
Nonliner Optimisation – Introduction Lecture 1

Justin Pearson

November 9, 2007

http://user.it.uu.se/~justin/Teaching/Nonlinear/

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 1 / 35

http://user.it.uu.se/~justin/Teaching/Nonlinear/


Course Content

Lecture 1
Introduction, revision(?) of complexity theory, modelling with
decision variables and summary of solution methods.

Lecture 2
Introduction to Local Search, Neighbourhoods and meta-heuristics

Lecture 3
More on local search, simulated annealing and Variable
Nieghbourhood Design.

Lecture 4
Complete Search, Sat

Lecture 5
Complete Search, Constraint Satisfaction

Lecture 6,
Constraint Satisfaction, Modelling and Symetry breaking.

Note that this might change (possibly can be changed by you)!

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 2 / 35



Background in Complexity theory

Why study complexity theory?
Complexity theory can be a fascinating study of the fundamentals
of computer science (algorithms).
Complexity studies how hard problems are and tries to put them
into classes

P ⊆ NP ⊆ PSPACE ⊆ · · ·

The fundamental problem in complexity is deciding if the above
inclusions are proper or not that is for example:

P 6= NP?

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 3 / 35



Background in Complexity Theory

What do we need to know from Complexity theory?

We need to know how hard people think problems are.

If we know that a problem is in NP even though it is not known if
P = NP or not we know that lots of clever people believe that the
problem is hard.

Which means that if we think we’ve found a polynomial time
algorithm then either we are very clever or we’ve made a mistake.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 4 / 35



What is NP?

NP stands for non-deterministic polynomial time.
The actual definition is quite complicated:

A decision problem is in the class NP if it can be solved in time
which is a polynomial function of the input size by a
non-deterministic Turing machine.

A non-deterministic Turing machine is a computer with an
unbounded amount of memory where certain instruction steps are
non-deterministic and magically pick the right answer.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 5 / 35



What is NP? — Better Definition

A decision problem is in NP a solution can be verified to be a
correct solution in polynomial time.

This gives a non-deterministic solution method, guess a solution
(and magically get the right answer) then test if it is a correct
solution in polynomial time.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 6 / 35



What is NP? — Example

Given a graph
• •

@
@

@
@

@
@

@

• • •

Is it possible to colour the nodes with n-colours such that if two nodes
are directly connected with a node then they do not have the same
colour?

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 7 / 35



• •

@
@

@
@

@
@

@

• • •

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 8 / 35



How do you solve NP complete problems?

We don’t have access to non-deterministic computers. Quantum
computing is still a way away (and they are not really the same
thing)
Essentially the separation into guessing and testing gives a very
simple and naive algorithm.

Enumerate all possible solutions, send them to the polynomial
tester and stop when you’ve found a solution.

So go through all the possible assignments of nodes to colours
until you find a solution.

The problem is that the solution space is usually exponential in
size relative to the input.

For example k colours, N nodes then we have kN possible
colourings.

Obviously people keep looking for better ways.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 9 / 35



NP completeness

Completeness is an important concept in complexity theory.
A problem is NP-complete if

it is in NP and
It is NP-hard that is every other problem in NP is reducible to it.

A problem L is reducible to C is there is a polynomial time
reduction from instances of L to instances of C such that yes
answers to L correspond to yes answers of C under the reduction.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 10 / 35



NP Completeness

Many problems are NP-complete, for example graph colouring.

This means if we have a solution technique for one of the
problems that runs in deterministic polynomial time then we can
solve them all.

A NP-complete problem is powerful enough to simulate any other
NP-complete problem.

NP-complete problems are all as hard as each other, in the worst
case with any algorithm we expect exponential time. In the worst
case we will just be enumerating the solutions.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 11 / 35



NP — What to do?

What happens when we have an NP-complete problem to solve?

Complexity theory tells us that the problem is hard, it tells us that
lots of people think it is hard as well. But if we actually have a
problem to solve then we can’t just give up and go home.
There are many possibilities:

Maybe there is some aspect of you particular instance that makes
the problem easy to solve. For example if you are only interested if
it is possible to colour the graph with only 2 colours then the
problem has a polynomial time algorithm.
Particular heuristics can be applied that work well on your datasets.
NP completeness only tells us about the worst case behaviour.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 12 / 35



A very incomplete list of NP-complete problems

Boolean formula satisfaction

Timetabling

Traveling Salesman problem

Knapsack problem.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 13 / 35



Modelling NP-complete problems

The graph colouring example suggest a very simple way of
modelling the problem.

