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Graphs

(Version of 21 November 2005)

Definition: A graph G is a pair (V,E),
where V is a finite set of items, called the vertices of G,
and E is a binary relation on V (that is E ⊆ V × V );
the elements of E connect vertices and are called the edges of G.

Example: ({1, 2, 3, 4}, {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)})

1 2

3 4
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Applications of Graphs

Graphs can be used to represent relationships between things.

Example: An undirected graph where each vertex represents an
intersection and an edge (i1, i2) between two intersections indicates
that there is a road from intersection i1 to intersection i2.
See any city map or road map.

Example: A directed graph where each vertex represents a website
and an edge (w1, w2) between two websites indicates that there is a
link on website w1 to website w2.
See http://research.lumeta.com/ches/map/gallery/.
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Representations of Graphs

Store E as an Θ(|V |2) adjacency matrix of 0/1, indexed by V and V :

• Advantage: Constant (that is Θ(1)) search time for edges.

• Advantage: Compact representation of dense graphs
(where |E| is close to |V |2).
• Disadvantage: Wasteful of memory on sparse graphs

(where |E| is much smaller than |V |2).
Store E as an Θ(|V |+ |E|) array of adjacency lists, indexed by V :

• Advantage: Compact representation of sparse graphs.

• Disadvantage: Wasteful of memory on dense graphs.

• Disadvantage: No constant search time for edges.

The performance of algorithms depends on the graph representation.
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Paths

A path of length k in a graph G is a sequence of k vertices

v1, v2, . . . , vk

such that for every 1 ≤ i < k there is an edge (vi, vi+1) in G.

Often, paths are written as

v1 −→ v2 −→ . . . −→ vk

Examples: (see the graph on slide 1)

1 −→ 2 −→ 3

1 −→ 3 −→ 4

3 −→ 4
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Weighted Graphs

Often we do not just want to express relationships,
but also some extra information.

Example: A graph with cities for vertices and roads for edges.
It would then also be useful to represent the lengths of these roads.

A weighted graph is a graph with a weight function w : E → R
from the edges E to the set R of the possible weights.

Often, we just label the edges with the weights.
Adjacency lists and matrices can readily be adapted to do so.

Example: The graph of slide 1 with added weights:

({1, 2, 3, 4}, {(1, 2, 0.5), (1, 3, 5.5), (2, 3, 0.5), (2, 4, 6.0), (3, 4, 0.1)})
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Weights of Paths

On the weighted graph of slide 5,
there are three ways of reaching vertex 4 from vertex 1:

1 −→ 2 −→ 4

1 −→ 3 −→ 4

1 −→ 2 −→ 3 −→ 4

But each of these paths has a different weight :

weight(1 0.5−→ 2 6.0−→ 4) = 0.5 + 6.0 = 6.5

weight(1 5.5−→ 3 0.1−→ 4) = 5.5 + 0.1 = 5.6

weight(1 0.5−→ 2 0.5−→ 3 0.1−→ 4) = 0.5 + 0.5 + 0.1 = 1.1
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Common Questions on Graphs

What are the shortest (minimum-weight) paths
between two given vertices of a weighted, directed graph?

What are the connected components of an undirected graph?
What are the strongly connected components of a directed graph?

Is there a path between every pair of vertices of a graph?
In other words: Is the graph (strongly) connected?

What is the minimum(-weight) spanning tree
of a connected, undirected graph?
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Finding the Shortest Paths in a Graph

Dijkstra’s shortest-paths algorithm (1959) finds
shortest (minimal-weight), cycle-free paths (of at most |V | − 1 edges)
between a given source vertex and all the other vertices in
a directed graph (V, E) with non-negative weights on the edges in E.

Dijkstra’s algorithm is another example of a greedy algorithm;
it has been shown to indeed compute shortest paths.

It relies on an instance of the optimal-substructure property :

Any shortest path P between two vertices of a graph
contains shortest paths between any two vertices of P .

It runs in O((|V |+ |E|) lg |V |) time when using binary heaps,
and in O(|V | lg |V |+ |E|) time when using Fibonacci heaps.
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Representation Choices for Dijkstra’s Algorithm

The algorithm assumes the graph is represented as an array Adj of
adjacency lists, for Θ(1) lookup of the neighbours of a vertex.

We are not just interested in the weights of the shortest paths,
but also in actual shortest paths:
the algorithm maintains an array π of predecessors, giving
for each vertex v its predecessor π[v], which is either a vertex or ⊥.

It maintains an array d of distance estimates, giving
for each vertex v an upper bound d[v]
on the weight of a shortest path from the source s to v.

It maintains a set S of vertices whose final shortest-path weights
from the source s have already been determined.

It maintains a min-priority queue Q = V − S of vertices, keyed by d.
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Dijkstra’s Algorithm

Dijkstra(V, Adj, s):
for each vertex v ∈ V do

d[v]←∞
π[v]←⊥

d[s]← 0
S ← ∅
Q← V , using the values of d as priorities
while Q 6= ∅ do
{invariant: d[v] is the shortest-path weight from s to v, for all v ∈ S}
u← extractMin(Q) {u is estimated closest to s among Q = V − S}
S ← S ∪ {u}
for each vertex v ∈ Adj[u] do if d[v] > d[u] + w(u, v)
then {d[v]← d[u] + w(u, v); update Q; π[v]← u}
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Example for Dijkstra’s Algorithm
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