
Machine Learning
Lecture 4

Justin Pearson1

2020

1http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html
1 / 42

http://user.it.uu.se/~justin/Teaching/MachineLearning/index.html

Today’s plan

Very quick Revision on Linear Regression.

Logistic Regression — Another classification algorithm

More on confusion matrices and F-scores.

2 / 42

Classification and Regression

Remember two fundamental different learning tasks

Regression From input data predict and or learn a numeric value.

Classification From the input data predict or learn what class a class
something falls into.

More lingo from statistics. A variable is Categorical if it can take one of a
finite number of discrete values.

3 / 42

Linear Regression

Given m data samples x = (x (1), . . . , x (m)) and y = (y (1), . . . , y (m)). We
want to find θ0 and theta θ1 such that J(θ0, θ1, x , y) is minimised. That is
we want to minimise

J(θ0, θ1, x , y) =
1

2m

m∑
i=1

(hθ0,θ1(x (i))− y (i))2

Where hθ0,θ1 = θ0 + θ1x

4 / 42

Linear Regression — Partial Derivatives

∂

∂θ0
J(θ) =

1

m

m∑
i=1

(hθ0(x (i))− y (i))

∂

∂θj
J(θ) =

1

m

m∑
i=1

(hθ0,θ1(x (i))− y (i))x
(i)
j

For linear regression you can either find an exact solution minimising J(θ)
by setting the partial derivatives to zero or using gradient descent.

To avoid treating θ0 as a special case transform your data (x
(i)
1 , . . . , x

()

n i)

to (1, x
(i)
1 , . . . , x

()

n i) (x
(i)
0 = 1).

5 / 42

L2 Regularisation

To avoid over fitting we sometimes want to stop the coefficients to large.

J(θ) =
1

2m

m∑
i=1

(hθ(x (i))− y (i))2 + λ

n∑
i=1

θ2i

There is an exact solution or you can use gradient descent.

6 / 42

L1 Regularisation

J(θ) =
1

2m

m∑
i=1

(hθ(x (i))− y (i))2 + λ

n∑
i=1

|θi |

Where |·| is the absolute value function. This has no analytic solution.
You have to use gradient descent or some other optimisation algorithm.

7 / 42

How do you select your model?

We saw that there are a lot of choices of what model you can choose.

You can fit higher order polynomials.

You can have non-linear features such xixj where xi could be for
example the width and xj could be the breadth and xixj would
represent an area.

You can reduce the number of features.

Picking features is quite complex and we will look at it later. There is also
a bigger question, if you have a number of different models how do you
decide which to pick? We will look at cross-validation later as well.

8 / 42

Classification and Regression

Remember two fundamental different learning tasks

Regression From input data predict and or learn a numeric value.

Classification From the input data predict or learn what class a class
something falls into.

More lingo from statistics. A variable is Categorical if it can take one of a
finite number of discrete values.

9 / 42

Classification

General problem of classification.

2 0 2 4 6 8 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Given a number of classes find a way to separate them.
10 / 42

Approaches to Classification

Probabilistic Classification Try to predicate the probability that an put
sample x belongs to a class: P(C | x).

Learn a hypothesis hθ such that hθ(x) = 1 if x belongs to
the class and hθ(x) = 0 otherwise.

With Naive Bayes we calculated P(C | x) by looking at P(x | C)P(C).
Instead we could try to estimate P(C | x) directly.

11 / 42

Hypotheses for Classification

Learning (and even formulating) hypothesises hθ such that hθ(x) = 1
if x belongs to the class and hθ(x) = 0 otherwise is quite hard.

It is better to use threshold values and learn an hypotheses such that

Cθ(x) =

{
1 if hθ(x) ≤ 0.5

0 if hθ(x) > 0.5

12 / 42

Hypotheses for Classification

For the one dimensional case we want to learn some sort of step function

hθ0,θ1 =

{
1 if θ0 + θ1x > 0.5

0 if θ0 + θ1x ≤ 0.5

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

In general it will be very hard find values of θ0 and θ1 that minimise the
error on our training set. Gradient descent will not work, and there is no
easy exact solution.

13 / 42

The Logistic-Sigmoid Function

Two(ish) approaches to get (Logisitic)-sigmoid functions

Try to approximate step functions with a continuous function.

