
* 1

 Input/Output:
Polling and Interrupts

Based on slides by

David Patterson

* 2

Outline

° I/O Background

°Polling

° Interrupts

* 3

Anatomy: 5 components of any
Computer

 Processor
 (active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk
(where
programs,
data live
when not
running)

* 4

Motivation for Input/Output

° I/O is how humans interact with
computers

° I/O lets computers do amazing things:
• Read pressure of synthetic hand and
control synthetic arm and hand of fireman

• Control propellers, fins, communicate
in BOB (Breathable Observable Bubble)

• Read bar codes of items in refrigerator

°Computer without I/O like a car without
wheels; great technology, but won’t get
you anywhere

* 5

I/O Device Examples and Speeds

° I/O Speed: bytes transferred per second
(from mouse to display: million-to-1)

° Device Behavior Partner Data Rate
(Kbytes/sec)

Keyboard Input Human 0.01
Mouse Input Human 0.02
Line Printer Output Human 1.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Network-LAN I or O Machine 10,000.00
Graphics Display Output Human 30,000.00

* 6

What do we need to make I/O work?

°A way to connect many
types of devices to the
Proc-Mem

°A way to control these
devices, respond to
them, and transfer data

°A way to present them
to user programs so
they are useful

Proc Mem

PCI Bus

SCSI Bus

cmd reg.
data reg.

Operating System

WindowsFiles

* 7

Instruction Set Architecture for
I/O
°Some machines have special input
and output instructions

°Alternative model (used by MIPS):
• Input: ~ reads a sequence of bytes

• Output: ~ writes a sequence of bytes

°Memory also a sequence of bytes, so
use loads for input, stores for output

• Called “Memory Mapped Input/Output”

• A portion of the address space dedicated
to communication paths to Input or
Output devices (no memory there)

* 8

Memory Mapped I/O

°Certain addresses are not regular
memory

° Instead, they correspond to registers
in I/O devices

0

0xFFFFFFFF

0xFFFF0000 cmd reg.
data reg.

address

* 9

Processor-I/O Speed
Mismatch
°500 MHz microprocessor can execute
500 million load or store instructions
per second, or 2,000,000 KB/s data rate

• I/O devices from 0.01 KB/s to 30,000 KB/s

° Input: device may not be ready to send
data as fast as the processor loads it

• Also, might be waiting for human to act

°Output: device may not be ready to
accept data as fast as processor stores
it

°What to do?

* 10

Processor Checks Status before Acting
°Path to device generally has 2 registers:

• 1 register says it’s OK to read/write
(I/O ready), often called Control Register

• 1 register that contains data, often called
Data Register

°Processor reads from Control Register in
loop, waiting for device to set Ready bit in
Control reg to say its OK (0  1)

°Processor then loads from (input) or
writes to (output) data register

• Load from device/Store into Data Register
resets Ready bit (1  0) of Control Register

* 11

SPIM I/O Simulation

°SPIM simulates 1 I/O device: memory-
mapped terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs

• Writes to terminal (transmitter); 2 device regs

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
ead

y

(I.E
.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
ead

y

(I.E
.)Unused (00...00)

Unused

* 12

SPIM I/O
°Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in
Data Register not yet been read;
1 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0  Transmitter still busy writing last char

- I.E. bit discussed later

°Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0

• Transmitter: when write rightmost byte,
writes char to display

* 13

I/O Example
° Input: Read from keyboard into $v0

lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 0($t0) #control

andi $t1,$t1,0x0001
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

°Output: Write to display from $a0

lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 8($t0) #control

andi $t1,$t1,0x0001
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

°Processor waiting for I/O called “Polling”

* 14

“What’s This Stuff Good
For?” Remote Diagnosis:

“NeoRest ExII,” a high-tech
toilet features
microprocessor-controlled
seat warmers, automatic lid
openers, air deodorizers,
water sprays and blow-dryers
that do away with the need for
toilet tissue. About 25 percent
of new homes in Japan have a
“washlet,” as these toilets are
called. Toto's engineers are
now working on a model that
analyzes urine to determine
blood-sugar levels in
diabetics and then
automatically sends a daily
report, by modem, to the
user's physician.
One Digital Day, 1998
www.intel.com/onedigitalday

* 15

Cost of Polling?

°Assume for a processor with a 500-MHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

• Mouse: polled 30 times/sec so as not to miss
user movement

• Floppy disk: transfers data in 2-byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

• Hard disk: transfers data in 16-byte chunks
and can transfer at 8 MB/second. Again, no
transfer can be missed.

