
Local Search

Remember local search works by picking an initial solution and
making local moves that reduce the cost of the solution.
The key problem in local search is to find good neighbours.

Which are easy to compute,
not to few and not to many

A common technique is to partly solve the problem and when
picking the initial solution and pick moves that preserve the partial
solution. (Think of the partition problem).
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Local and Global Minima

The problem is that is you keep picking local moves that improve
the solution you end up in local minima.

We are looking for global minima, that is a solution which
minimizes the cost.

The problem is we sometimes get stuck in at a local minima. That
is somewhere where there are no local improving moves that
reduce the cost.
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Local and Global Minima

How do we avoid local minima?

Start again with a different initial solution

Allow increasing moves to be made to move us out of a local
minima.
There are many techniques but we will look at two:

TABU Search
Simulated Annealing.
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Tabu Search

Tabu search avoids cycles in the search space.

Ideally the Tabu search algorithm would be as follows:
procedure Full—Tabu
Generate initial solution s∗

T ← ∅
while Some stopping condition not satisfied do

N ← LegalNeighbours(s∗)
N ′ ← N \ T (remove from N any items found in the tabu list)
s∗ ← selectBest(N ′).
T ← T ∪ {s∗}

end while
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Tabu Search

Obviously the set T can get large.

The normal technique is to give each member an age and remove
items that get too old. The age is often referred to as a “tabu
tenure parameter”

Not that tabu search does not avoid completely local minima, but it
does remove cycles as we saw with the N-Queens example at the
last lecture.

With random restarts you should keep the old Tabu list. It has
useful information.
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Randomized Iterative Improvement

Tabu search does not let you completely escape local minima

A strategy is to sometimes allow increasing moves.

procedure Randomized–Iterative–Improvement depends on
a parameter wp
Generate initial solution s∗

while Some stopping condition not satisfied do
N ← Legaleighbours(s∗)
u ← random([0, 1])
if u ≤ wp then

s∗ ← PickRandom(N)
else

s∗ ← selectBest(N)
end if

end while
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Randomized Iterative Improvement

If wp is equal to 0 then we get normal local search.
If wp is equal to 1 then we get a random walk.

Even with a random walk you’ll find the solution eventually, it will
just take a very long time.

This can be combined with Tabu search.
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Simulated Annealing

Simulated Annealing takes its inspiration from physics. It uses a
similar process to a liquid cooling down to make crystals.

It uses the concept of temperature.

The higher the temperature the higher the probability of accepting
a cost increasing move.
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Simulated Annealing

Given a cost function f and a temperature T a current solution s∗

and a candidate solution s the acceptance probability is as follows:

paccept(T , s∗
, s) =

{

1 if f (s) ≤ f (s∗)

exp( f (s∗)−f (s)
T ) otherwise
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Simulated Annealing

With a constant temperature T we can define the following
algorithm:

Constant Temperature Annealing
Generate initial solution s∗

while Stopping condition not satisfied do
N ← LegalNeighbours(s∗)
s ← PickRandom(N)
u ← random([0, 1])
if u ≤ paccept(T , s∗

, s) then
s∗ ← s

end if
end while
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Simulated Annealing

To produce perfect crystals you start with a high temperature and
cool slowly.

Simulated Annealing modifies the temperature each step.

For example start with T = 10 and set T ← 0.95 ∗ T each step.
This often works well.

Determining the initial temperature is not so easy theoretically and
depends on the problem.
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Inspiration from Biology

If we look around us at the world we see many organisms adapted
to their environment.

Biology tells us that genetics are responsible for this.

Every cell has strands of DNA which code a number of genes.

Each gene is responsible for a number of proteins which are the
subroutines that build up a functioning cell.
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Inspiration from Biology

There are two mechanisms that produce variety:
Crossover, when a male and a female mate you get some genes
from your mother and some from your father.
Random mutation, for various reasons bits of the DNA are altered
randomly.
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Inspiration from Biology

Darwin coined the term “Natural Selection” other people often use
the phrase “Survival of the fittest”

If you are not well adapted to your environment then there is less
chance of survival.

So less chance of mating, so less chance that you pass your
genes on.

So overtime the bad genes disappear and the good genes
dominate.
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Inspiration from Biology

Genetic algorithms try to mimic this.
A genetic algorithm needs a few things:

A notion of a coding of a solution.
A crossover function. c. that takes two solutions and combines
them to produce a new one.
A notion of mutation.
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Genetic Algorithm Scheme

For minimizing f .
Generate initial population S = {s1, . . . , sn}
while Stopping criteria not satisfied do

Select two parent solutions si and sj according to their fitness so,
the lower f (s) the higher the probability of selecting it.
s′ ← c(si , sj)
With a mutation probability mutate s′

S ← S ∪ {s′}
Kill of old member of S with some scheme.

end while
Obviously there is a lot of leeway in the algorithm, lots of choices for
you to change.
Finding a good representation and a good cross over function is crucial
to make the algorithm work.
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Genetic Algorithm Chromosome

The solution is often represented as a string:
0 1 1 . . . 1 1 0

A common crossover function picks a random point in the two
stings and at that points switches from one string to another.
0 1 1 . . . 1 1 0 . . .

1 0 1 . . . 0 0 1 . . .

To produce the offspring:
0 1 1 . . . 0 0 1 . . .
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Example Encoding

Remember the Knapsack problem. Given n items with weight wi

and value pi you want to keep the total weight below some
constant c while maximizing the value.

The coding would be n 0/1 values, 1 represents in the sack and 0
represents out of the sack.
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