Local Search

® Remember local search works by picking an initial solution and
making local moves that reduce the cost of the solution.
@ The key problem in local search is to find good neighbours.
@ Which are easy to compute,
@ not to few and not to many
@ A common technique is to partly solve the problem and when
picking the initial solution and pick moves that preserve the partial
solution. (Think of the partition problem).
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Local and Global Minima

@ The problem is that is you keep picking local moves that improve
the solution you end up in local minima.

@ We are looking for global minima, that is a solution which
minimizes the cost.

@ The problem is we sometimes get stuck in at a local minima. That
is somewhere where there are no local improving moves that
reduce the cost.
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Local and Global Minima

@ How do we avoid local minima?

@ Start again with a different initial solution

@ Allow increasing moves to be made to move us out of a local
minima.

@ There are many techniques but we will look at two:

@ TABU Search
@ Simulated Annealing.
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Tabu Search

@ Tabu search avoids cycles in the search space.
@ Ideally the Tabu search algorithm would be as follows:
procedure Full—Tabu
Generate initial solution s*
T« 0
while Some stopping condition not satisfied do
N < LegalNeighbours(s*)
N’ < N\ T (remove from N any items found in the tabu list)
s* «— selectBest(N’).
T—TU {S*}
end while
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Tabu Search

@ Obviously the set T can get large.

@ The normal technique is to give each member an age and remove
items that get too old. The age is often referred to as a “tabu
tenure parameter”

@ Not that tabu search does not avoid completely local minima, but it
does remove cycles as we saw with the N-Queens example at the
last lecture.

@ With random restarts you should keep the old Tabu list. It has
useful information.
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Randomized Iterative Improvement

@ Tabu search does not let you completely escape local minima
@ A strategy is to sometimes allow increasing moves.

@ procedure Randomized-Ilterative—Improvement  depends on
a parameter wp
Generate initial solution s*
while Some stopping condition not satisfied do
N — Legaleighbours(s*)
u < random(|0, 1])
if u < wp then
s* « PickRandom(N)
else
s* « selectBest(N)
end if
end while
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Randomized Iterative Improvement

@ If wp is equal to O then we get normal local search.
@ If wp is equal to 1 then we get a random walk.

@ Even with a random walk you'll find the solution eventually, it will
just take a very long time.

@ This can be combined with Tabu search.
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Simulated Annealing

@ Simulated Annealing takes its inspiration from physics. It uses a
similar process to a liquid cooling down to make crystals.

@ It uses the concept of temperature.

@ The higher the temperature the higher the probability of accepting
a cost increasing move.
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Simulated Annealing

@ Given a cost function f and a temperature T a current solution s*
and a candidate solution s the acceptance probability is as follows:

1 if f(s) < f(s%)
exp("ETE)y - otherwise

paccept(Tys*as) = {
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Simulated Annealing

@ With a constant temperature T we can define the following
algorithm:
Constant Temperature Annealing
Generate initial solution s*
while Stopping condition not satisfied do
N < LegalNeighbours(s*)
s « PickRandom(N)
u < random(J[0, 1])
if U < paccept(T,S*,s) then
S*«s
end if
end while
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Simulated Annealing

@ To produce perfect crystals you start with a high temperature and
cool slowly.

@ Simulated Annealing modifies the temperature each step.

@ For example start with T =10 and set T < 0.95 « T each step.
This often works well.

@ Determining the initial temperature is not so easy theoretically and
depends on the problem.
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Inspiration from Biology

@ If we look around us at the world we see many organisms adapted
to their environment.

@ Biology tells us that genetics are responsible for this.
@ Every cell has strands of DNA which code a number of genes.

@ Each gene is responsible for a number of proteins which are the
subroutines that build up a functioning cell.
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Inspiration from Biology

@ There are two mechanisms that produce variety:
@ Crossover, when a male and a female mate you get some genes
from your mother and some from your father.
o Random mutation, for various reasons bits of the DNA are altered
randomly.
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Inspiration from Biology

@ Darwin coined the term “Natural Selection” other people often use
the phrase “Survival of the fittest”

@ If you are not well adapted to your environment then there is less
chance of survival.

@ So less chance of mating, so less chance that you pass your
genes on.

@ So overtime the bad genes disappear and the good genes
dominate.
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Inspiration from Biology

@ Genetic algorithms try to mimic this.
@ A genetic algorithm needs a few things:

@ A notion of a coding of a solution.

@ A crossover function. c. that takes two solutions and combines
them to produce a new one.

@ A notion of mutation.
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Genetic Algorithm Scheme

For minimizing f.

Generate initial population S = {s1,...,Sn}

while Stopping criteria not satisfied do
Select two parent solutions s; and s; according to their fitness so,
the lower f(s) the higher the probability of selecting it.
s’ —c(si,sj)
With a mutation probability mutate s’
S—Su{s'}
Kill of old member of S with some scheme.

end while

Obviously there is a lot of leeway in the algorithm, lots of choices for
you to change.

Finding a good representation and a good cross over function is crucial
to make the algorithm work.
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Genetic Algorithm Chromosome

@ The solution is often represented as a string:
0o 11 ... 110

@ A common crossover function picks a random point in the two
stings and at that points switches from one string to another.

0 11 .../1 1 0
101 .../0 0 1
@ To produce the offspring:
011 .../]00 1
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Example Encoding

® Remember the Knapsack problem. Given n items with weight w;
and value p; you want to keep the total weight below some
constant ¢ while maximizing the value.

@ The coding would be n 0/1 values, 1 represents in the sack and 0
represents out of the sack.
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