
'

&

$

%

Outline of the Course

(Version of 14 November 2005)

• Algorithm Analysis

• Sorting

• Stacks and Queues

• Trees

• Heaps

• Hashing

• Greedy Algorithms

• Graphs

• Constraint Processing

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 1



'

&

$

%

Revision

Things that should be known from the predecessor course:

• Specifications: types, pre-conditions, post-conditions

• Justifications: variants

• Recursion and tail-recursion

• Polymorphism

• Currying

• Higher-order functions

• Datatypes

• Exceptions

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 2



'

&

$

%

Polymorphism

Question: What is the type of the following function?

fun length [] = 0

| length (x::xs) = 1 + length xs

Answer:

’a list -> int

where ’a list means that the function can take a list of anything:
to count the elements of a list, we do not have to know their type.

Polymorphism is a useful and important concept in SML:
it allows us to write functions only once,
but they can apply in a wide variety of situations.

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 3



'

&

$

%

A Non-Polymorphic Function & Currying

Question: What is the type of the following curried function?

fun removeSmaller e [] = []

| removeSmaller e (x::xs) =

if x < e then (removeSmaller e xs)

else x::(removeSmaller e xs)

Answer:

int -> int list -> int list

A declaration of a named function just declares
a value identifier for an anonymous function:
functions are objects, just like numbers, strings, etc.

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 4



'

&

$

%

Polymorphism

SML always infers the most general type of an expression.

In the removeSmaller function,
the fact that < is (by default) a function on integers
forces the function to be on integer lists.

But the function would be the same
if we used strings and compared them in alphabetical order!

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 5



'

&

$

%

removeSmaller with a Higher-Order Function

The idea is to define a function that also takes a comparison function:

fun removeSmallerGen compare e [] = []

| removeSmallerGen compare e (x::xs) =

if compare(x,e) then (removeSmallerGen compare e xs)

else x::(removeSmallerGen compare e xs)

The type of this higher-order function is:

(’a * ’b -> bool) -> ’a -> ’b list -> ’b list

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 6



'

&

$

%

Using removeSmallerGen

To use this function, we call it with a specific comparison function:

fun removeSmallerInt e L = removeSmallerGen (op <) e L

Another way of doing this is:

val removeSmallerInt = removeSmallerGen (op <)

The type of removeSmallerInt is:

int -> int list -> int list

Why is the name fragment ‘removeSmaller’ inadequate now?

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 7



'

&

$

%

Exceptions

Exceptions are an important and useful mechanism in ML.
They provide a way of dealing with error conditions.
They can also be used to escape from local conditions:
see the 8-Queens example page 100 in the Hansen & Rischel book.

exception NegativeInt

fun fact n =

if n < 0 then raise NegativeInt

else if n = 0 then 1

else n * fact (n - 1)

where NegativeInt is an exception constructor.

What is a much better way of writing this function?

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 8



'

&

$

%

Catching Exceptions

To catch an exception, we need to use the handle construct:

fun factString n = Int.toString (fact n)

handle NegativeInt => "Error: non-neg int expected!"

Usage:

- factString 3 ;

> val it = "6" : string

- factString ~3 ;

> val it = "Error: non-neg int expected!" : string

Most modern programming languages, such as C++, Java, Erlang,
Scheme, . . ., have some sort of exception mechanism.

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 9



'

&

$

%

Datatypes and Tagged Values

datatype answer = Yes | No

fun opposite Yes = No

| opposite No = Yes

datatype shape = Circle of real | Square of real

fun area (Circle r) = Math.pi * r * r

| area (Square a) = a * a

where Yes, No, Circle, and Square are value constructors,
just like the predefined :: (read cons) and nil (or []).

- area (Circle 1.0) ;

> val it = 3.14159265359 : real

- area (Square 3.0) ;

> val it = 9.0 : real

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 10



'

&

$

%

Recursive Datatypes

We will be using a lot of recursive datatypes in this course.

Variations on trees will come up a lot:

datatype bTree = Void

| Node of int * bTree * bTree

Recursive datatypes require recursive functions:

fun sum Void = 0

| sum (Node(x,t1,t2)) = x + sum t1 + sum t2

Is this function tail-recursive?
What is its variant and why does it terminate?

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 11



'

&

$

%

Parameterised/Polymorphic Recursive Datatypes

Example datatype:

datatype ’a myList = Empty

| Cons of ’a * ’a myList

where myList is a type constructor, just like the predefined list.

Example function:

fun count Empty = 0

| count (Cons(x,L)) = 1 + count L

What is the variant of this function and why does it terminate?
Is this function tail-recursive?
If not, then how to make it tail-recursive?

c© P. Flener/IT Dept/Uppsala Univ. AD1 & PK II – Revision 12


