
Machine Learning
Lecture 7

Some feature engineering and Cross validation

Justin Pearson1

2020

1http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html
1 / 35

http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html

Over Fitting vs Bias

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

3.0

3.2

3.4

3.6

3.8

4.0

The model for the blue line is under fitting the data, or the model is biased
towards solutions that will not explain the data. The other model is
over-fitting the data. It is trying to model the irregularities in the data.

2 / 35

Epic Python fail

This week I spent hours debugging my demo code, and wondering why it
was not adding noise. I had written something like

X = np . random . u n i f o r m (0 , 2 , n u m b e r o f s a m p l e s)
y = f (X) + np . random . normal (0 , 0 . 1)

Instead of

X = np . random . u n i f o r m (0 , 2 , n u m b e r o f s a m p l e s)
y = f (X) + np . random . normal (0 , 0 . 1 , l en (X))

The idea was to add some random noise to each sample. If you forget the
len(X) then you add the same random noise to each sample.

3 / 35

Training and Validation Data

What is the goal of machine learning?

To predict future values of unknown data.

If you are doing statistics, then you could start making assumptions about
your data and start proving theorems.
Machine learning is a often a bit different, you cannot always make
sensible assumptions about the distribution of your data.

4 / 35

Training and Validation Data

Ideally we would like to train our algorithm on all the available data
and then evaluate the performance of the model on the future
unknown data.

Since we cannot really do this we have to fake it, by splitting our data
into two parts: training and test data.

The function

s k l e a r n . m o d e l s e l e c t i o n . t r a i n t e s t s p l i t

is maybe one most important functions that you will use.

5 / 35

Training and Validation Data

There are lots of reasons to split, but it avoids over-fitting. It avoids
learning how to exactly predict how well you learned your training set.

When you report how well your learning algorithm does, you should
report the score on validation set and not the training set.

You can compare several learning algorithms and compare their
validation errors.

Statistically it is all about reducing variance.

6 / 35

Training and Validation

You might use different error metrics for the training and validation
set. With logistic regression you would train the model by minimising

J(θ) =
1

m

m∑
i=1

−y log(σ(hθ(x))) − (1 − y) log(1 − σ(hθ(x)))

But you might evaluate the model using accuracy, precision, recall or
the F-score from the confusion matrix.

7 / 35

Terminology Warning

In a few slides we will split the data into three parts

Training, Validation and Test data.

When you split the data into two parts sometimes people write

Training and Test data

and sometimes

Training and Validation data.

8 / 35

Overfitting vs Bias again

If you have a series of models that get more and more complex, then how
do you know when you are over fitting?

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2.8

3.0

3.2

3.4

3.6

3.8

4.0

9 / 35

Overfitting vs Bias

Assuming that you have split the model into training and validation sets
then you can look at training and validations errors as your models get
more complicated.

0 5 10 15 20 25
Complexity

0.01

0.02

0.03

0.04

0.05

0.06

0.07 training error
validation error

10 / 35

Overfitting vs Bias

If the test set error and the training set error is very high then you are
probably under-fitting.

When the training error gets smaller and smaller, but your test set
error starts increasing you are probably over-fitting.

11 / 35

Overfitting vs Bias

There are lots of problems with this approach including:

It is not always easy to judge the complexity of your model on a neat
straight line.

What if you picked the wrong division of your data into training and
test sets?

12 / 35

Two Goals

Model Selection: estimating the performance of different models in order
to chose the best one.

Model assessment: Having chosen a final model, estimate its prediction
error on new data.

If we are doing model selection then there is a problem that we might
overfit on the validation set.

13 / 35

Train — Validation — Test

If we have enough data then we can split out data into three parts:

Training This is what we use to train our different algorithms. Typical
split 50%.

Validation This is what we use to choose our model. We pick the model
with the best validation score. Typical split 25%.

Test This is the data that you keep back until you have picked a
model. You use this to predict how well you model will do on
real data. Typical split 25%.

This avoids overfitting in the model selection. If you are comparing models
then you use the validation set to pick the best model, but report the error
score on the test set to give an indication on how well the model will
generalise.

14 / 35

k-fold cross validation

What if we don’t have enough data to split into three parts. Then we can
use k-fold validation.

Split your data randomly into k equal size parts.

For each part, hold one back as a test set and train on the k − 1
remaining parts, evaluate on the part you held back.

Report the average evaluation.

15 / 35

k-fold cross validation

If k = 5, then you have 5 parts T1, . . . ,T5 you would run 5 training runs

Train on T1,T2,T3,T4 evaluate on T5.

Train on T1,T2,T3,T5 evaluate on T4.

Train on T1,T2,T4,T5 evaluate on T3.

Train on T1,T3,T4,T5 evaluate on T2.

Train on T2,T3,T4,T5 evaluate on T1.

Good values of k are 5 or 10. Obviously the larger k is the more time it
takes to run the experiments.

16 / 35

A Fold2

Sheep near a dry stone sheepfold, one of the oldest types of livestock
enclosure

2
https://commons.wikimedia.org/wiki/File:Sheep_Fold.jpg

17 / 35

https://commons.wikimedia.org/wiki/File:Sheep_Fold.jpg

k-fold cross validation

What do you do after k-ford cross validation.

Cross validation only returns a value that is a prediction of how well
the model will do on more data.

Assuming that you sample of the data is randomly drawn (not biased)
then there are good statistical reasons why the k-fold valuation is a
good idea.

There are ways of combining an ensemble of models that come from
the different folds, such as voting.

Often we only want one model.

