Input/Output:
Polling and Interrupts

Based on slides by

David Patterson

Outline

°I/0O Background
°Polling

>Interrupts

Anatomy: 5 components of any

Computer
____________ .
/ A
I

[
Computer . Keyboard,,
Mouse |

Processor [Memory Disk

(“brain”) |
Datapath
(“brawn™)

(passive)

(where
programs,
data live
when
running)

(where
programs,
data live
when not
running)

Display,

|
I
|
I
[
I
[
!
I
[
!

Motivation for Input/Output

°1/O I1s how humans interact with
computers

O lets computers do amazing things:

« Read pressure of synthetic hand and
M control synthetic arm and hand of fireman

248 - Control propellers, fins, communicate
= N BOB (Breathable Observable Bubble)

~.1* Read bar codes of items in refrigerator

>Computer without I/O like a car without
wheels; great technology, but won’t get
VOU anvwhere

/O Device Examples and Speeds

°1/O Speed: bytes transferred per second
(from mouse to display: million-to-1)

°Device Behavior Partner Data Rate

(Kbytes/sec)
Keyboard Input Human 0.01
Mouse Input Human 0.02
_ine Printer Output Human 1.00
~loppy disk Storage Machine 50.00
_aser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Network-LAN lor O Machine 10,000.00

Graphics Display Output Human 30,000.00

What do we need to make I/O work?

A way to connect many Files Windows
types of devices to the
Proc-Mem Operating System

°A way to control these
devices, respond to Mem
them, and transfer data

°A way to pfesent them < — >

to user programs so
they are ugeful

SCSI Bus

Instruction Set Architecture for

/O
°Some machines have special input

and output instructions

°Alternative model (used by MIPS):
e Input: ~reads a sequence of bytes
e OQutput: ~ writes a sequence of bytes

>Memory also a sequence of bytes, so
use loads for input, stores for output

e Called “Memory Mapped Input/Output”

* A portion of the address space dedicated
to communication paths to Input or
Output devices (no memory there)