An argument from probability with log odds ratio.

Biological motivation neurons and activation functions: Modelling the
firing rate of neurons

14 / 42

The Logistic-Sigmoid Function

σ(x) =
1

1 + e−x

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

15 / 42

The Logistic-Sigmoid Function

In general we combine it with a linear function

hθ0,θ1(x) =
1

1 + e−θ1x+θ0

As θ1 gets larger the function looks more a step function.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0 0.5
1
2

16 / 42

The Logistic-Sigmoid Function — an informal
interpretation

Since for

hθ0,θ1(x) =
1

1 + e−θ1x+θ0

we have that
0 ≤ h(x) ≤ 1

We could interpret h(x) is a probability that x belongs to a class.

17 / 42

Derivative of the Sigmoid function

The sigmoid function

σ(x) =
1

1 + e−x

Has a rather nice derivative

σ′(x) = σ(x)(1− σ(x))

18 / 42

Gradient Descent

Since we can take the derivative sigmoid function it is possible to calculate
the partial derivatives of the cost function

J(θ, x , y) =
1

2m

m∑
i=1

(σ(θT x (i))− y (i))2

Where θ is a vector of values.

19 / 42

Neural Networks — Very Briefly — Not examined

A single (artificial) neuron can be modelled as

hw1,...,wk ,θ0(x1, . . . , xk) =
1

1 + exp(
∑k

i=1 wixi + θ0)

For a single neuron apply gradient descent to the function

J(w1, . . . ,wk , θ0) =
1

2m

m∑
i=1

(hw1,...,wk ,θ0(x (i))− y (i))2

For multiple layer neural networks you just keep applying the chain rule
and you get back-propagation.

20 / 42

Neural Networks — Very Briefly — Not examined

Allow you to do very powerful non-linear regression.

Even though the cost function is highly non-linear it is generally
possible minimise the error.

Very sensitive to the architecture: the number of layers, how many
neurons in each layer.

For very large networks you need a lot of data to learn the weights.
Often you get vanishing gradients. That is for some weight w the
quantity ∂J

∂w can be very small. This can make convergence very slow.

Since tuning neural networks can be hard, try other methods first. With
deep learning when they work they work, when they do not work nobody
really knows why.

21 / 42

Odds Ratio

Given an event with probability p we can take the odds ratio of p
happening and p not happening.

p

1− p

22 / 42

Log Odds Ratio

For various reasons it is better to study

log

(
p

1− p

)
Log-Odds make non-linear things slightly more linear and more symmetric.

23 / 42

Log Odds classifier

If we use log-odds we are interested in the quantity P(C | x) the
probability that we are in the class C given the data x . If we look at the
log-odds ratio and use a linear classifier hθ(x) =

∑m
i=1 θixi + θ0.

log

(
P(C | x)

P(C | x)

)
= log

(
P(C | x)

1− P(C | x)

)
= hθ(x)

A bit of algebra(
P(C | x)

P(C | x)

)
=

(
P(C | x)

1− P(C | x)

)
= exp(hθ(x))

24 / 42

More algebra

(
P(C | x)

1− P(C | x)

)
= exp(hθ(x))

Gives
P(C | x) = exp(hθ(x))(1− P(C | x))

Thus with a bit more algebra we can get

P(C | x) =
exp(hθ(x))

1 + exp(hθ(x))
=

1

1 + exp(−hθ(x))

25 / 42

Logistic regression

Thus if

P(C | x) =
1

1 + exp(−hθ(x))

We are modelling the log-odds ratio, which is a good thing.

26 / 42

Cross Entropy Cost

The standard cost/loss/error function

J(θ) =
1

2m

m∑
i=1

(σ(hθ(x (i)))− y (i))2

Is not really suitable if the expected values y (i) can only be 0 or 1. We
really want to count the number of miss-classifications. We would also like
something convex (one minimum as in linear regression)

27 / 42

Cross Entropy Cost

Costθ(x) =

{
− log(σ(hθ(x))) if y = 1

− log(1− σ(hθ(x))) if y = 0

There are lots of ways of motivating this. One it to use information theory,
another is via maximum likelihood estimation. Most importantly (although
the proof is outside the scope of the course) it is concave and hence
gradient descent will converge to the global minimum.

