Real Time Systems Lecture 4

Response Time Calculation

Deadline Monotonic calculation.

T D C
Slide 1 A 50 10 5
B || 500 | 500 | 250
C || 3000 | 3000 | 1000

Let’s calculate the response times of the three processes under
dead-line monotonic priority assignment.

First R4 = 5 because A is the highest priority task.

Task B has task A as its only higher priority task. So

Rp =250 + ’V@-‘ 5

50
Slide 2 Solving the recurrence relation we get that: R% = 0,RL = 250
(250
R%L =250+ | — |5 =275
B 150
(2757
RY =250+ | — | 5 =280
B 150
(2807
R} =250 + o | 5 =280




Real Time Systems Lecture 4

Task C is the lowest priority so
Re Re
=1 —_— — | 2
Re 000 + {50-‘54- {500-‘ 50
Slide 3 g RO, — 0,RL, = 1000 and
(1000 (1000
2 = —_— —_— =
Rz = 1000 + 50 o+ 500 250 = 1600
(16007 (16007
3 = —_— —_— =
Rz = 1000 + 50 o+ 500 250 = 2160
[2160] [2160]
3 = —_— —_— =
Ry = 1000 + 50 o+ 500 250 = 2470
Example continued
P A N SRR R T T T -
2470 2470
4 _ ik -
RC—1000+[ 50 -‘5+[500-‘250 2500
Slide 4
2500 2500
5 = —_— —_— =
RC—1000+[ 50 -‘5+[500-‘250 2500

Since RY, = R{, we have found the response time. As each tasks
response time is less than its deadline we know that a priority based
deadline-monotonic assignment well schedule the tasks.



Real Time Systems Lecture 4

Slide 5

Slide 6

Sharing Resources

i A R e T e s e

So far we have assumed that all the tasks have been independent.
What happens if we have two tasks the require access to the same
piece of data?

Since we allow our tasks to be interrupted at arbitrary points, we
have to have some control over shared data.

Why?

Why didn’t we have a problem the the Cyclic Executive approach we
looked at in lecture 27

Semaphores

T O P e

A semaphore is a very simple mechanism to allow concurrent access

to data object which only allows one process to access a shared
object at a time. It is simply is an extra flag to a data value:

e if there is no process accessing the data the flag is set to
unlocked

e if a process wishes to accesses the data and the flag is set to
unlocked the process must first set the flag to locked and then
proceed to access the data then when finished it must unlock the
semaphore.

e If a a processes attempts to accesses the data object and the flag
is locked by another process, it must wait until the flag gets
unlocked.



Real Time Systems Lecture 4

Slide 7

Slide 8

Critical Sections

Once some process has locked the semaphore the code (or
time-period) while that process has the lock is referred to as the

critical section.

When we consider worst-case response times of processes we must
take into account the extra time that a processes can be blocked the

another process accessing shared data. (More later).

Priority Inversion an Example

ST LR

Let us go back to our earlier task set.

T D C R
A 50 10 5 5
B || 500 | 500 | 250 | 280
C || 3000 | 3000 | 1000 | 2500

Suppose tasks A and C share some common data, each required
access to the data for at most 1ms of computation time. We shall

refer to the semaphore guarding the data as s.



Real Time Systems Lecture 4

Slide 9

Slide 10

Prlorlty Invers1on an Example
g S e R

Let us suppose that task C is running and locks s at some time ¢, just
after C locks s, task A is activated (because it has a higher priority),
then task B made runnable then at time t+3 task A needs the data
that C has control of because it is locked task B starts running
(because task B has higher priority than C). Task B then runs for
250ms of time and finishes at time 253, C can now run it finishes its
computation so A starts running but A has missed its deadline.

Prlorlty Invers1on an Example
B T U S SRR T v P T 5 o

sisblocked by C

t t+253

t t+2 1+253

t t+254



Real Time Systems Lecture 4

Slide 11

Slide 12

version

oy

Priority in

The execution of task B delays the execution of task A even though
it has a lower priority than task A. This effect is known as priority
inversion where a lower priority task can delay the execution of a
higher priority task.

In this example we only had one task B between A and C, if there
where many tasks in between the the blocking time could be much

worse.

With blocking fixed priority scheduling degenerates into a FIFO
(First In, First Out) queue in the worst case.

Priority Inheritanc

Thaf.

B R A AR T T S e e

While task A is blocked by the semaphore it seems intuitive that task
C is more important than task B, since task C is blocking the
completion of task A which is a higher priority task.

So if we gave C a higher priority than B while C was in its critical
section could we avoid the problem?



Real Time Systems Lecture 4

Priority Inheritance an example

) AT TN T o

T = -
] T

sisblocked by C
A
. t
Slide 13
B
t t+2
C takes A’s priority
lock s
C
t 2 3

Deadlocks?

Suppose we have two semaphores s; and ss.

e At time ¢ task C (the lower priority task) locks sq

Slide 14
e just after this tasks A runs and locks s5 and then tries to lock s;

which it can’t lock because C is blocking s;.

e Task C then inherits the priority of A and starts running, task C
tries to lock s9 but task A already holds it, to neither task can

execute hence we have a deadlock.



Real Time Systems Lecture 4

Slide 15

Slide 16

The Prlorlty Celllng Protocol

T S e R R T T e e e

So we have to be careful with priority inheritance. We need some
mechanism for priority which does not deadlock.

We will look at the Priority ceiling protocol developed by Sha,
Rajkummar and Lehoczky which is guaranteed not to deadlock once
we make some restrictions. We will then be able to extend our
response time analysis calculations to take into account blocking
times of tasks.

