
Today’s Topics

Today we are going to focus on processor implementation. So we will

need a bit of revision then we will will try and understand what is

going in processor design.

• Digital logic (revision), combinatorial circuits

• Latches

• Clock cycles, sequential circuits

• Data paths and simple CPU design

• Clock speed and the longest path.

• Microcode

• Risc vs. Cisc.

Lecture 7 Processor Implementation, – Justin Pearson Page 1



Boolean Logic

• A digital circuit is where only two voltage levels (or ranges)

matter. Typically between 0 and 1 volts represents level 0 and

between 2 and 5 volts represents 1.

Collector

Base

+VCC

Vout

Vin

Emitter

(a)

Vout

+VCC

+VCC

Vout

V2

(b)

V1

V1

(c)

V2

Lecture 7 Processor Implementation, – Justin Pearson Page 2



Transistors, Switches and Gates

• A transistor (within digital electronics) acts as swtich. If Vin is

high then there is a circuit between the collector and the emitter.

• Using transistors the following gates can be built

(b)

NAND
A

B

X

A B X

0 0 1

0 1 1

1 0 1

1 1 0

(c)

NOR
A

B

X

A B X

0 0 1

0 1 0

1 0 0

1 1 0

AND
A

B

X

(d)

A B X

0 0 0

0 1 0

1 0 0

1 1 1

OR
A

B

X

(e)

A B X

0 0 0

0 1 1

1 0 1

1 1 1

(a)

NOT

A

A X

X

0 1

1 0

Lecture 7 Processor Implementation, – Justin Pearson Page 3



Combinatorial functions

• Any combinatorial function can be realised by combinations of

the simple logical gates on the previous slide.

• In fact you can do every thing with a NAND gate.

Additional reading Implentation of Boolean functions 3.1.3., 3.1.4, circuit

equivalence

Lecture 7 Processor Implementation, – Justin Pearson Page 4



Clocks

• Just building things out of gates makes things very difficult. You

can’t (unless you are very clever) make things happen in certain

orders.

• A clock is simply a circuit that emits a series of plues with a

precise width and interval.

• The time interval between the corresponding edges of two

consective pules is known as the clock cycle time

• Often many things may happen during a clock cycle.

• A common way of providing finer resolution than the basic clock

is to tap the primary clock and instert a delay circuit thus

generating a phase-shifted secondary clock.

Lecture 7 Processor Implementation, – Justin Pearson Page 5



Clocks

For example 4 events can be provided: rising and falling edge of C1

and the rising and falling edge of C2.

Delay

C1

C2

(a) (b)

A

B

C

(c)

Lecture 7 Processor Implementation, – Justin Pearson Page 6



Latches

• When designing a sequential circuit, split the computation up

into phases. Store the result of each phase in a latch of or a

flip-flop.

• There are various flavours of latches.

• Essentially latches store data via feedback.

S

Q

Q

R

Clock

Lecture 7 Processor Implementation, – Justin Pearson Page 7



D-latch

D

Q

Q

If the clock is high then Q = D.

Lecture 7 Processor Implementation, – Justin Pearson Page 8



Flip-flops and Latches

• Latches are level triggered output chages when the level goes high.

• Flip-flops are edge triggered.

• Registers and memory can be built using flip-flops.

Lecture 7 Processor Implementation, – Justin Pearson Page 9



Longest path and clock speed

• Suppose the output of a combintorial circuit (such as an adder)

is connected to a latch or a flip-flop.

• The result of the computation had to be completed before the

end of the clock cycle. Otherwise it won’t get stored in a latch.

• The time a circuit takes to complete a computation is

proporational to the longest path between an input and an

output.

• Hence we have to have the clock cycle longer the longest path in

the circuit.

• Typically some tolerance is built in. Which is why you can

overclock a bit, but why you can’t over clock too much.

