i) ^ s 2 uses(k) ^ 
eil(s) � pri(i)gwhere lp(i) is the set of all lower priority tasks than i.
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Example 
ontinued BABa
k to our example, �rst lets try and 
al
ulate the blo
king timeBA. First lp(BA) is the set fB;Cg. But A is the highest priority taskand sin
e it doesn't share any lo
ks with B and C the 
eilings of thetasks in uses(B) and uses(C) are never equal to the priority of A.Thus the set:f
sk;sjk 2 fB;Cg ^ s 2 uses(k) ^ 
eil(s) � pri(A)gis empty (the maximum of an empty set is normally de�ned to bezero by 
onvention). So BA is 0.
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Example 
ontinued BB and BCTask B has only one lower priority task, task C, whi
h 
an onlya

esses semaphores s2 and s3. Again we look at the setf
sC;sjs 2 uses(B) ^ 
eil(s) �Mgboth s2 and s3 have a priority 
eiling equal to M so BB is 25.Task C has no lower priority tasks so BC will be zero.
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Cal
ulating the response times, RA and RCFirst RA = 5 +BA = 5next RC = 1000 +BC + �RC50 � 5 + �RC500� 250so RC = 2500.

Slide 28 Cal
ulating the response times, RBRB = 250 +RB + �RB50 � 5whi
h gives: RB = 275 + �RB50 � 5
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Cal
ulating the response times, RBUsing iteration R1B = 275 andR2B = 275 + �27550 � 5 = 305R3B = 275 + �30550 � 5 = 310R4B = 275 + �31050 � 5 = 310Thus RB is less than B's deadline (310 � 500) hen
e the task set 
anbe s
heduled using the priority 
eiling proto
ol.
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ProblemsThe priority 
eiling proto
ol is quite 
ompli
ated, and 
an be diÆ
ultto implement in pra
tise.The operating system has to keep tra
k of inherited priorities it alsohas to work out if a task is blo
king be
ause of the priority 
eiling.But we have a
hieved a lot by showing how it is possible to extendour response time 
al
ulation to in
lude blo
king times.
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The Immediate Inheritan
e Proto
olWe assume the same semaphore lo
king model we use the followingrun time behaviour:When a task i want to lo
k a semaphore s, the taskimmediately sets the priority to the maximum of the 
urrentpriority and the 
eiling priority of s. When the task �nisheswith s it sets it priority ba
k to what is was before.That's it. This proto
ol has the same worst-
ase response time aswith the priority 
eiling proto
ol (this means our previous
al
ulations) are still valid.


