6.2. An abstract datatype for stacks

Stacks of objects of type α : α stack
Operations
value emptyStack
TYPE: α stack
VALUE: the empty stack
function isEmptyStack S
TYPE: α stack \rightarrow bool
PRE: (none)
POST: true if S is empty
false otherwise
function push $v S$
TYPE: $\alpha \rightarrow \alpha$ stack $\rightarrow \alpha$ stack
PRE: (none)
POST: the stack S with v added as new top element
function top S
TYPE: α stack $\rightarrow \alpha$
PRE: S is non-empty
POST: the top element of S
function pop S
TYPE: α stack $\rightarrow \alpha$ stack
PRE: S is non-empty
POST: the stack S without its top element

6.3. Realisation of the stack abstract datatype

Version 1

Representation of a stack by a list:
type α stack $=\alpha$ list
REPRESENTATION CONVENTION: the head of the list is the top of the stack, the 2nd element of the list is the element below the top, etc

Realisation of the operations (stack1.sml)
val emptyStack = []
fun isEmptyStack $S=(S=[])$
fun push $v S=v: S$
fun top [] = error "top: empty stack"
| top (x::xs) $=x$
fun pop [] = error "pop: empty stack"
| pop (x::xs) = xs

- This realisation does not force the usage of the stack type
- The operations can also be used with objects of type α list, even if they do not represent stacks!
- It is possible to access the elements of the stack without using the operations specified above: no encapsulation!

Version 2

Definition of a new constructed type using the list type:
datatype α stack $=$ Stack of α list
REPRESENTATION CONVENTION: the head of the list is the top of the stack, the 2 nd element of the list is the element below the top, etc

Realisation of the operations
val emptyStack = Stack []
fun isEmptyStack (Stack S$)=(\mathrm{S}=[\mathrm{l})$
fun push v (Stack S) = Stack ($\mathrm{v}: \mathrm{S}$)
fun top (Stack []) = error "top: empty stack" I top (Stack (x::xs)) $=x$
fun pop (Stack []) = error "pop: empty stack"
I pop (Stack (x:::xs)) = Stack xs

- The operations are now only defined for stacks
- It is still possible to access the elements of the stack without using the operations specified above, namely by pattern matching

An abstract datatype (stack2.sml)
Objective: encapsulate the definition of the stack type and its operations in a parameterised abstract datatype

abstype 'a stack = Stack of 'a list

with
val emptyStack = Stack []
fun isEmptyStack (Stack S) $=(\mathrm{S}=[\mathrm{l})$
fun push v (Stack S) = Stack ($\mathrm{v}: \mathrm{S}$)
fun top (Stack []) = error "top: empty stack" top (Stack (x::xs)) $=x$
fun pop (Stack []) = error "pop: empty stack" pop (Stack (x::xs)) = Stack xs
end

- The stack type is an abstract datatype (ADT)
- The concrete representation of a stack is hidden
- An object of the stack type can only be manipulated via the functions defined in its ADT declaration
- The Stack constructor is invisible outside the ADT
- It is now impossible to access the representation of a stack outside the declarations of the functions of the ADT
- The parameterisation allows the usage of stacks of integers, reals, strings, integer functions, etc, from a single definition!
- abstype 'a stack = Stack of 'a list with ... ;
type 'a stack
val 'a emptyStack = - : 'a stack
val ''a isEmptyStack = fn : ''a stack -> bool
-••
- push 1 (Stack []) ;

Error: unbound variable or constructor: Stack

- push 1 emptyStack;
val it = - : int stack
It is impossible to compare two stacks:
- emptyStack = emptyStack ;

Error: operator and operand don't agree [equality type required]
It is impossible to see the contents of a stack without
popping its elements, so let us add a visualisation function:
function showStack S
TYPE: α stack $\rightarrow \alpha$ list
PRE: (none)
POST: the representation of S in list form, with the top of S as head, etc abstype 'a stack = Stack of 'a list
with
fun showStack (Stack S) $=S$
end

- The result of showStack is not of the stack type
- One can thus not apply the stack operations to it