Memory Mapped I/O

°Certain addresses are not regular
memory

’Instead, they correspond to registers
In I/O devices

address
OXFFFF0000 "7 cmd reg.
~~~~~~~~~~~ data reg.

OXFFFFFFFF




Processor-1/0 Speed

Mismatch
°500 MHz microprocessor can execute

500 million load or store instructions
per second, or 2,000,000 KB/s data rate

e |/O devices from 0.01 KB/s to 30,000 KB/s

>Input: device may not be read?/ to send
data as fast as the processor loads it

* Also, might be waiting for human to act

°Qutput: device may not be ready to
accept data as fast as processor stores
It

°What to do?



Processor Checks Status before Acting
°Path to device generally has 2 registers:

* 1 register says it’s OK to read/write
(1/0 ready), often called Control Register

* 1 register that contains data, often called
Data Register

°Processor reads from Control Register in
loop, waiting for device to set Ready bit in
Control reg to say its OK (0 = 1)

°Processor then loads from (input) or
writes to (output) data register

e Load from device/Store into Data Register
resets Ready bit (1 = 0) of Control Register

10



SPIM I/O Simulation

°SPIM simulates 1 I/O device: memory-
mapped terminal (keyboard + display)

 Read from keyboard (receiver); 2 device regs

 Writes to terminal (transmitter); 2 device regs

Receiver Control =3
OxEEEE0000 Unused (00...00) m 2
Recelver Data Recelved
oxff££0004| Unused (00...00) Byte
. =2
Transmitter Control Unused (00...00) m|8
Oxf£££0008 <
Transmitter Data Transmitted
OxEEE£000c| UNUSed Byte

11



SPIM 1/O
°Control register rightmost bit (0): Ready

* Receiver: Ready==1 means character in
Data Register not yet been read;
1 = Owhen datais read from Data Reg

 Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 = Transmitter still busy writing last char

- |.LE. bit discussed later

°Data register rightmost byte has data
* Recelver: last char from keyboard; rest =0

 Transmitter: when write rightmost byte,
writes char to display

12



/O Example
°Input: Read from keyboard into $vO

lui $t0, Oxffff #E££££0000
Waitloop: lw Stl, 0(St0) #control

andi $tl1,$tl,0x0001

beq $tl,$zero, Waitloop

lw Sv0, 4($t0) #data

°QOutput: Write to display from $a0

lui $t0, Oxffff H#E£E£££0000
Waitloop: lw Stl, 8(St0) #control

andi $t1,$tl,0x0001

beq $tl,$zero, Waitloop

sw Sal0, 12($t0) #data

°Processor waiting for I/O called “Polling” .



“What’s This Stuff

Good

Remote Diagnosis:

“NeoRest ExII,” a high-tech
toilet features
microprocessor-controlled
seat warmers, automatic lid
openers, air deodorizers,
water sprays and blow-dryers
that do away with the need for
toilet tissue. About 25 percent
of new homes in Japan have a
“washlet,” as these toilets are
called. Toto's engineers are
now working on a model that
analyzes urine to determine
blood-sugar levels in
diabetics and then
automatically sends a daily
report, by modem, to the
user's physician.

One Digital Day, 1998
www.intel.com/onedigitalday

14



Cost of Polling?

>Assume for a processor with a 500-MHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

 Mouse: polled 30 times/sec so as not to miss
user movement

* Floppy disk: transfers data in 2-byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

e Hard disk: transfers data in 16-byte chunks
and can transfer at 8 MB/second. Again, no
transfer can be missed.

15



% Processor time to poll mouse, floppy

°Mouse Polling Clocks/sec
=30 * 400 = 12000 clocks/sec

°% Processor for polling:
12*103/500*10° = 0.002%
— Polling mouse little impact on processor

°Times Polling Floppy/sec
=50 KB/s /2B = 25K polls/sec

° Floppy Polling Clocks/sec
= 25K * 400 = 10,000,000 clocks/sec

°% Processor for polling:
10*108/500*10° = 2%
= OK if not too many 1/O devices

16



% Processor time to hard disk
°Times Polling Disk/sec
= 8 MB/s /16B = 500K polls/sec

°Disk Polling Clocks/sec
= 500K * 400 = 200,000,000 clocks/sec

°% Processor for polling:
200*108/500*10° = 40%
= Unacceptable

17



What is the alternative to polling?

*Wasteful to have processor spend
most of its time “spin-waiting” for 1/O
to be ready

*Wish we could have an unplanned
procedure call that would be invoked

on

°So

help

y when I/O device Is ready

ution: use exception mechanism to
/0. Interrupt program when 1/O

ready, return when done with data
transfer

18



/O Interrupt

>An I/O Interrupt is like an overflow
exceptions except:

 An I/O interrupt is “asynchronous”
 More information needs to be conveyed

>An I/O Iinterrupt Is asynchronous with
respect to instruction execution:

/O interrupt is not associated with any
Instruction, but it can happen in the middle
of any given instruction

/O interrupt does not prevent any
Instruction from completion

19



Definitions for Clarification

>Exception: signal marking that
something “out of the ordinary” has
nappened and needs to be handled

>Interrupt: asynchronous exception

>Trap: synchronous exceptionNote:
These are different from the book’s
definitions.

20



Interrupt Driven Data Transfer

(1) /0

Memory

\{
add

<

/

inter%_su.b_
_and |

(2) save PC

(3) interrupt
service addL

S

4)

e | sm—

T

user
program

\ .
interrupt

service
routine

/

21



Instruction Set Support for I/O Interrupt

°Save the PC for return
e But where?

*Where go when interrupt occurs?
* MIPS defines location: 0x80000080

°Determine cause of interrupt?

* MIPS has Cause Register, 4-bit field
(bits 5 to 2) gives cause of exception

22



Instruction Set Support for I/O Interrupt

*Portion of MIPS architecture for
Interrupts called “coprocessor 0”

°>Coprocessor O Instructions
e Data transfer: lwc0O, swcO
 Move: mfcO, mtcO

°>Coprocessor 0 Registers:

name number usage

BadVAddr S8 Address of Int Status...

$12 Interrupt enable
Cause $13 Exception type
EPC $14 Return address

23



SPIM 1/O Simulation: Interrupt Driven I/O
°|.E. stands for Interrupt Enable

°Set Interrupt Enable bit to 1 have
Interrupt occur whenever Ready bit Is set

Receiver Control =3
OxEEEE0000 Unused (00...00) m 2
Recelver Data Recelved
oxff££0004| Unused (00...00) Byte
. =2
Transmitter Control Unused (00...00) m|3
Ox£f£f££0008 <
Transmitter Data Transmitted
OxEEE£000c| UNUSed Byte

24



Benefit of Interrupt-Driven I/O

°500 clock cycle overhead for each
transfer, including interrupt. Find the % of
processor consumed If the hard disk iIs
only active 5% of the time.

°Interrupt rate = polling rate

e Disk Interrupts/sec = 8 MB/s /16B
= 500K interrupts/sec

* Disk Polling Clocks/sec = 500K * 500
= 250,000,000 clocks/sec

* % Processor for during transfer:
250*105/500*10%= 50%

°Disk active 5% = 5% * 50% = 2.5% busy,,



Questions Raised about Interrupts

*Which I/O device caused exception?

* Needs to convey the identity of the device
generating the interrupt

°Can avold interrupts during the interrupt
routine?

 What if more important interrupt occurs
while servicing this interrupt?

* Allow Iinterrupt routine to be entered again?

*Who keeps track of status of all the
devices, handle errors, know where to
put/supply the I/O data?

26



4 Responsibilities leading to OS

°The 1/0O system is shared by multiple
programs using the processor

°Low-level control of I/O device Is
complex because requires managing a
set of concurrent events and because
requirements for correct device
control are often very detailed

°1/0 systems often use interrupts to
communicate information about 1/0O
operations

*Would like I/O services for all user
programs under safe control

27



4 Functions OS must provide

°OS guarantees that user’'s program
accesses only the portions of I1/O device
to which user has rights (e.qg., file access)

°OS provides abstractions for accessing
devices by supplying routines that
handle low-level device operations

°OS handles the exceptions generated by
/O devices (and arithmetic exceptions
generated by a program)

°OS tries to provide equitable access to
the shared I/O resources, as well as
schedule accesses in order to enhance
system performance 28



Things to Remember
°|/O gives computers their 5 senses

°1/O speed range is million to one

*Processor speed means must
synchronize with 1/O devices before use

°Polling works, but expensive
e processor repeatedly queries devices

’Interrupts works, more complex

e devices causes an exception, causing
OS to run and deal with the device

°1/O control leads to Operating Systems

29