A graph is a pair (V , E) where E is a set of edges that is a set of
pairs {a, b} where a ∈ V and b ∈ V .

For example our graph form before:

a b

>
>

>
>

>
>

>

c d e

Would be represented as

({a, b, c, d , e}, {{a, b}, {a, c}, {b, d}, {c, d}, {d , e}})

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 14 / 35



Decision Variables and Values

We could represent the problem of colouring with N colours as
follows:

Given the variables
va, vb, vc , vd , ve

Each variable has the initial domain D = {1, . . . N}
Subject to the constraints:

va 6= vc , va 6= vb, vb 6= vd , vc 6= vd , vd 6= ve

A solution is a mapping
f : V → D

such that all constraints are satisfied.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 15 / 35



va 6= vc , va 6= vb, vb 6= vd , vc 6= vd , vd 6= ve

For example given D = {1, 2, 3}

f (va) = 1, f (vb) = 2, f (vc) = 2, f (vd) = 1, f (ve) = 2

is a solution.

While

f (va) = 1, f (vb) = 1, f (vc) = 2, f (vd) = 1, f (ve) = 2

is not a solution because is violates the constraint va 6= vb

(amoungst others).

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 16 / 35



Satisfaction

Given conjunction of boolean formulas:

φ = (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (y ∨ z)

The variables are vx , vy , vz all with the domain {0, 1} subject to
the constraints the code up the meaning of the boolean formulas.

So for example f (vx) = 1, f (vy ) = 1, f (vz) = 0 is a solution.

While g(vx) = 0, g(vy ) = 0, g(vz) = 0 is not a solution because
(x ∨ y) is violated.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 17 / 35



Optimisation

The general form a NP-complete problem is something like:
A set of variables:

V = {v1, v2, v3, . . . , vn}

Each taking values from some domain D
Subject to a set of constraints C1, . . . , Cn that restrict the allowed
values of subsets of the variables.
Note, how you represent constraints efficiently or how the problem
is actually solved is a different matter.

An optimisation problem includes an extra piece of information a
cost function c : V → R (or more often N) Which for each solution
assigns a cost.

The problem then is to find a solution that minimizes or maximizes
the cost.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 18 / 35



Complexity Theory of optmisation problems

Complexity theory normally only deals with yes/no problems.

Given a set X , let X ∗ be the set of all strings using symbols from
X .

For example X = {a, b} then

X ∗ = {ǫ, a, b, aa, aaa, b, bb, ba, ab, aab, bbaa, . . .}

X ∗ is always an infinite set.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 19 / 35



Complexity Theory of optmisation problems

A language L is simply a subset of X ∗.

In complexity theory we code problems as languages and study
the complexity of machines needed to recognize the language.

A machine M recognises L is for all l ∈ L, M(l) outputs a yes and
l 6∈ L then M(l) outputs a no.

For example if we code all Sat instances somehow, let Sat be the
set of all satisfiable sat instances in the coding.

Then a Satisfaction tester will output yes if given a coding of
satisfiable instance.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 20 / 35



Complexity Theory of optmisation problems

Many problems have the property that if it possible to find a
yes,no answer in polynomial time then it is possible to find an
actual solution.

Being told that you have a satisfying assignment to a problem is
less useful then actually having the assigment.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 21 / 35



Complexity Theory of optmisation problems

Optimisation problems are at least as hard as decision problems.
Given an optimization with cost function c, we can construct the
descsion problem for a given bound

∃s.M(s) ∧ c(s) ≤ B

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 22 / 35



Complexity Theory of optmisation Problems

Sometimes it is not important to have exactly the best solution,

but if we can have something that is guaranteed to be with in a
certain ratio of the best, we might be ok.

Let A be an approximation algorithm for a given combinatorial
optmization problem. Then R is a performance bound of A for a
given problem instance I if

A(I)
OPT (I)

≤ R

Where OPT is the cost of the optimal solution (this assumes that
the problem is a maximization problem).

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 23 / 35



So lets say you had a an algorithm that for all instances of I which
gave 90% of the optimal.

