
Memory Organisation

Slide 1

• Memory

• Reading and writing data from memory

• Arrays

• Strings

Slide 2

• The memory of the computer holds both the program and data.

• We only have 32 registers avaliable, even in small programs you

are going to run out of space to store data.

• We can use memory to store data.

Lecture 3 MIPS Assembly Language, registers and Memory – Justin Pearson Page 3

lw

Slide 3

Memory is organised as a sequence of bytes:

Address Value

0 8 bit Value

1 8 bit Value

2 8 bit Value
...

...

Every value in memory has an address, the memory is continuous

every element can be accessed in the same way.

Slide 4

• Remember registers hold 32 bits, that is 4 bytes (a word).

• You spend a lot of time reading and writing registers.

This means you often have to think of memory in chunks of 4.

Address Value

0 32 bit Value

4 32 bit Value

8 32 bit Value

12 32 bit Value
...

...

Lecture 3 MIPS Assembly Language, registers and Memory – Justin Pearson Page 5

la

Slide 5

• To read information from memory you us the, lw, load word

instruction.

Assume $s0 holds the address 0x8000000 then

lw $t0,0($s0)

Will load the contents of memory location 0x8000000 into $t0

and

lw $t0,4($s0)

will load the contents of memory location 0x8000004 into $t0.

Slide 6

Format of lw.

• lw register,constant(register)

The constant can not be a register.

Lecture 3 MIPS Assembly Language, registers and Memory – Justin Pearson Page 7

Arrays

Slide 7

How do we load an address into a register? We can you the same

trick as in the previous lecture, but there is a pseudo instruction:

• la $t0,address

There is a reason that you you la rather than li, but I can’t tell you

what it is yet.

When you start doing your labs you’ll start to learn how to use labels.

Slide 8

To store a value from a register into a memory location you use, sw,

store word. This instruction has the same format as lw.

la $s0,0x8000000

li $t0,10

sw $t0,0($s0)

sw $t0,4($s0)

This puts the value 10 into locations 0x8000000 and 0x8000004.

Lecture 3 MIPS Assembly Language, registers and Memory – Justin Pearson Page 9

Revision

Slide 9

• To access the ith element of an integer array you need to access

the memory address

Base Address + 4 ∗ i

You must remember to do this.

Slide 10

• Sometimes, especially when you are dealing strings you want to

read and write bytes.

• The MIPS processor has two instructions lb and sb which read

and write bytes, these have the same format as lw and sw.

Lecture 3 MIPS Assembly Language, registers and Memory – Justin Pearson Page 11

Revision

Slide 11

• la to load an address into a register. Remember there is a

distinction between the address and the value stored at that and

swaddress. (Pointers and values).

• lw load a value into a register from memory, sw store a value and

sw from a register to memory.

• Integer arrays, multiply by 4.

• Strings and byte arrays, use lb and sb.

Lecture 3 MIPS Assembly Language, registers and Memory – Justin Pearson Page 11

