
Caches and Virtual memory:- Plan
� Caches� Virtual memory as a cache for the disk.� Virtual addresses, Pages and page-tables.� Write-through or Write Back?� Making Page tables fast :- Translation Look-aside Buffers.

Caches and Virtual Memory – Justin Pearson Page 1

Locality

The principle of locality is an observation of how programs works, it

says two things :-� If you use something now, you’ll probably need it soon.� If you use something in memory you’ll probably need the things

close by.

Remember this is only an observation that many programs seem to

work this way, it is not a universal law (Radix sort).

Caches and Virtual Memory – Justin Pearson Page 2

Caches

CPU

Level n

Level 2

Level 1

Levels in the

memory hierarchy

Increasing distance

from the CPU in

access time

Size of the memory at each level

Caches and Virtual Memory – Justin Pearson Page 3

Caches
� A cache is a small fast memory near the processor, it keeps local

copies of locations from the main memory.� The simplest case type of Cache is a direct mapped Cache.� Each cache entry consists of three parts

– A valid bit, tells you if the data is valid.

– A Tag field, tells you where the data came from.

– Data field, the actual data.

Caches and Virtual Memory – Justin Pearson Page 4

Direct Mapped Caches

Valid

Entry

2047

Tag Data
Addresses that use this entry

(a)

(b)

Bits 16 11 3 2

TAG LINE WORD BYTE

65504-65535, 131040-131071, …

96-127, 65632-65663, 131068-131099

64-95, 65600-65631, 131036-131067, …

32-63, 65568-65599, 131004-131035, …

 0-31, 65536-65567, 131072-131003, …

7

6

5

4

3

2

1

0

Caches and Virtual Memory – Justin Pearson Page 5

Caches
� A cache is a small fast memory near the processor, it keeps local

copies of locations from the main memory.

Cache hit The item you are looking for is in the cache.

Cache miss the item you are looking for is not in the cache, you

have to copy the item from the main memory.

Caches and Virtual Memory – Justin Pearson Page 6

Write Through/Write Back

What happens if you change the value of an item in the cache?

You have to update the value in main memory as well. There are two

strategies:

Write Through Change the value in the memory when you change

the value in the cache

Write Back Only update the value in the main memory when you

you remove an item from the cache.

Most caches use write through, simple to implement, memory

transfers can go in parallel, the added complexity of implementing

Write-Back doesn’t always pay off.

Caches and Virtual Memory – Justin Pearson Page 7

Set-Associative Caches
� The problem is that many differnt lines in memory compute for

the same cache slots.� A solution is to have n places for each slot.� The cache is more complicated but there is less chance of data

that you need being overwritten.

Caches and Virtual Memory – Justin Pearson Page 8

Set-Associative Cahces

Valid

Tag Data
2047

7
6
5
4
3
2
1
0

Entry A

Valid

Tag Data

Entry B

Valid

Tag Data

Entry C

Valid

Tag Data

Entry D

Caches and Virtual Memory – Justin Pearson Page 9

Virtual Memory

First way of thinking of Virtual Memory as using the main memory

as a cache for the external storage.

Physical addresses

Disk addresses

Virtual addresses

Address translation

Caches and Virtual Memory – Justin Pearson Page 10

Virtual Memory

What does virtual memory give us?� It allows programs to be larger than the physical memory.� It allows programs to have identically looking address spaces, no

need for relocation of the code.� It allows more than one program to be resident at the same time

and offers protection so one program can not interfere with

another (the same mechanism allows sharing of code between

programs).

How is all this done? Page tables and virtual addresses.

Caches and Virtual Memory – Justin Pearson Page 11

Question

Why is ok to allow programs to be larger than the physical memory?� Think about Locality

Virtual memory also automates overlays.

Caches and Virtual Memory – Justin Pearson Page 12

The Virtual Address Space
� Each process sees a virtual address space and is able to address a

larger address space than is available in the physical memory.� On the MIPS the virtual address space is 232 bytes (4 Gig).� The job of the virtual memory system is to map virtual memory

addresses to physical addresses and to manage which pages be

stored on the disc.

Caches and Virtual Memory – Justin Pearson Page 13

The Virtual Address Space

Physical addresses

Disk addresses

Virtual addresses

Address translation

Caches and Virtual Memory – Justin Pearson Page 14

Pages and Virtual Addresses

A Cache is divided into a number of lines, when data is loaded in

from the main memory more than one location is loaded in to take

advantage of spatial locality.