Which would mean that

A(I) = OPT (I) ∗ 0.9

So
A(I)

OPT (I)
=

0.9 ∗ OPT (I)
OPT (I)

= 0.9

So R is equal to 0.9.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 24 / 35



Complexity Theory of optmisation Problems

The class APX is the class of optimisation problems for which
there exists an approximation algorithm with some finite constant
performance ratio.

Assuming that P 6= NP then there problems for which there are
not in APX . (For example winner determiniation in a combinatorial
auction).

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 25 / 35



Knapsack Problem – Problème du sac à dos

Suppose that you are going on a camping trip, you want to put
everything in a knapsack.

The problem is that you have too many things you can only carry
20Kg. You have to decide which subset of items you will carry.

To make the problem harder you assign a value to each item, for
example a bottle of wine would be valued more than a bottle of
coke, while a bottle of wine weighs more than a bottle of coke.

You want to maximize your value.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 26 / 35



Knapsack Problem – Problème du sac à dos

Given n items which with a value p1, . . . , pi , . . . , pn each with a
weight w1, . . . , wi , . . . , wn.

The Decision variables are a bit harder in this case.

We have n-decision variables x1, . . . , xn all with the domain {0, 1}.
0 means we don’t pack it, 1 means we take it with us.

So we want to maximize
n∑

j=1

pjxj

subject to the constraint

n∑

j=1

wjxj ≤ c

This seemingly simple problem is NP-complete.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 27 / 35



Problem Modelling

We have three things:

The actual problem.

Modelling the problem with variables, values and constraints.

Using your model within some solution technique.

As we have seen with the knapsack it is not always obvious how to
model things with variables and values.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 28 / 35



Problem Modelling

Further your model might not have such a good fit with your
solution technique.

For example if you are using a SAT-solver. That is a solver for
boolean formulas. By NP-completeness you can solve any
NP-complete problem using a suitable coding.

But some codings are better than others.

Different solver have different quirks, often re-modeling the problem
can result in very different performance. We will talk about modelling
issues later.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 29 / 35



A very quick tour of solution methods

Solutions to NP-complete problems can be divided up into two classes:

Complete Search (often trying to be more intelligent)

Incomplete search via various heuristics.

A complete search is guaranteed to find the best solution. Complete
search works by intelligently pruning parts of the search space.
Incomplete search tries some heuristic that often converges to a
solution very fast but does not guarantee that we have found the best
solution.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 30 / 35



Complete Search Example

Back to our graph-colouring example. Take the graph
G = ({a, b, c, d , e}, {{a, b}, {a, c}, {b, d}, {c, d}, {d , e}}) If we search
the variables in the order va, vb, vc , vd , ve and the domain in the order
{1, 2, 3} we get the following search tree:

a = 1

ttttttttt

JJJJJJJJJ

b = 1 b = 2

ttttttttt

JJJJJJJJJ

c = 1 c = 2

ttttttttt

d = 1

ttttttttt

JJJJJJJJJ

e = 1 e = 2

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 31 / 35



Backtrack Search

Complete search often proceeds by backtracking. A partial
solution is built up at each stage it is extended, if the extension
leads to a failure then try to extend it with a different value.

Repeat until either the whole search space has been searched
and hence there is no problem or stop when a solution is found.

It is a little more complicated when you have cost functions, you
have to use branch and bound (more later).

To optimise backtrack search, you want to fail as early as possible and
learn from your failures.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 32 / 35



Heuristic Search for Graph Colouring

Assign an initial random solution.

For a node in the graph, count the number of neighbours with the
same colour. Call the conflict of a node. Define the conflict of the
whole problem as the sum of all the conflicts of all the nodes.

Pick a node with the maximum conflict (there might be more than
one). Change the colour to reduce the total conflict.

Repeat until a solution is found.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 33 / 35



Local Search

A preview of the next lecture.
A local search algorithm consists of the following:

A notion of a configuration, (variables and domains)
A neighbourhood function, that takes a configuration and returns a
set of neighbours.
A notion of cost.

The basic local search algorithm then
Starts with an initial random configuration
Picks a nieghbour from the nieghbourhood set that reduces the cost
Then continues looping until a solution is found.

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 34 / 35



Local Search

There are many problems with local search:

Finding good neighbourhoods, too big, takes to long to find a cost
reducing move, too small takes to long to converge to a solution.

Local minimum

Cycles in the search space

Justin Pearson () Nonliner Optimisation – Introduction Lecture 1 November 9, 2007 35 / 35


