Assembly Language First Take

Slide 1

Slide 2

e Programs and data are stored in memory (More on this later).

- w

o

6.

Memory
A A
[
L1
.| Arithmetic
Control logic unit
unit
= Output

/
Accumulator

Key ideas :-

Fetch an instruction from memory.

Decode the instruction.

Fetch any data from memory

Execute the instruction.

Work out the address of the next instruction

Go back to step 1.

Questions

e How do you represent instructions?

e How do you represent data?

Lecture 2

MIPS Assembly Language, Arithmetic — Justin Pearson

Page 3

Our First Instruction :- Add

e Think of assembly language as a very low level programming
language.

e There are very few instructions.

e Many things that you can do in one step in high level languages
you have to do in many steps.

Slide 3 Why learn Assembly Language?

e It is the language of the machine. Computers don’t understand C
or Java directly.

e We'll see how we can implement assembly language.

e It helps you to understand how compilers work.

e The MIPS processor has 32 special variables called registers.
These registers can hold 32 bits (4 Bytes).

e Some of the registers have special uses. We will find out as we go
along.

e The registers have the names $0-$31, they also have other names.

e In the next few lectures we will be concerned with the following

Slide 4 registers (the meaning of saved and temporary will become clear

later) :

Name | Number | Usage

$t0-$t7 8-15 Temporaries
$s0-$s7 16-23 Saved
$t8-$t9 24-25 more temporaries

Lecture 2 MIPS Assembly Language, Arithmetic — Justin Pearson

Page 5

Small Constants

Pseudo C code
$s0 = $s5 + $t0O
Assembly language:
Slide 5 add $s0,$s5,$t0

Arithmetic instructions have three arguments the first two must be

registers and the last is a register or a small constant (more later).

Arithmetic instructions, first argument is the destination.

Important Arithmetic instructions can only have 3 arguments.
Pseudo C code

$s0 = $s1 + $s2 + $s4 + 2*$sb
Assembly language:

Slide 6 add $t0,$s1,$s2
add $t0,$s4,$t0
add $t1,$s5,$s5
add $s0,$t0,$t1

The add instruction does not get confused if the destination register
is the same as a source register.

Lecture 2 MIPS Assembly Language, Arithmetic — Justin Pearson

Page 7

A Puzzle

e What about constants?
e How do we do do things like $t0 = $t0 + 17

We can’t just magic the values into registers we have to load values

in there.
Slide 7

The last operand of an add instruction can be a small constant (a
16bit number). The new form of the instruction is called addi, the

i stands for immediate.

e addi $t0,$t0,1

When you are writing your assembly language programs, a $ means
that there is a register.

While the assembler can often guess what you mean it is better to
write what you mean.

. The above instruction could be rewritten as
Slide 8
e addi $8,%$8,1
If you wrote

e add 8,8,1

The assembler would have a hard job of guessing what you mean.

Lecture 2 MIPS Assembly Language, Arithmetic — Justin Pearson Page 9

1li a pseudo instruction

e How do we put a value in a register?

e The MIPS processor has a special register, number 0, which is
hardwired to be the value 0. No matter what you do to that

register it stays at that value.
Slide 9 & v v

e This register is called $0 or $zero .

e How do I set $s0 to be 347

e add $s0,$zero,34

There is no direct way of loading large constants into a register. It
must be done in two steps.

For example to load the value 0x0£f££0123 into the register $s0 we
have to do the following:

Slide 10 e lui $s0,0xfff0 This places the value 0xfff00000 into the
register $s0. lui stands for load upper immediate.

e add $s0,$s0,0x0123

If you are not completely happy with hexadecimal (base 16)
numbers, revise them now!.

Lecture 2 MIPS Assembly Language, Arithmetic — Justin Pearson Page 11

Revision

The assembler provides a number of pseudo instructions, that is
instructions that look like atomic instructions that get turned into a

sequence of instructions.

Slide 11 One of them is 1i which allows you to load large constants into
registers.
The instructions on the previous slide can be abbreviated to

e 1i $s0,0xff£f00123

e sub and subi same format as add.

Slide 12
e mul multiply.

Lecture 2 MIPS Assembly Language, Arithmetic — Justin Pearson Page 13

Revision

e 32 registers, each can hold 32 bit integers.

e register $0 is fixed at the value 0.
Slide 13
e Arithmetic instructions, very limited format, all ways three

arguments. Destination is the first register.

Lecture 2 MIPS Assembly Language, Arithmetic — Justin Pearson Page 13

