
Machine Learning
Lecture 5

Support Vector Machines

Justin Pearson1

2020

1http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html
1 / 33

http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html

Separating Hyperplanes

Logistic regression (with linear features) finds a hyperplane that separates
two classes. But which hyperplane is best?

0 1 2 3 4 5 6 7 8
x

0

1

2

3

4

5

6

7

8

y

0
1

2 / 33

Separating Hyperplanes

It of course depends on how representative your training set is. With more
points from the distribution our hyperplanes might look like:

0 1 2 3 4 5 6 7 8
x

0

1

2

3

4

5

6

7

8

y

0
1

3 / 33

Margin Classifiers

The intuition is that we find a hyperplane with a margin either side that
maximises the space between the two clusters.

4 5 6 7 8 9 10

10

8

6

4

2

4 / 33

Support Vector Machine

They have been in use since the 90s.

More robust with outliers.

Very good classifiers on certain problems such as image classification,
handwritten digit classification.

Non-linear models can be incorporated by the kernel trick.

5 / 33

Plan of action

A motivation/modification of logistic regression.

Finding margins as an optimisation problem.

Different Kernels for non-linear classification.

6 / 33

Logistic Regression

Remember the error term for logistic regression

−y log(σ(hθ(x)))− (1− y) log(1− σ(hθ(x)))

Where

σ(x) =
1

1 + e−x

7 / 33

Expanding the error term

−y log(σ(hθ(x)))− (1− y) log(1− σ(hθ(x)))

Equal

−y log(
1

1 + ehθ(x)
)− (1− y) log(1− 1

1 + ehθ(x)
))

Remember that the two log terms are trying to force the model to learn 1
or 0.

8 / 33

Looking at the contribution

Just looking at
−y log(σ(hθ(x)))

We are trying to force the term σ(hθ(x)) to be 1. The larger the value of
θx the less the error.

10 5 0 5 10
Weighted Input

0

2

4

6

8

10

Er
ro

r

10 5 0 5 10
Weighted Input

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

oi
d

After 0 we do not really care we just want to force move the input over to
the right

9 / 33

Approximating the error

Instead of using the logistic error we could approximate it with two linear
functions.

10 5 0 5 10
Weighted Input

0

2

4

6

8

10

Er
ro

r

10 5 0 5 10
Weighted Input

0

2

4

6

8

10

Ap
pr

ox
im

at
io

n

After 0 we do not really care about the error.
10 / 33

Support Vector Machines

I am sorry, but to make the maths easier and to be consistent with the
support vector machine literature but we are going to change our
classification labels a bit.
We have data

x = x (1), . . . , x (m)

Where the data are points in some d dimensional space Rd .
The labels for our classes will be −1 and 1 instead of 0 and 1.

11 / 33

Linear Support Vector Machine

Linear SVMs are the easiest case and form the foundation for support
vector machines. We want to find weights w ∈ Rd and a constant b such
that {

w · x − b ≥ 1 if y = 1

w · x − b ≤ −1 if y = −1

This is different from logistic regression of a single perceptron where you
want to find a separating hyperplane.

12 / 33

SVM Margins in 2 dimensions2

If we push the two hyperplanes apart
then we will eventually hit points in
the two classes. The points that are
on the two out hyperplanes are called
the support vectors.
So the question is, how do we do
this?

2Picture taken from wikipedia
13 / 33

Derivation

Done in detail on the black board.

The vector w is perpendicular to the hyperplanes. In particular the
hyperplane wx − b = 0.

Given a two points x1 where w · x1 − b = −1 and x2 w · x2 − b = 1.

We want to know the distance between the two points. We can treat
them as vectors and do the maths.

14 / 33

Derivation

Done in detail on the black board.

x2 − x1 is a vector, it has some length t and is in the direction w . So
x2 − x1 = tw .

Now doing some rearranging

w · x2 − b = w · (x1 + tw)− b = (w · x1 − b) + tw · w = 1

Note that w · w is the length squared, ||w ||2 of w .

w · x1 − b equals 1 we get that t = 2/||w ||2

||x2 − x1|| = t||w || = 2/||w ||.

15 / 33

Maximising the margin

Thus to maximise the distance between the two hyperplanes wx − b = 1
and wx − b = −1 we want to maximise

t =
2

||w ||

So we need to minimise 1
2 ||w ||

16 / 33

SVMs optimisation problem for learning

Given a training set x (1), . . . , . . . x (m) We want to minimise 1
2 ||w || such

that for all data in the training set{
w · x (i) − b ≥ 1 if y (i) = 1

w · x (i) − b ≤ −1 if y (i) = −1

Since y (i) can only be −1 or +1 we can rewrite the constraint as

y (i)(w · x (i) − b) ≥ 1

and instead minimize
1

2
w · w =

1

2
||w ||2

17 / 33

Quadratic programming

Gradient descent will not work.

Your optimisation problem includes lots of quadratic terms, but
luckily the problem is convex.

