
Peer to Peer — P2P

• There are many non-technical questions around P2P because
of the ease of use in distributing content.

• The technical aims of P2P can be summarised as follows:

Load balancing Get rid of central servers, less load on one
node in the network.

Fault Tolerance No single point of failure, if the server goes
down the network can still carry on.

Efficient use of resources There are often lots of wasted
resources on network (spare file space, spare
computation power).

• Also coupled with this is the fact in most P2P systems it is
very easy for clients to participate
(SETI@Home,folding@home), posting a torrent is easy.

First Generation P2P – Napster

• Centralised server

• Each node registers list of files that is has to the central server

• When a node wishes to retrieve a file it request from the
central server a list of client nodes that have that file

• Then the client picks a node from which to download the file.

First Generation P2P – Napster

Client

Client Server Client

Client

RequestClient List

Request File

Return File

First Generation P2P – Napster

• Problems with Napster like protocols
• Single point of failure – The server.
• Client only downloads from one other client at a time.

• Solutions
• Have more than one server.
• Make the clients more complicated and download from

multiple clients (essentially what Bit-torrent does)

First Generation P2P

Client

Client Server Client

Client

First Generation P2P – Gnutella

• Again files are distributed across the network

• But no central server

• A node must know the IP address of at least one other
Gnutella node. Clients initialised with a set of working nodes

• Each node request each node in its working set

• If a node receives a request either:
• The file is there
• Otherwise the request is propagated on

• Requests have a lifetime TTL (Time to live).

First Generation P2P – Gnutella

C

C

C C C

C

C

C

C

First Generation P2P – Scalability

• Napster did not last long enough to test scalability issues, but

• Think of Google with a central server, scalability is less of a
problem today.

• Gnutella essentially the protocol tries to find a node by
flooding the network.

• Gnutella can have the problem that the network has more
request messages floating around than anything else.

• Instead of flooding do a random walk from node to node,
works but it can take a can take a long time to find the file.

The second generation of P2P systems

Issue a P2P file sharing systems must address:

File placement Where to publish the file to be shared by others?

File Look up Given a named item, how do you find it or download
it?

Scalability How does the performance degrade with the network
size?

Self-Organization How does the network handle nodes joining and
leaving the network?

The second generation of P2P systems

Additionally users often find attractive:

Censorship resistance How does the network function if nodes are
shut down in an attempt to censor items?

Fault-tolerance How can performance be kept in the presence of
node failures.

Free-rider elimination Discourage nodes that only download and
never upload.

Overlay networks

• Gnutella type protocols flood the network with lots of request.

• What is needed is some map that of nodes in the network
that have files.

• The basic idea is that of an overlay network, a network over a
network.

Overlay networks

Router Router

Router

Client Client

Client

Client Client

Client

Client

Overlay Networks

• The overlay network has a different notion of neighbour to the
underlying network.

• In the overlay network we need some way of storing routing
tables and a routing algorithm.

Pastry

• Pastry is a system developed at Microsoft research as a
middle ware layer for P2P systems.

• Each node is given a (almost certainly) unique 128 bit idea via
a cryptographic hash function on the node’s IP address or
public key.

• Cryptographic hash functions have random looking outputs,
things with similar IP address will get very different 128 bit
ids, and there is very little chance that two different IP
addresses get given the same hash.

• In a N-node system a message can be routed in

O(logrN)

hops, where r = 2b and b is typically 4.

Pastry Routing

• Pastry routes messages using prefix routing.

• If node P wants to send a message to an address x it sends it
to the next node in its neighbourhood set that have the closet
common prefix.

Pastry – Routing

A route from 2034 to 1305

b

b

b

b

b
bb

b

b

b

b

b

b

b

b

b
b b

b

b

b

b
2034

1-024

13-92

130-7

1305

Pastry Routing Implementation

• Each node maintains the following data:

Leaf Set L. Each node n maintains a list of nodes that are
between (n + L/2) and (n − L/2)

Routing Table R Each row j of the table points to a node
whose id shares the first j digits with n with
with digit j + 1 being different.