Lecture 7 Processor Implementation, – Justin Pearson Page 10



CPU Chips and Buses

Typical

Micro-


Processor

Symbol for

electrical ground

Symbol

for clock


signal

Bus arbitrationAddressing

Coprocessor

Status

MiscellaneousInterrupts

Bus control

Power is 5volts

+5v

Data

Φ

Typical processor pin-out.

Lecture 7 Processor Implementation, – Justin Pearson Page 11



Computer Buses

• A bus is a common electrical pathway between multiple devices.

Bus

controller

Memory bus

I/O bus

Disk
On-chip bus

CPU chip

Registers
Buses

ALU

Memory

Modem Printer

Lecture 7 Processor Implementation, – Justin Pearson Page 12



Computer Buses

• If more than one devices tries to use the bus at the same time

then chaos can happen.

• Hence rules have be defined refered to as the bus protocol.

• Active devices on buses which can initiate bus transfers referred

to as masters the passive ones referred to as slaves.

• When the CPU instructs the disk controller to read from the

disk, the CPU is the master and the disk controller is the slave.

Later when the disk controller instructs the memory to receive

some date then the memory is the slave and the disk controller is

the master.

• Memory can never be the master.

Lecture 7 Processor Implementation, – Justin Pearson Page 13



CPU Organization

Central processing unit (CPU)

Control

unit

Arithmetic

logical unit


(ALU)

Registers

Main

memory Disk Printer

Bus

I/O devices

… …

Lecture 7 Processor Implementation, – Justin Pearson Page 14



Types of instructions

• Register ↔ register

• Register ↔ memory

Lecture 7 Processor Implementation, – Justin Pearson Page 15



Register ↔ register datapath cycle

A + B

A + B

A

A

B

B

Registers

ALU input register

ALU output register

ALU

ALU input bus

Lecture 7 Processor Implementation, – Justin Pearson Page 16



Instruction Execution

Fetch-execute decode cycle.

• Fetch the next instruction from memory (use the program

counter register)

• Increment the program counter

• Determine the type of the instruction just fetched.

• If the insruction uses data from memory determine where it is.

• Fetch data from memory

• Execute the instructions

• Goback to step 1.

Various posssibilities, each step takes a clock cycle, or (less efficient

why?) do everyhthing in one clock cycle.

Lecture 7 Processor Implementation, – Justin Pearson Page 17



A
m

o
r
e

c
o
m

p
lic

a
te

d
d
a
ta

p
a
th

H

Shifter controlShifter

ALU

2

N

A B

B busC bus

6
ALU control

Control signals

Memory

control

registers

Enable onto B bus

Write C bus to register

To

and

from

main

memory

Z

SP

LV

CPP

TOS

OPC

PC

MDR

MAR

MBR

L
e
c
t
u
r
e

7
P

ro
cesso

r
Im

p
lem

en
ta

tio
n
,
–

J
u
stin

P
ea

rso
n

P
a
g
e

1
8



Datapath control

• Key idea :- Each unit is either enabled or disabled via a control

signal.

• For example the ALU takes two agruuments to add togther two

registers and but the result into another register then enable the

adder unit in the ALU.

• The instruction decoder then simply works out which units to

enable on the datapath.

Lecture 7 Processor Implementation, – Justin Pearson Page 19



Datapath Control - Strategies

• Microcode :-

– Have lots of simpler instructions (micro instructions). Split

each instruction up into microinstructions.

– Decoder then finds a list of micro-instructions for each

high-level instruction.

– Requires micro-code memory, a micro-program counter.

• Advantages

– Same instructions can be implemented on different

architectures.

– Can change the micro-code. Can be easier to debug.

• Disadvantage

– Extra layer between instructions and hardware.

Lecture 7 Processor Implementation, – Justin Pearson Page 20



RISC philosophy

• Decode instructions directly to control signals. No microcode.

• Faster simpler instructions, closer to the hardware.

• In contrast with CISC no extra internal decoding is needed.

Lecture 7 Processor Implementation, – Justin Pearson Page 21


