
* 1

Lecture 8 – Introduction to Pipelines

Adapated from slides by

David Patterson

http://www-inst.eecs.berkeley.edu/~cs61c/

* 2

Review
(1/3)
°Datapath is the hardware that
performs operations necessary to
execute programs.

°Control instructs datapath on what to
do next.

°Datapath needs:
• access to storage (general purpose
registers and memory)

• computational ability (ALU)

• helper hardware (local registers and PC)

* 3

Review
(2/3)
°Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)

2. Instruction Decode (Read Registers)

3. ALU (Computation)

4. Memory Access

5. Write to Registers

°ALL instructions must go through ALL
five stages.

°Datapath designed in hardware.

* 4

Example
Datapath

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs

rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
 Register

Read

3. Execute 4. Memory
5. Write

Back

* 5

Outline

°Pipelining Analogy

°Pipelining Instruction Execution

°Hazards

°Advanced Pipelining Concepts by
Analogy

* 6

Gotta Do Laundry

° Ann, Brian, Cathy, Dave
each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30
minutes

° “Stasher” takes 30
minutes to put clothes
into drawers

° Washer takes 30
minutes

* 7

Sequential Laundry

°Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C

D

A

30
Time

3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

* 8

Pipelined Laundry

°Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B

C

D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

* 9

General
Definitions
°Latency: time to completely execute a
certain task

• for example, time to read a sector from
disk is disk access time or disk latency

°Throughput: amount of work that can
be done over a period of time

* 10

Pipelining Lessons
(1/2) ° Pipelining doesn’t help

latency of single task, it
helps throughput of
entire workload

° Multiple tasks
operating
simultaneously using
different resources

° Potential speedup =
Number pipe stages

° Time to “fill” pipeline
and time to “drain” it
reduces speedup:
2.3X v. 4X in this
example

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30
T
a
s
k

O
r
d
e
r

* 11

Pipelining Lessons
(2/2) ° Suppose new

Washer takes 20
minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

° Pipeline rate limited
by slowest pipeline
stage

° Unbalanced lengths
of pipe stages also
reduces speedup

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30
T
a
s
k

O
r
d
e
r

* 12

Steps in Executing
MIPS
1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
 Mem-ref: Calculate Address
 Arith-log: Perform Operation

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) Write Back: Write Data to Register

* 13

Pipelined Execution
Representation

°Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time

* 14

Review: Datapath for
MIPS

Stage 1 Stage 2 Stage 3Stage 4 Stage 5

°Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB

A
L

U I$ Reg D$ Reg

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs

rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
 Register Read

3. Execute 4. Memory
5. Write

Back

* 15

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
L

U

Reg

Reg

 I$

 D$

A
L

U

A
L

U

Reg

 D$

Reg

 I$

 D$

Reg
A

L
U

Reg Reg

Reg

 D$

Reg

 D$

A
L

U

(In Reg, right half highlight read, left half write)

Reg

 I$

* 16

Example

°Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write

°Nonpipelined Execution:
• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

°Pipelined Execution:
• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns

* 17

Pipeline Hazard: Matching socks in later
load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B

C

D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

* 18

Problems for Computers

°Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

* 19

Structural Hazard #1: Single Memory
(1/2)

Read same memory twice in same clock cycle

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

* 20

Structural Hazard #2: Registers
(1/2)

Can’t read and write to registers simultaneously

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

* 21

Structural Hazard #2: Registers
(2/2)
°Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

°Solution: introduce convention
• always Write to Registers during first half
of each clock cycle

• always Read from Registers during
second half of each clock cycle

• Result: can perform Read and Write
during same clock cycle

* 22

Control Hazard: Branching
(1/6)
°Suppose we put branch decision-
making hardware in ALU stage

• then two more instructions after the
branch will always be fetched, whether or
not the branch is taken

°Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally

• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

* 23

Control Hazard: Branching
(2/6)
° Initial Solution: Stall until decision is
made

• insert “no-op” instructions: those that
accomplish nothing, just take time

• Drawback: branches take 3 clock cycles
each (assuming comparator is put in ALU
stage)

* 24

Control Hazard: Branching
(3/6)
°Optimization #1:

• move comparator up to Stage 2

• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

* 25

° Insert a single no-op (bubble)

Control Hazard: Branching
(4/6)

Add

Beq

Load

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

° Impact: 2 clock cycles per branch
instruction  slow

* 26

Control Hazard: Branching
(5/6)
°Optimization #2: Redefine branches

• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

* 27

Control Hazard: Branching
(6/6)
°Notes on Branch-Delay Slot

• Worst-Case Scenario: can always put a
no-op in the branch-delay slot

• Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-ordering instructions is a common
method of speeding up programs

- compiler must be very smart in order to find
instructions to do this

- usually can find such an instruction at least
50% of the time

* 28

Example: Nondelayed vs. Delayed
Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

* 29

Things to Remember
(1/2)
°Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

°What makes this work?
• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

* 30

Advanced Pipelining Concepts (if
time)
°“Out-of-order” Execution

°“Superscalar” execution

°State-of-the-Art Microprocessor

* 31

Review Pipeline Hazard: Stall is dependency

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

bubble

303030 3030 30 30

* 32

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

303030 3030 30 30

E

F

bubble

* 33

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of parallel
tasks?

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

303030 3030

* 34

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

* 35

 Compaq Alpha 21264

° Very similar instruction set to MIPS

° 1 64KB Instruction cache, 1 64 KB Data
cache on chip; 16MB L2 cache off chip

° Clock cycle = 1.5 nanoseconds,
or 667 MHz clock rate

° Superscalar: fetch up to
6 instructions /clock cycle,
retires up to 4 instruction/clock cycle

° Execution out-of-order

° 15 million transistors, 90 watts!

* 36

Things to Remember
(1/2)
°Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

°What makes this work?
• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

* 37

Things to Remember
(2/2)
°Pipelining a Big Idea: widely used
concept

°What makes it less than perfect?
• Structural hazards: two different
instructions require same hardware
Need more HW resources

• Control hazards: need to worry about
branch instructions?
 Delayed branch

• Data hazards: an instruction depends on
a previous instruction?