18 / 35

k-fold cross validation

k-fold cross validation without ensemble methods only tells you which
model is better. It does not give you a trained model.

Once you have decided which model or set of parameters to use, you
then train a new model over the whole data set and use that for
prediction.

For example you could test if SVMs and Logistic regression on the
same data-set and use k-fold cross validation to decide which model
would perform best. Once you know this, you can then retrain on the
whole data-set and use this model in production.

19 / 35

Hyper-Parameters and Models

The practical problem for machine learning is how do you pick the right
machine learning algorithm or model.
Remember that different model can represent different hypotheses.

If you hypotheses space is too simple then you have bias or
under-fitting.

If your hypotheses spaces contains hypotheses that can represent
complicated decisions then there is a danger that you can over-fit.

20 / 35

Non-linear search spaces and other learning parameters

With for example k-means clustering, the final result you get also
depends on the random initial starting points that you pick.

There might be other learning parameters that affect how well you
converge on a solution.

The architecture of your neural network is very important.

21 / 35

Regularisation

Regularisation is an attempt to stop learning too complex hypotheses.
With linear regression and non-logistic regression we modified the cost
function J

J(θ) =
1

2m

m∑
i=1

(hθ(x (i)) − y (i))2 + λ

n∑
i=1

θ2i

or

J(θ) =
1

m

m∑
i=1

−y log(σ(hθ(x))) − (1 − y) log(1 − σ(hθ(x))) + λ

n∑
i=1

θ2i

Increasing λ forces the optimisation to consider models with small weights.

22 / 35

More features and Kernels

Support Vector machines without kernels, linear regression and
logistic regression can only learn linear hypotheses.

Embedding your problem via a kernel function into a higher
dimensional space to make the problem more linear is one way of
making something learnable. For SVMs you have a lot of choice of
different kernels and paramters.

For linear and logistic regression you can try to invent non-linear
features.

23 / 35

Hyper parameters and Models

The terminology is a bit unclear but

Hyper-parameters These are parameters to the learning algorithm that do
not depend on the data. They are often continuous values
such as the regularisation parameter, but not always.
Sometimes people refer to the choice of kernel as a hyper
parameter.

In a Bayesian framework it is possible to reason about the value of
hyper parameters, but it can get quite complicated.

The main problem with hyper parameters is that it is hard to use the
data to optimise the values of the hyper-parameters.

24 / 35

Estimating Hyper parameters

We can obviously use cross-validation or splits of or data. If your
parameters are continuous then it might not be clear which values
you are going to pick.

If the values are continuous then you might have to try too many
experiments.

25 / 35

Estimating Hyper parameters — Grid Search3

Very simple idea choose some step size and divide you continuous
parameters into a grid. Go through all the combinations and return the
parameters that minimise the training error.

With a split into training and validation sets you can find close to optimal
values for your hyper-parameters. Of course you will need to combine this
with cross-validation to get something meaningful if you are comparing
different models.

3
https://de.wikipedia.org/wiki/Datei:Hyperparameter_Optimization_using_Grid_Search.svg

26 / 35

https://de.wikipedia.org/wiki/Datei:Hyperparameter_Optimization_using_Grid_Search.svg

Some feature engineering — One-Hot Encoding

Remember Categorical data is data that can take on a number of discrete
values. For example if your data contains the type of car somebody drives:

Audi

Volvo

Saab

You could pick some coding where you just assign a natural number to the
each type of car

Audi = 0

Volvo = 1

Saab = 2

27 / 35

One-Hot Encoding

But what is special about the values 0,1 and 2? If you where trying
to do some sort of regression then learning a weight that made sense.

If xc is your variable for your car type, then what sense does

hθ(xc , . . .) = θcxc + . . .

even make?

28 / 35

One-Hot Encoding

Instead we use binary 0/1 variables to represent the categorical variables.
In our example we would have three variables

xa equals 1 if the car is an Audi and 0 otherwise

xv equals 1 if the car is an Volvo and 0 otherwise

xs equals 1 if the car is an Saab and 0 otherwise

Note that Scikit Learn has functions to do this automatically for you.

29 / 35

One-Hot Encoding

With our binary variables our models are easier to learn

hθ(xa, xv , xs , . . .) = θaxa + θvxv + θxs

30 / 35

Boosting for feature selection of linear models

Boosting is a general framework, and it can also be combined with
cross-validation in a technique called bagging (bootstrap aggregating).
The idea is very simple, learn you model one feature at time, at each stage
pick the next feature that gives you optimal performance.
You order the features in order of importance and this gives you models
that are easier to interpret for humans.

31 / 35

Boosting for feature selection of linear models

Don’t forget to scale your data, so that all dimensions have roughly the
same range.
For a linear model you are trying to learn some linear hypothesis

hθ = θ0 + θ1x1 + . . .+ θn

32 / 35

Boosting Stage 0

At stage 0 just learn the model

h0θ = θ0

This will be a terrible model.

33 / 35

Boosting stage i

You have learnt a model

hiθ = θ0 + θ1xj1 + θ2xi2 + · · · + θixji

Note that the order xj1 , xi2 , . . . xji is not necessarily x1, . . . , xi .
Try all the remain unused variables xji+1

, . . . , xn and learn all the n − i
models. Pick the variable and θi+1 value that gives the lowest error.
Repeat while the cost goes down.

34 / 35

Boosting for Linear Models

Advantages

You order the variables in terms of importance.

There is the possibility to stop early when the model does not
improve. This is a way of selecting a subset of the features.

Later we will see other techniques such as principle component
analysis (PCA) that allows you to pick subsets of the features that are
important.

35 / 35