* 16

% Processor time to poll mouse, floppy
° Mouse Polling Clocks/sec

= 30 * 400 = 12000 clocks/sec

° % Processor for polling:
12*103/500*106 = 0.002%

Polling mouse little impact on processor

° Times Polling Floppy/sec
= 50 KB/s /2B = 25K polls/sec

° Floppy Polling Clocks/sec
= 25K * 400 = 10,000,000 clocks/sec

° % Processor for polling:
10*106/500*106 = 2%

OK if not too many I/O devices

* 17

% Processor time to hard disk

°Times Polling Disk/sec
= 8 MB/s /16B = 500K polls/sec

°Disk Polling Clocks/sec
= 500K * 400 = 200,000,000 clocks/sec

°% Processor for polling:
200*106/500*106 = 40%

Unacceptable

* 18

What is the alternative to polling?

°Wasteful to have processor spend
most of its time “spin-waiting” for I/O
to be ready

°Wish we could have an unplanned
procedure call that would be invoked
only when I/O device is ready

°Solution: use exception mechanism to
help I/O. Interrupt program when I/O
ready, return when done with data
transfer

* 19

I/O Interrupt

°An I/O interrupt is like an overflow
exceptions except:

• An I/O interrupt is “asynchronous”

• More information needs to be conveyed

°An I/O interrupt is asynchronous with
respect to instruction execution:

• I/O interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

• I/O interrupt does not prevent any
instruction from completion

* 20

Definitions for Clarification

°Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

° Interrupt: asynchronous exception

°Trap: synchronous exceptionNote:
These are different from the book’s
definitions.

* 21

Interrupt Driven Data Transfer

(1) I/O
interrupt

(2) save PC

(3) interrupt
service addr

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(4)

(5)

* 22

Instruction Set Support for I/O Interrupt

°Save the PC for return
• But where?

°Where go when interrupt occurs?
• MIPS defines location: 0x80000080

°Determine cause of interrupt?
• MIPS has Cause Register, 4-bit field
(bits 5 to 2) gives cause of exception

* 23

Instruction Set Support for I/O Interrupt

°Portion of MIPS architecture for
interrupts called “coprocessor 0”

°Coprocessor 0 Instructions
• Data transfer: lwc0, swc0

• Move: mfc0, mtc0

°Coprocessor 0 Registers:

 name number usage
BadVAddr $8 Address of Int Status…
…. $12 Interrupt enable
Cause $13 Exception type
EPC $14 Return address

* 24

SPIM I/O Simulation: Interrupt Driven I/O

° I.E. stands for Interrupt Enable

°Set Interrupt Enable bit to 1 have
interrupt occur whenever Ready bit is set

Received
Byte

Transmitted
Byte

(IE)Receiver Control
0xffff0000

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

Receiver Data
0xffff0004

R
ead

y

(I.E
.)

R
ead

y

(I.E
.)

Unused (00...00)

Unused (00...00)

Unused (00...00)

Unused

* 25

Benefit of Interrupt-Driven I/O

°500 clock cycle overhead for each
transfer, including interrupt. Find the % of
processor consumed if the hard disk is
only active 5% of the time.

° Interrupt rate = polling rate
• Disk Interrupts/sec = 8 MB/s /16B

 = 500K interrupts/sec

• Disk Polling Clocks/sec = 500K * 500
= 250,000,000 clocks/sec

• % Processor for during transfer:
250*106/500*106= 50%

°Disk active 5% 5% * 50%2.5% busy

* 26

Questions Raised about Interrupts

°Which I/O device caused exception?
• Needs to convey the identity of the device
generating the interrupt

°Can avoid interrupts during the interrupt
routine?

• What if more important interrupt occurs
while servicing this interrupt?

• Allow interrupt routine to be entered again?

°Who keeps track of status of all the
devices, handle errors, know where to
put/supply the I/O data?

* 27

4 Responsibilities leading to OS

°The I/O system is shared by multiple
programs using the processor

°Low-level control of I/O device is
complex because requires managing a
set of concurrent events and because
requirements for correct device
control are often very detailed

° I/O systems often use interrupts to
communicate information about I/O
operations

°Would like I/O services for all user
programs under safe control

* 28

4 Functions OS must provide
°OS guarantees that user’s program
accesses only the portions of I/O device
to which user has rights (e.g., file access)

°OS provides abstractions for accessing
devices by supplying routines that
handle low-level device operations

°OS handles the exceptions generated by
I/O devices (and arithmetic exceptions
generated by a program)

°OS tries to provide equitable access to
the shared I/O resources, as well as
schedule accesses in order to enhance
system performance

* 29

Things to Remember

° I/O gives computers their 5 senses

° I/O speed range is million to one

°Processor speed means must
synchronize with I/O devices before use

°Polling works, but expensive
• processor repeatedly queries devices

° Interrupts works, more complex
• devices causes an exception, causing
OS to run and deal with the device

° I/O control leads to Operating Systems