Quadratic programming solves this, and in the convex cases there are
nice mathematical properties that give you bounds on the errors. How
this all works is out of scope of the course.

18 / 33

Non-linearly separable sets

What happens if our clusters overlap? The quadratic programming model
will not work so well.

0 1 2 3 4 5 6 7 8
x

0

1

2

3

4

5

6

7

8

y

0
1

19 / 33

Slack Variables

For each point in the training set introduce a slack variable ηi and rewrite
the optimisation problem as

Minimise 1
2 ||w ||+ C

∑
i ηi such that

y (i)(w · x (i) − b) ≥ 1− ηi

An ηi greater than 0 allows the point to be miss-classified. Minimising
C
∑

i ηi for some constant C reduces the number of miss-classifications.
The greater the constant C the more importance you give reducing the
number of miss-classifications.

20 / 33

Kernels and Non-linear Classifiers

Warning what follows in the slides is not a complete description of what is
going on with Kernels.
In particular I am not going to explain how the learning algorithm works.
To understand this, you need to know a bit about quadratic programming,
Lagrange multipliers, dual bounds and functional analysis.
I am instead going to try to give you some intuition why kernels might
work. This if often called the kernel trick. I will also try to give you some
intuition how and what SVMs learn with Gaussian Kernels.

21 / 33

Making the non-linear linear

We already saw that with Linear regression we could learn non-linear
functions. To learn a quadratic polynomial we take out data

((
1
x

)
∈ R2

)
7→

 1
x
x2

 ∈ R3

One way of thinking about this is that we add invent new features. When
computing the gradients everything worked.
We turned a non-linear problem of trying to find a quadratic polynomial
that minimises the error into a linear problem of trying to learn the
coefficients.

22 / 33

Non-linear to Linear

This is part of a general scheme.
We have a non-linear separation problem in low dimensions, we find a
transformation that embeds our problem into a high-dimensional space.
One possibly misleading way of thinking about this, is that the more
dimensions you have the more room you have, and so it is easier for the
problem to be linear.

Rd Φ−→ H

Where H is some higher3 dimensional space.

3Actually H stands for Hilbert not higher, but do not worry about this.
23 / 33

Linear Hypotheses

A linear hypothesis hw (x) has the form

hw (x) =
d∑

i=1

wixi + w0 = w · x + w0

Where · is the inner (dot) products.
In our learning algorithms there are a lot of inner product calculations.

24 / 33

Non-linear to Linear

So to learn linear things in H we will need to do inner products.

Rd Φ−→ H

We will need do lots of calculations on Φ(xi) · Φ(xj) ∈ H.

25 / 33

The Kernel Trick

Computing the inner products Φ(xi) · Φ(xj) ∈ H can be computationally
expensive (even worse your space could be infinite dimensional4.
For well behaved transformations Φ there exists a function
K (x , y) : Rd × Rd → R such that

K (x , y) = Φ(x) · Φ(y)

Thus we can compute the inner product in the high-dimensional space by
using a function on the lower dimensional vectors.

4Don’t worry if your head hurts.
26 / 33

Some common Kernels

Instead of giving the higher-dimensional space you often just get the
function K .

Radial basis or Gaussian K (x , y) = exp(−(x − y)2/2σ2)

Polynomial K (x , y) = (1 + x · y)d

Sigmoid or Neural Network K (x , y) = tanh(κ1x · y + κ2)

There are lots more, there are even kernels for text processing. If you are
going to invent your own then you will need to understand the maths.

27 / 33

Support Vectors

I am not going to explain in any
detail, but it is enough to remember
the support vectors.

28 / 33

The dual version of the SVM learning

Learning with Kernels does the same thing, you find support vectors. The
dual version of the algorithm learns some parameters αi , yi and b such
that to decide if a point x belongs to a class you compute the sign of

Ns∑
i=1

αiyiK (si , x) + b

Where s1, . . . , sNs are the support vectors.

29 / 33

Gaussian Kernels

This is a all a bit abstract. I’ll try to explain what is going on with
Gaussian Kernels. In one dimension for σ = 1 our Gaussian kernel
K (x , x ′) = exp(−(x − x ′)2/2) if we fix x ′ to be 0. We get a the following
graph

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

30 / 33

Gaussian Kernels - Multiple Support Vectors

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8

1.0

31 / 33

Gaussian Kernels - Multiple Support Vectors

If we assume that all out weights are 1 and add them together. We get

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8

1.0

The closer you value is to one of the peaks the more likely it is that you
are in the class. You can think of each peak as a feature.

32 / 33

Support Vector Machines — What are the good for?

With non-linear Kernels SVMs have successfully been used in many
applications including

Image recognition, bio-informatics, pattern recognition.

Because the optimisation problem is convex there is only going to be
one global minimum. So SVMs are easier to train than neural
networks.

Probably the most useful non-linear Kernel function is the Gaussian
Kernel.

For the moment, don’t worry too much about how the SVM learns
with non-linear Kernels use an existing implementation.

33 / 33