Version 3

Definition of a recursive new constructed type:
datatype α stack $=$ EmptyStack

$$
\mid \gg \text { of } \alpha \text { stack } * \alpha
$$

infix >>
EXAMPLE: EmptyStack >> $3 \gg 5 \gg 2$ represents the stack with top 2 REPRESENTATION CONVENTION: the right-most value is the top of the stack, its left neighbour is the element below the top, etc

An abstract datatype (stack3.sml)
abstype 'a stack = EmptyStack | >> of 'a stack * 'a with

```
infix >>
```

val emptyStack = EmptyStack
fun isEmptyStack EmptyStack = true
I isEmptyStack (S>>V) = false
fun push $v S=S \gg v$
fun top EmptyStack = error "top: empty stack"
top (S>>v) $=\mathrm{v}$
fun pop EmptyStack = error "pop: empty stack"
pop (S>>v) = S
fun showStack EmptyStack = [] showStack (S>>v) = v :: (showStack S)
end
We have thus defined a new list constructor, but with access to the elements from the right!

6.4. An abstract datatype for FIFO queues

First-in first-out (FIFO) queues of objects of type α : α queue

- Addition of elements to the rear (tail)
- Deletion of elements from the front (head)

Operations
value emptyQueue
TYPE: α queue
VALUE: the empty queue
function isEmptyQueue Q
TYPE: α queue \rightarrow bool
PRE: (none)
POST: true if Q is empty false otherwise
function enqueue V Q
TYPE: $\alpha \rightarrow \alpha$ queue $\rightarrow \alpha$ queue
PRE: (none)
POST: the queue Q with v added as new tail element
function head Q
TYPE: α queue $\rightarrow \alpha$
PRE: Q is non-empty
POST: the head element of Q

function dequeue Q

TYPE: α queue $\rightarrow \alpha$ queue
PRE: Q is non-empty
POST: the queue Q without its head element
function showQueue Q
TYPE: α queue $\rightarrow \alpha$ list
PRE: (none)
POST: the representation of Q in list form, with the head of Q as head, etc
'Formal' semantics
isEmptyQueue emptyQueue = true
$\forall \mathrm{v}, \mathrm{Q}$: isEmptyQueue (enqueue v Q) = false
head emptyQueue = ... error ...
$\forall v, Q$: head (enqueue $v Q$) $=$ if isEmptyQueue Q then v else head Q
dequeue emptyQueue = ... error ...
$\forall v, Q$: dequeue (enqueue $v Q$) $=$ if isEmptyQueue Q then emptyQueue else enqueue v (dequeue Q)

6.5. Realisation of the queue abstract datatype

Version 1

Representation of a FIFO queue by a list:
type α queue $=\alpha$ list
REPRESENTATION CONVENTION: the head of the list is the head of the queue, the 2nd element of the list is behind the head of the queue, and so on, and the last element of the list is the tail of the queue

Example: the queue

is represented by the list $[3,8,7,5,0,2]$

Exercises

- Realise the queue ADT using this representation
- What is the time complexity of enqueuing an element?
- What is the time complexity of dequeuing an element?

Version 2

Representation of a FIFO queue by a pair of lists:
datatype α queue $=$ Queue of α list $* \alpha$ list REPRESENTATION CONVENTION: the term

Queue $\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{m}\right]\right)$
represents the queue
head tail

$$
\begin{array}{llllll}
x_{1} & x_{2} & \ldots & x_{n} & y_{m} & \ldots
\end{array} y_{2} y_{1}
$$

REPRESENTATION INVARIANT: (see next slide)

- It is now possible to enqueue in $\Theta(1)$ time
- It is still possible to dequeue in $\Theta(1)$ time, but only if $n \geq 1$
- What if $n=0$ while $m>0$?!
- The same queue can thus be represented in different ways
- How to test the equality of two queues?