The idea of the virtual memory system system swap in and out data

between the disc and the main memory.

Because disc access is much slower than main memory it is better to

swap in and out larger chunks than we do with the Cache. Typically

the memory is divided into larger chunks, of sizes 4k,8K or larger.

These chunks are referred to as pages.

Caches and Virtual Memory – Justin Pearson Page 15

Virtual Addresses

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Caches and Virtual Memory – Justin Pearson Page 16

Virtual Addresses

A virtual address is split up into a page number and an offset.

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Question: Why do it this way?

Caches and Virtual Memory – Justin Pearson Page 17

Pages and Virtual Addresses

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual page

number

Physical page or

disk address

The page table records where each page is stored in memory or on

disc.

Caches and Virtual Memory – Justin Pearson Page 18

Pages and Virtual memory, the story so far
� Split the memory up into pages.� A virtual address has two parts, the page number and the offset

in the page.� Page table translates the virtual address into a physical address

or tells you where the page lives on disc.

Caches and Virtual Memory – Justin Pearson Page 19

How do we know if the page is in memory?

Physical memory

Disk storage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Virtual page

number

Physical page or

disk address

The valid bits tells us quickly if the page is in memory.

Caches and Virtual Memory – Justin Pearson Page 20

Page Faults� What happens if the request page is not in memory?� We have to load the page in from the disc.� What happens if the main memory is full?� We have to chose an page in memory to swap out out to the disc

and the load the page in from the disc the new page.

All this is handled by the operating system, this is because loading

pages in from the disc takes a relatively long amount of time so the

operating system has time to handle this.

Which pages are swapped out has a large impact on the performance

of the operating system.

Caches and Virtual Memory – Justin Pearson Page 21

Write through or write back?

With Caches we had two choices on writing to a value in the cache:

Write through Update the item in the main memory at the same

time you update the item in the cache;

Write Back Only update the information in the main memory

when the copy in the cache gets over written.

What should we do in the virtual memory system and why?

Caches and Virtual Memory – Justin Pearson Page 22

Memory protection, relocation and protection
� If each process has it own page table, then you can stop one

process overwriting or reading the data of another process. How?� Programs can be compiled to run at one address and don’t need

to be relocated when loaded. Why?� Process can share memory blocks. How?

Caches and Virtual Memory – Justin Pearson Page 23

Large page tables� Suppose a page is 212 bytes and you have a virtual address space

of 232 bytes, how many pages are there?� There would be
232

212
= 232�12 = 222

pages.� Suppose each entry in the page table took up 4-bytes (not

unreasonable) then the size of a page table for a process would

be:

222 � 22 = 224 = 16Meg

That’s a big page table.

Caches and Virtual Memory – Justin Pearson Page 24

Large page tables, what to do?

The are various solutions including� use a dynamically growing page table guess an initial size and

make it grow as needed.� Hierarchical page tables� Inverted page tables, store the list of physical pages and their

corresponding virtual addresses then use a hash-function to find

the entries.

This is not so bad since not all programs need 232 bytes of

addressable memory.

Caches and Virtual Memory – Justin Pearson Page 25

Large page tables, what to do?
� What ever scheme you use to optimise your page table you want

to minimise the amount of time you spend translating virtual

addresses to physical addresses.� Remember every address request a process makes in a virtual

address request. Processes can only make virtual address request

they never have access to the physical addresses.

If virtual address translation is slow, this will be a real bottleneck.

Caches and Virtual Memory – Justin Pearson Page 26

TLBs - Making address translation fast

A TLB is like a cache for recently used translations.

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Physical page

addressValid

TLB

1

1

1

1

0

1

Tag

Virtual page

number

Physical page

or disk address

Physical memory

Disk storage

Caches and Virtual Memory – Justin Pearson Page 27

TLBs
� If the item is not in the TLB then a lookup is performed in the

page-table.� The TLB is most often implemented in hardware.� Question: What principle is the designer of a TLB relying on to

get good performance?

Caches and Virtual Memory – Justin Pearson Page 28

What happens when a virtual address is requested?

Yes

Deliver data

to the CPU

Write?

Try to read data

from cache

Write data into cache,

update the tag, and put

the data and the address

into the write buffer
Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss

exception

No

YesNo

YesNo

Write access

bit on?

YesNo

Write protection

exception

Physical address

Caches and Virtual Memory – Justin Pearson Page 29