Prlorlty Celllng Protocol Task Restrlctlons

T T e e e e T E

We need the following restrictions on tasks.

e A task must release any semaphores it has before it is completed.
A task can not hold semaphores between invocations.

e Tasks must lock and unlock semaphores in a stack like manner.
Thus

lock(s1l) ... lock(s2) .... unlock(s2) ... unlock(sl)
is o.k. But
lock(s1l) ... lock(s2) .... unlock(sl) ... unlock(s2)

is not.



Real Time Systems Lecture 4

Priority Ceiling Pr

We need to assume that the time each process needs to be in a

critical section is bounded and known beforehand.

Slide 17 We denote

CSi,s
as the length of the critical section for task i holding semaphore s.

We also need to assume that we know for a given task i a priori the
set of semaphores it needs to be able to lock. Denote uses(i) as the
set of semaphores that occur in task i.

Ceilings

The protocol uses the idea of a semaphore ceiling: the ceiling ceiling
Slide 18  f 4 semaphores is the priority of the highest priority task the uses
that semaphore.

Given a semaphore s denote the priority of the highest priority task
which uses s as

ceil(s)



Real Time Systems Lecture 4

Run tlme of actlons of the protocol

- -
g

At run time we do the following: if a task 7 wants to lock a

Slide 19 semaphore s, it can only do so if the priority of ¢ is strictly higher
than the ceilings of all semaphores currently locked by other tasks. If
this condition is not met then task 7 is blocked.

As before, when a task blocks on a semaphore s the task currently
holding s inherits the priority of that task.
An example
T D C priority
A 50 10 5 high
. B 500 500 250 | medium
Slide 20
C || 3000 | 3000 | 1000 low

Suppose we have three semaphores s;,55 and s3 with the following
locking pattern:

e Task A: lock(s1) ... unlock(s1)
e Task B: lock(ss)...lock(ss)...unlock(ss) ...unlock(ss)
o Task C: lock(ss)...lock(sz2) ... unlock(sz2)...unlock(ss)



Real Time Systems Lecture 4

So we have that:
e ceil(s;) = H
e ceil(se) =M
e ceil(s3) =M

Slide 21
‘CSi,s 51 ‘ S9 ‘ s3 ‘
A 5
B 10| 5
C 10 | 25
Calculating the response time
R S e S TR v ey
Before we calculated the response time of a task as:
R;
Slide 22 Ri=Cit ). {?Jl Ci

viehp(i)

We want to include some term B; which tells us how long the task is
blocked by semaphores.

Ri=Ci+Bi+ Y, —l C;
vjehp(i)



Real Time Systems Lecture 4

Slide 23

Slide 24

Blocking Time

T S T i

How do we calculate the blocking time? A task can be blocked in one
of two ways:

e normal blocking where a task tries to access a semaphore which
is locked.

e ceiling blocking where the ceilings of the currently blocked

semaphores is too high.

A task can also be blocked when executing non critical-section code
when a lower priority task inherits a higher priority. This is called
push through.

Blocking Time continued

So in summary a given task i is blocked by at most one critical
section of any lower priority task locking a semaphore with priority
ceiling greater than or equal to the priority of task i.

B; = max{csy s|k € Ip(i) A s € uses(k) A ceil(s) > pri(i)}

where Ip(i) is the set of all lower priority tasks than .

12



Real Time Systems Lecture 4 13

Slide 25

Slide 26

Example continued B

L AL e

R S LR e s T ST

Back to our example, first lets try and calculate the blocking time
Byu. First Ip(By) is the set {B,C'}. But A is the highest priority task
and since it doesn’t share any locks with B and C the ceilings of the
tasks in uses(B) and uses(C') are never equal to the priority of A.
Thus the set:

{csp,s|k € {B,C} As € uses(k) A ceil(s) > pri(A)}

is empty (the maximum of an empty set is normally defined to be
zero by convention). So B4 is 0.

ontinued By and B¢

R S 0 T R e

Example c

Task B has only one lower priority task, task C', which can only
accesses semaphores sp and s3. Again we look at the set

{escs|s € uses(B) A ceil(s) > M}

both s, and s3 have a priority ceiling equal to M so Bp is 25.

Task C' has no lower priority tasks so B¢ will be zero.



Real Time Systems Lecture 4

Slide 27

Slide 28

Calculating the response tlmes, RA and Re

A R T T L

First
Ry=54+B;s=5
next
_ Reo Reo
Rs = 1000 + B¢ + {50 -‘ 5+ {500-‘ 250
so Rc = 2500.

Calculatlng the response tlmes, RB

N R D T Ty s o

Rp
Rg =250+ R 5
B + B+’750-‘

which gives:

Rp
RB—275+"50-‘5

14



Real Time Systems Lecture 4 15

Calculating the response times, Rp

R e e

B

TS T m,
o

Using iteration Ry = 275 and

2757
R% =275+ | — |5 =305
Slide 29 B 50
305
R =275+ | =—|5=2310
B 150
(3107
RL =275+ | =— |5 =310
B 150

Thus Rp is less than B’s deadline (310 < 500) hence the task set can
be scheduled using the priority ceiling protocol.

Problems

The priority ceiling protocol is quite complicated, and can be difficult

Slide 30 ¢, implement in practise.

The operating system has to keep track of inherited priorities it also
has to work out if a task is blocking because of the priority ceiling.

But we have achieved a lot by showing how it is possible to extend
our response time calculation to include blocking times.



Real Time Systems Lecture 4 16

Slide 31

The Immedlate Inheritance Protocol
RSP A S RN TR T v S -

We assume the same semaphore locking model we use the following
run time behaviour:

When a task ¢ want to lock a semaphore s, the task
immediately sets the priority to the maximum of the current
priority and the ceiling priority of s. When the task finishes
with s it sets it priority back to what is was before.

That’s it. This protocol has the same worst-case response time as
with the priority ceiling protocol (this means our previous
calculations) are still valid.