Normalisation

Objective: avoid the case where $n=0$ while $m>0$
When this case appears, transform (or: normalise)
the representation of the queue:
transform Queue $\left([],\left[y_{1}, \ldots, y_{m}\right]\right)$ with $m>0$
into Queue ([ym,.., $\left.\left.y_{1}\right],[]\right)$,
which indeed represents the same queue
We thus have:
REPRESENTATION INVARIANT: a non-empty queue is never represented by Queue ([]$,\left[y_{1}, \ldots, y_{m}\right]$)

function normalise Q

TYPE: α queue $\rightarrow \alpha$ queue
PRE: (none)
POST: if Q is of the form Queue $\left([],\left[y_{1}, \ldots, y_{m}\right]\right)$
then Queue $\left(\left[y_{m}, \ldots, y_{1}\right],[]\right)$
else Q

Realisation of the operations (queue2.sml)
Construction of an abstract datatype:
the normalise function may be local to the ADT, as it is only used for realising some operations on queues
abstype 'a queue $=$ Queue of 'a list * 'a list
with
val emptyQueue = Queue ([],[])
fun isEmptyQueue (Queue ([],[])) = true
I isEmptyQueue (Queue (xs,ys)) = false
fun head (Queue (x::xs,ys)) $=x$
I head (Queue ([],[])) = error "head: empty queue"
| head (Queue ([],y::ys)) = error "head: non-normalised queue" local
fun normalise (Queue ([],ys)) = Queue (rev ys,[])
| normalise $Q=Q$
in
fun enqueue v (Queue (xs,ys)) = normalise (Queue (xs,v::"ys))
fun dequeue (Queue (x::xs,ys)) = normalise (Queue (xs,ys))
I dequeue (Queue ([],[])) = error "dequeue: empty queue"
| dequeue (Queue ([],y::ys)) = error "dequeue: non-norm. queue"
end
fun showQueue (Queue (xs,ys)) = xs @ (rev ys)
fun equalQueues Q1 Q2 = (showQueue Q1 = showQueue Q2)
end

- Why do the head and dequeue functions not normalise the queue instead of stopping the execution with an error?
- The normalisation and representation invariant are hidden in the realisation of the abstract datatype
- On average, the time of enqueuing and dequeuing is $\Theta(1)$
- This representation is thus very efficient!

6.6. An abstract datatype for binary trees

Concepts and terminology
Binary trees of objects of type α : α bTree

Operations
value emptyBtree
TYPE: α bTree
VALUE: the empty binary tree
function isEmptyBtree T
TYPE: α bTree \rightarrow bool
PRE: (none)
POST: true if T is empty
false otherwise

function consBtree vLR

TYPE: $\alpha \rightarrow \alpha$ bTree $\rightarrow \alpha$ bTree $\rightarrow \alpha$ bTree
PRE: (none)
POST: the binary tree with root v, left sub-tree L, and right sub-tree R
function left T
TYPE: α bTree $\rightarrow \alpha$ bTree
PRE: T is non-empty
POST: the left sub-tree of T
function right T
TYPE: α bTree $\rightarrow \alpha$ bTree
PRE: T is non-empty
POST: the right sub-tree of T
function root T
TYPE: α bTree $\rightarrow \alpha$
PRE: T is non-empty
POST: the root of T
'Formal' semantics
isEmptyBtree emptyBtree = true
$\forall v, L, R$: isEmptyBtree (consBtree $v L R$) = false
root emptyBtree = ... error ...
$\forall v, L, R$: root (consBtree $v L R$) $=v$
left emptyBtree = ... error ...
$\forall v, L, R$: left (consBtree $v \operatorname{L~R}$) $=\mathrm{L}$
right emptyBtree $=\ldots$ error ...
$\forall v, L, R$: right (consBtree $v L R$) $=R$

6.7. Realisation of the bTree abstract datatype

Representation
datatype bTree $=$ Void
। Bt of int $*$ bTree $*$ bTree
REPRESENTATION CONVENTION: a binary tree with root x, left subtree L, and right subtree R is represented by $B(x, L, R)$
EXAMPLE: Bt(4, Bt(2, Bt $(1$, Vooid, Void), $\mathrm{Bt}(3$, Void, Void $)$),
$\mathrm{Bt}(8, \mathrm{Bt}(6, \mathrm{Bt}(5, \mathrm{Void}, \mathrm{Void}), \mathrm{Bt}(7$, Void,Void $)$), $\mathrm{Bt}(9$, Void,Void $)))$
Realisation of the operations (bTree.sml)
abstype 'a bTree = Void
I Bt of 'a * 'a bTree * 'a bTree
with
val emptyBtree = Void
fun isEmptyBtree Void = true
I isEmptyBtre ($\mathrm{Bt}(\mathrm{v}, \mathrm{L}, \mathrm{R}))=$ false
fun consBtree v L R = Bt (v,L,R)
fun left Void = error "left: empty bTree"
I left ($\mathrm{Bt}(\mathrm{v}, \mathrm{L}, \mathrm{R}))=\mathrm{L}$
fun right Void = error "right: empty bTree" right $(B t(v, L, R))=R$
fun root Void = error "root: empty bTree"
$\operatorname{root}(B t(v, L, R))=v$
end

