Balanced Binary Trees
With pictures by John Morris (ciips.ee.uwa.edu.au/~morris)

Remindersabout Trees
A binary treeis atree with exactly two sub-trees for each node, called the left and right sub-trees.

A binary search treeis abinary tree where, for each node m,
the left sub-tree only has nodes with keys smaller than (according to some total order) the key of m,

while the right sub-tree only has nodes with keys larger than the key of m.
The height of atreeisthe number of nodes on its longest branch (a path from the root to aleaf).

/

Page 1 of 11

\

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University

Observations

_

The search time in a binary search tree depends on the form of the tree,
that is on the order in which its nodes were inserted.

A pathological caseThen nodes were inserted by increasing order on the keys,
yielding something like a linear list (but with a worse space consumption), wijls€4rch time.

Node search, insertion, deletion, all take time proportional to the height of the binary search
The height of a binary tree of nodes is such thdbg,n <h <n.
The height of aandomly built binary search tree ofnodes is O(logn).

/

Balanced Binary Trees

Pierre Flener, IT Dept, Uppsala University

Page 2 of 11

tree.

~

Observations (continued)

In practice, one can howewvant always guarantee that binary search trees are built randomly.

Binary search trees are thus only interesting if they are “relatively complete.”

So we must look for specialisations of binary search trees whose worst-case performance
on the basic tree operations can be guaranteed to be good, that j®)Qifloe.

A balanced treeis a tree where every leaf is “not more than a certain distance” away
from the root than any other leaf.

The various balancing schemes give actual definitions for “not more than a certain distance
and require different efforts to keep the trees balanced:

 AVL trees
* Red-black trees.

Inserting into, and deleting from, a balanced binary search tree involves transforming the tr
if its balancing property — which is to be keptariant — is violated.
These re-balancing transformations shaléo take O(logn) time, so that the effort is worth it.

These transformations are built from operators thatnalspendent from the balancing scheme.

- /

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University Page 3 of 11

Operationson Binary Trees

We distinguish |eft rotation and right rotation:

preorder wak =y x AB C
postorder walk =ABxCy

o

A walk of atreeisaway of visiting each of its nodes exactly once.
we distinguish preorder walk (visit the root, then the left sub-tree, and last the right sub-tree),
inorder walk (left, root, right), and postorder walk (l€ft, right, root).

Remark: Theinorder walk of abinary search trees givesits nodesin sorted (increasing) key order.
A rotation of abinary tree transforms it so that its inorder-walk key ordering is preserved.

c

inorder wak =AxByC
preorder wak =x Ay B C
postorder walk = A B Cy X

For binary trees,

/

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University

Page 4 of 11

-~

\

AVL Trees
Definition
Named after their inventors — G.M. Adel'son-Velskii and E.M. Landis (USSR) —

AVL trees were the first dynamically balanced trees to be proposed, namely in 1962.

They are not perfectly balanced, but maintain Gf#dgearch, insertion, and deletion times,

whenn is the number of nodes in the tree.

An AVL treeis a binary search tree where the sub-trees of every node differ in height by at most 1

f

h h-1
X

and conersely when the left and right sub-trees axelenged,
or whenboth are of heighh -1

/

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University

Page 5 of 11

Two Examples and One Counter-Example

L et us annotate each node with a balance factor :

» when the tree rooted at this node is stable

— when the tree rooted at this node is left-heavy

+ when the tree rooted at this node is right-heavy

—— when the tree rooted at this node is left-unbal anced
S ++ when the tree rooted at this node is right-unbalanced ,

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University Page 6 of 11

KWhat Perfor mance Can We Expect from AVL Trees? A

Key question:What is the maximal heigthimax(n) of an AVL tree withn nodes?
Conversely: What is the minimal number of nodesin(h) of an AVL tree of heighih?
The latter question is easier to answer!

nmin(0) =0

nmin(l) =1

nmin(h) = 1+ nmin(h-1) + nmin(h-2), when h>1
Compare this with the Fibonacci series:

h 0 1 2 3 4 5 6 7 8
nmin(h) O 1 2 4 7 12 20 33 54
fio(h) O 1 1 2 3 5 8 13 21

Hence: nmin(h) =fib(h+2)-1. (Homework: Prove this!)
Conversely, the maximal heighmax(n) of an AVL tree withn nodes is the largebtsuch that:
fib(h+2)-1<n

which simplifies intohmax(n) < 1.44 log(n+1)-1.33
so that search in an AVL tree indeed takes Q(pgme!
o /

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University Page 7 of 11

|nsertion into AVL Trees A

How to insert — in O(log,n) time — anode into an AVL tree such that it remains an AVL tree?
After locating the insertion place and performing the insertion, there are three cases:

(1) Thetreeremainsbalanced (¢, —, or +): do nothing.

(2) A treewas left-heavy (—) and became left-unbalanced (——): see below.

(3) A treewasright-heavy (+) and became right-unbalanced (++): symmetric to the second case.
Regarding case (2), there are two sub-cases:

» The left sub-tree became left-heavy: right-rotate the left sub-tree to the root.

- /

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University Page 8 of 11

\

Example:

/

Balanced Binary Trees

Pierre Flener, IT Dept, Uppsala University

Page 9 of 11

_

» Theleft sub-tree became right-heavy: firstleft-rotate the right sub-tree of the left sub-treeto its\
parent, and thenright-rotate the left sub-tree to the root.

Property: Aninsertion requiresre-balancing — It does not modify the height of the tree.

Insertion requires at most two walks of the path from the root to the added node,
hence indeed takes O(log,n) time.

/

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University Page 10 of 11

Conclusion
AVL trees are interesting when:
 the number n of nodesislarge (say n = 50), and
* the keys are suspected of not appearing randomly, and

 theratio s/ i of searchesto insertionsis large enough (say s/ i = 5)
to justify the cost of re-balancing.

- /

Balanced Binary Trees Pierre Flener, IT Dept, Uppsala University Page 11 of 11