28 / 42

Cross Entropy Cost — Intuitive Picture

Costθ(x) =

{
− log(σ(hθ(x))) if y = 1

− log(1− σ(hθ(x))) if y = 0

Suppose our target value y is equal to 1, and σ(hθ(x)) is close to 1
then Costθ(x) will be close to 0. Remember log(1) = 0.

Again when y = 1 if when σ(hθ(x)) gets closer to 0 then
− log(σ(hθ(x))) gets larger and larger. We heavily penalise values
away from 1.

29 / 42

Cross Entropy Cost

Since y can only be 0 or 1 in a classification task we can rewrite the cost
function as

Costθ(x) = −y log(σ(hθ(x))) + (1− y) log(1− σ(hθ(x)))

So our total cost/error function is now (I’ve made a factor of 1
2 go away,

don’t worry).

J(θ) =
1

m

m∑
i=1

−y log(σ(hθ(x)))− (1− y) log(1− σ(hθ(x)))

Unlike linear regression there is no analytic solution for the minimum.

30 / 42

Cross Entropy Cost — Gradients

If you do lots of algebra then

∂J(θ)

∂θj
=

1

m

m∑
i=1

(σ(hθ(x (i))− y (i))x
(i)
j

Thus the gradient descent algorithm is almost the same as for linear
regression.

31 / 42

Logistic Regression — Linear Features

When learning the parameters for

σ(hθ(x))

Where hθ is a linear function. You are essentially finding separating
hyperplanes.

32 / 42

Separating Hyperplane

Everything on one side of the hyperplane gets classified in the class and
everything on the other side gets classified as not belonging to the class.

2 0 2 4 6 8 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Classes have to be linearly separable.
33 / 42

Linear separability

There are lots of things that are not linearly separable. For example

x y class

0 0 0
0 1 1
1 0 1
1 1 0

This was noticed in the 60s and was taken as a proof of the limitation of
the single perception. They did not know how to train multi-layer
networks, and this was partly responsible for shifting AI research to more
symbolic AI.
Again it is possible to use non-linear features (polynomials) as we did with
linear regression.

34 / 42

Multiclass classification — One vs All

We have only provided a classifier that estimates the probability that

P(C | x)

A simple way of combining these is picking the i such that P(Ci | x) is
maximised, but we have to be a bit careful.

35 / 42

Multiclass classification — One vs All

Given n classes we need to train n classifiers

σ(hθ1(x)), . . . , σ(hθi (x)), σ(hθn(x))

Our data set consists of data points x (j) and labels y (j).
For the classifier σ(hθi (x)) the label y ′(j) is defined as

y ′(j) =

{
1 if y (j) = i

0 otherwise

Thus we build a classifier where the positive class is the class we are
interested in and the negative class is all the rest.

36 / 42

Confusion Matrices

Given some input x , four things can happen:

True Positive x belongs to the class and we predict that.

False Negative x is in the class, but we predict not.

False Positive x is not in the class, but we predict it is.

True Negative x is not in the class , and we predict that it is not in the
class.

True Positive and True Negative are the good things. We want to minimise
False Positives and False Negatives. Sometimes we cannot minimise both.

37 / 42

Classification — Confusion Matrices

We can put this into a table:

actual
value

Prediction outcome

p n total

p′
True
Positive

False
Negative

P′

n′
False
Positive

True
Negative

N′

total P N

38 / 42

Confusion Matrices — Accuracy

Accuracy is defined as

TP + TN

TP + TN + TF + FN

This is the fraction of the time that we get things correct.

39 / 42

Confusion Matrices — Precision

Precision is defined as
TP

TP + FP

Of all the positive predictions what fraction are actually correct.

40 / 42

Confusion Matrices — Recall

Recall is defined as
TP

TP + FN

The quantity TP + FN is the actual number of instances in the class, and
so recall gives you the fraction of the time you are catching something in
the class.

41 / 42

Confusion Matrices — F-Score

Combine precision and recall into one quantity.

2
Precision · Recall
Precision + Recall

It is actually the harmonic mean of the precision and the recall. Since you
are they are both ratios it only makes sense to take the harmonic mean.
Maximising the F score that maximises both the precision and the recall.

42 / 42