Walk operations (inorder.sml)

function inorder T

TYPE: α bTree $\rightarrow \alpha$ list
PRE: (none)
POST: the nodes of T upon an inorder walk
fun inorder Void = []
I inorder (Bt(v,L,R)) = (inorder L) @ (v :: inorder R)
No tail recursion!
It takes $\Theta(n \log n)$ time for a binary tree of n nodes. . .
function inorderGen T acc
TYPE: α bTree $\rightarrow \alpha$ list $\rightarrow \alpha$ list
PRE: (none)
POST: (the nodes of T upon an inorder walk) @ acc
fun inorderGen Void acc = acc
I inorderGen ($\mathrm{Bt}(\mathrm{v}, \mathrm{L}, \mathrm{R})$) acc = let val rAcc = inorderGen R acc
in inorderGen L ($v: r: r A c c)$ end
fun inorder $t=$ inorderGen t []
One tail recursion! No call to @ (concatenation)!
It takes $\Theta(n)$ time for a binary tree of n nodes
Exercises

- Efficiently realise the preorder and postorder walks of a binary tree, and analyse the underlying algorithms
- How to test the equality of two binary trees?

Other operations

function exists kT
TYPE: $\alpha^{=} \rightarrow \alpha^{=}$bTree \rightarrow bool
PRE: (none)
POST: true if T contains node k
false otherwise
function insert kT
TYPE: $\alpha^{=} \rightarrow \alpha^{=}$bTree $\rightarrow \alpha^{=}$bTree
PRE: (none)
POST: T with node k
function delete k T
TYPE: $\alpha^{=} \rightarrow \alpha^{=}$bTree $\rightarrow \alpha^{=}$bTree
PRE: (none)
POST: if exists $k T$, then T without one occurrence of node k, otherwise T
function nbNodes T
TYPE: α bTree \rightarrow int
PRE: (none)
POST: the number of nodes of T
function nbLeaves T
TYPE: α bTree \rightarrow int
PRE: (none)
POST: the number of leaves of T

Exercises

- Efficiently realise these five functions
- Show that their algorithms at worst take $\Theta(n)$ time, if not $\Theta(1)$ time, on a binary tree with initially n nodes

Height of a binary tree (height.sml)

- The height of a node is the length of the longest path (measured in its number of nodes) from that node to a leaf
- The height of a tree is the height of its root

function height T

TYPE: α bTree \rightarrow int
PRE: (none) ; POST: the height of T
fun height Void $=0$
I height $(B t(v, L, R))=1+\operatorname{Int} . \max ($ height L, height R)
No tail recursion!
It takes $\Theta(n)$ time for a binary tree of n nodes.
Note that heightGen Tacc $=$ acc + height T does not suffice to get a tail recursion: why?!
function heightGen T acc hMax
TYPE: α bTree \rightarrow int \rightarrow int \rightarrow int
PRE: (none) ; POST: max (acc + height T, hMax)
fun heightGen Void acc hMax = Int.max (acc, hMax)
I heightGen (Bt(v,L,R)) acc hMax =
let val $h 1=$ heightGen $R(a c c+1) h M a x$
in heightGen $L(a c c+1) h 1$ end
fun height2 bt $=$ heightGen bt 00
One tail recursion!
It also takes $\Theta(n)$ time for a binary tree of n nodes,
but it takes less space!

