Graphs
 (Version of 21 November 2005)

Definition: A graph G is a pair (V, E), where V is a finite set of items, called the vertices of G, and E is a binary relation on V (that is $E \subseteq V \times V$); the elements of E connect vertices and are called the edges of G.

Example: $(\{1,2,3,4\},\{(1,2),(1,3),(2,3),(2,4),(3,4)\})$

Applications of Graphs

Graphs can be used to represent relationships between things.
Example: An undirected graph where each vertex represents an intersection and an edge (i_{1}, i_{2}) between two intersections indicates that there is a road from intersection i_{1} to intersection i_{2}. See any city map or road map.

Example: A directed graph where each vertex represents a website and an edge $\left(w_{1}, w_{2}\right)$ between two websites indicates that there is a link on website w_{1} to website w_{2}.
See http://research.lumeta.com/ches/map/gallery/.

Representations of Graphs

Store E as an $\Theta\left(|V|^{2}\right)$ adjacency matrix of $0 / 1$, indexed by V and V :

- Advantage: Constant (that is $\Theta(1)$) search time for edges.
- Advantage: Compact representation of dense graphs (where $|E|$ is close to $|V|^{2}$).
- Disadvantage: Wasteful of memory on sparse graphs (where $|E|$ is much smaller than $|V|^{2}$).

Store E as an $\Theta(|V|+|E|)$ array of adjacency lists, indexed by V :

- Advantage: Compact representation of sparse graphs.
- Disadvantage: Wasteful of memory on dense graphs.
- Disadvantage: No constant search time for edges.

The performance of algorithms depends on the graph representation.

Paths

A path of length k in a graph G is a sequence of k vertices

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that for every $1 \leq i<k$ there is an edge $\left(v_{i}, v_{i+1}\right)$ in G. Often, paths are written as

$$
v_{1} \longrightarrow v_{2} \longrightarrow \ldots \longrightarrow v_{k}
$$

Examples: (see the graph on slide 1)

$$
\begin{gathered}
1 \longrightarrow 2 \longrightarrow 3 \\
1 \longrightarrow 3 \longrightarrow 4 \\
3 \longrightarrow 4
\end{gathered}
$$

Weighted Graphs

Often we do not just want to express relationships, but also some extra information.

Example: A graph with cities for vertices and roads for edges. It would then also be useful to represent the lengths of these roads.

A weighted graph is a graph with a weight function $w: E \rightarrow \mathbb{R}$ from the edges E to the set \mathbb{R} of the possible weights.

Often, we just label the edges with the weights.
Adjacency lists and matrices can readily be adapted to do so.
Example: The graph of slide 1 with added weights:

$$
(\{1,2,3,4\},\{(1,2,0.5),(1,3,5.5),(2,3,0.5),(2,4,6.0),(3,4,0.1)\})
$$

Weights of Paths

On the weighted graph of slide 5,
there are three ways of reaching vertex 4 from vertex 1 :

$$
\begin{aligned}
& 1 \longrightarrow 2 \longrightarrow 4 \\
& 1 \longrightarrow 3 \longrightarrow 4
\end{aligned}
$$

$$
1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4
$$

But each of these paths has a different weight:

$$
\begin{aligned}
\text { weight }(1 \xrightarrow[\longrightarrow]{0.5} 2 \xrightarrow[\longrightarrow]{6.0} 4) & =0.5+6.0=6.5 \\
\text { weight }(1 \xrightarrow[\longrightarrow]{5.5} 3 \xrightarrow{0.1} 4) & =5.5+0.1=5.6 \\
\text { weight }(1 \xrightarrow{0.5} 2 \xrightarrow{0.5} 3 \xrightarrow{0.1} 4) & =0.5+0.5+0.1=1.1
\end{aligned}
$$

Common Questions on Graphs

What are the shortest (minimum-weight) paths
between two given vertices of a weighted, directed graph?
What are the connected components of an undirected graph?
What are the strongly connected components of a directed graph?
Is there a path between every pair of vertices of a graph?
In other words: Is the graph (strongly) connected?
What is the minimum(-weight) spanning tree
of a connected, undirected graph?

Finding the Shortest Paths in a Graph

Dijkstra's shortest-paths algorithm (1959) finds shortest (minimal-weight), cycle-free paths (of at most $|V|-1$ edges) between a given source vertex and all the other vertices in a directed graph (V, E) with non-negative weights on the edges in E.

Dijkstra's algorithm is another example of a greedy algorithm; it has been shown to indeed compute shortest paths.

It relies on an instance of the optimal-substructure property:
Any shortest path P between two vertices of a graph contains shortest paths between any two vertices of P.

It runs in $O((|V|+|E|) \lg |V|)$ time when using binary heaps, and in $O(|V| \lg |V|+|E|)$ time when using Fibonacci heaps.

Representation Choices for Dijkstra's Algorithm

The algorithm assumes the graph is represented as an array $A d j$ of adjacency lists, for $\Theta(1)$ lookup of the neighbours of a vertex.

We are not just interested in the weights of the shortest paths, but also in actual shortest paths:
the algorithm maintains an array π of predecessors, giving for each vertex v its predecessor $\pi[v]$, which is either a vertex or \perp.

It maintains an array d of distance estimates, giving for each vertex v an upper bound $d[v]$ on the weight of a shortest path from the source s to v.

It maintains a set S of vertices whose final shortest-path weights from the source s have already been determined.

It maintains a min-priority queue $Q=V-S$ of vertices, keyed by d.

Dijkstra's Algorithm

$\operatorname{Dijkstra}(V, A d j, s)$:
for each vertex $v \in V$ do

$$
\begin{aligned}
& d[v] \leftarrow \infty \\
& \pi[v] \leftarrow \perp \\
& d[s] \leftarrow 0 \\
& S \leftarrow \emptyset \\
& Q \leftarrow V, \text { using the values of } d \text { as priorities }
\end{aligned}
$$ while $Q \neq \emptyset$ do \{invariant: $d[v]$ is the shortest-path weight from s to v, for all $v \in S\}$ $u \leftarrow \operatorname{extractMin}(Q)\{u$ is estimated closest to s among $Q=V-S\}$ $S \leftarrow S \cup\{u\}$ for each vertex $v \in A d j[u]$ do if $d[v]>d[u]+w(u, v)$ then $\{d[v] \leftarrow d[u]+w(u, v)$; update $Q ; \pi[v] \leftarrow u\}$

Example for Dijkstra's Algorithm