6.8. An ADT for Binary Search Trees (BSTs)

Concepts and terminology (see the tree on slide 6.19)
Binary search trees of nodes of type $\left(\alpha^{=}, \beta\right):\left(\alpha^{=}, \beta\right)$ bsTree where:

- $\alpha^{=}$is the type of the keys (need for an equality test)
- β is the type of the satellite data for each key are binary trees with:
(REPRESENTATION) INVARIANT: for a binary search tree with (k, s) in the root, left subtree L, and right subtree R :
- every element of L has a key smaller than k
- every element of R has a key larger than k

Note that we (arbitrarily) ruled out duplicate keys

Benefits

- The inorder walk of a binary search tree lists its nodes by increasing order of their keys!
- The basic operations at worst take $\Theta(n)$ time on a binary search tree with (initially) n nodes, but they take $O(\lg n)$ time on randomly built binary search trees

Let us restrict our realisation to integer keys: β bsTree

Some operations

value emptyBsTree
TYPE: β bsTree
VALUE: the empty binary search tree
function isEmptyBsTree T
TYPE: β bsTree \rightarrow bool
PRE: (none)
POST: true if T is empty
false otherwise
function exists $\mathrm{k} T$
TYPE: int $\rightarrow \beta$ bsTree \rightarrow bool
PRE: (none)
POST: true if T contains a node with key k
false otherwise
function insert (k, s) T
TYPE: $($ int $* \beta) \rightarrow \beta$ bsTree $\rightarrow \beta$ bsTree
PRE: (none)
POST: if exists $k T$, then T with s as satellite data for key k otherwise T with node (k,s)
function retrieve kT
TYPE: int $\rightarrow \beta$ bsTree $\rightarrow \beta$
PRE: exists kT
POST: the satellite data associated to key k in T
function delete k T
TYPE: int $\rightarrow \beta$ bsTree $\rightarrow \beta$ bsTree
PRE: (none)
POST: if exists $\mathrm{k} T$, then T without the node with key k , otherwise T

6.9. Realisation of the bsTree ADT

Representation
datatype 'b bsTree = Void
| Bst of (int * 'b) * 'b bsTree * 'b bsTree
REPRESENTATION CONVENTION: a BST with (k, s) in the root, left subtree L, and right subtree R is represented by $\operatorname{Bst}((k, s), L, R)$ REPRESENTATION INVARIANT: (see slide 6.25)

Realisation of the operations (bsTree.sml)
val emptyBsTree = Void
fun isEmptyBsTree Void = true
isEmptyBsTree (Bst((key,sat),L,R)) = false
fun exists k Void $=$ false
I exists k (Bst((key,sat),L,R)) =
if $k=$ key then true
else if k < key then exists $k L$
else ($* \mathrm{k}>$ key $*$) exists k R
fun insert (k,s) Void $=\operatorname{Bst}((k, s), V o i d, V o i d)$
I insert (k,s) (Bst((key,sat),L,R)) =
if $k=k e y$ then $\operatorname{Bst}((k, s), L, R)$
else if k < key then Bst((key,sat), (insert (k, s) L), R)
else (* $\mathrm{k}>$ key $*$) Bst((key,sat), L, (insert (k,s) R))
fun retrieve k Void = error "retrieve: non-existing node"
I retrieve $\mathrm{k}($ Bst((key,sat),L,R)) $=$
if $k=$ key then sat
else if k < key then retrieve $k L$
else ($* \mathrm{k}>$ key $*$) retrieve k R

When deleting a node (key,sat) whose subtrees L and R are both non-empty, we must not violate the repr. invariant!

1. Replace (key,sat) by the node with the maximal key of L , whose key is smaller than the key of any node of R (one could also replace by the node with the minimal key of R)
2. Remove this node with the maximal key from L

So we need a deleteMax function:
function deleteMax T
TYPE: β bsTree $\rightarrow($ int $* \beta) * \beta$ bsTree
PRE: T is non-empty
POST: (max, NT), where max is the node of T with the maximal key, and NT is T without max
fun deleteMax Void = error "deleteMax: empty bsTree"
I deleteMax (Bst(r,L,Loid): 'b bsTree) $=(r, L)$
I deleteMax (Bst(r,L,R)) =
let val (max, newR) = deleteMax R
in (max, Bst(r,L,newR)) end
fun delete k Void $=$ Void
I delete k (Bst((key,sat),L,R)) =
if k < key then Bst((key,sat), (delete k L), R)
else if k > key then Bst((key,sat), L, (delete k R))
else ($* \mathrm{k}=$ key $*$)
case (L,R) of
(Void, _) $\Rightarrow>$ R
| (_ , Void) $=>$ L
| (_ , ,) => let val (max, newL) = deleteMax L in Bst(max,newL,R) end