Neighbourhood set M The set of nodes that are nearest to n

w.r.t. the network underlying network topology.

• If a destination node is not in the leaf set then the node is
forwarded to a node whose id shares a larger common prefix
with the destination id.

Chord

• Chord uses an alternative addressing scheme based on a
m-dimensional hypercube.

• Each node only connects via its outgoing edges.

• With N = 2m nodes a message can be sent in m = log2 N

hops.

• Chord distributes files over the hypercube.
• A file with hash K is put in the node with address K otherwise

the node with the closets higher key.
• Each node has a routing table (called a finger table) with

m = log2N entries, each entry directs it to the a neighbour.
• Look up is in a greedy fashion, go via the neighbour which will

get you there quickest.

Incentive Mechanisms

• In the previous arrangements we have assumed that all nodes
are willing to share the resources that they have got.

• One of the primary (technical) aims of file sharing is to
distribute load.

• Instead everybody downloading a popular file from a central
server, we let clients host all or some of the file and other
clients download not just from the central server.

Incentive Mechanisms

There are three main mechanisms to manage incentives:

Reputation Each node gets a better service if it has built up a
reputation of offering a better service.

• For example peers in the KaZaA network build
up their reputation scores by uploading files to
others.

• Without security possible to fake your
reputation.

Barter If a node provides a good service to you then provide
a good service back. Essentially the model in Bit
Torrent. It is argued that this gives some
economically optimal situation.

Currency Peers earn money by giving resources to the system
and spend money by downloading and using
resources.

Bit torrent

• Bit torrent uses a central server (for each file) called a tracker

which keeps track of all peers that have the file. Note that
generally the tracker does not actually have the file to be
downloaded.

• A file is divided up into a number of chunks

• Each peer can have some or all of the chunks

• A seeding peer has all the chunks.

• A download peer has some of the chunks.

• The idea is that even while a peer is downloading it can still
be serving chunks.

• Each chunk has a hash to verify if it has been downloaded
properly (stops people injecting bogus chunks).

Bit torrent

Leecher

Tracker

Leecher

Leecher

Leecher

Leecher

Seeder

Seeder

Give me a swarm listHere it is

Note that the tracker need not give all the files in the swarm.

Bit torrent

• The actual mechanism of how the client downloads from the
current list of seeders and leechers (the swarm) can be quite
complicated.

• Essentially the client asks each other client what pieces does
it have?

• Then according to some strategy the client then asks for
chunks form the other members of the swarm.

• Tit for Tat, means that you don’t have to answer a request if
you not getting something back from requester (bandwidth).
This can make start up times a bit slow.

Bit torrent

Leecher

Leecher

Leecher

Leecher

Leecher

Seeder

Seeder

• What chunks do you have?

• Here is a list of chunks that I have.

Bit torrent

Leecher

Leecher

Leecher

Leecher

Leecher

Seeder

Seeder

• Request some chunk

• Here are the requested chunks.

Bit torrent

• Note, at all times the downloading client is serving requests
for chunks. Helps with Tit for Tat.

• Client might periodically ask for the chunk list from members
of the swarm.

• You don’t have to serve a downloaded chunk. There are many
reasons why you might not:

• You don’t have the bandwidth.
• Tit for tat scheme says no.

• The idea is that the more you upload the better service you
have.

Bit torrent

Bit torrent like protocols are used in quite a few places:

• Games
• Blizzard’s World of Warcraft uses bit torrent to deliver updates
• GnuZ The Duel (online multiplayer shot and kill game)

• Bit Torrent Inc. Legal version of Bit torrent download.

• Amazon S3 uses bit torrent in parts.

• Lots of Linux distributions offer bit-torrent downloads.

Security

Two aspects:

• Verification of identities and verification of money (if been
used as an incentive mechanism).

• This can be solved using standard techniques from
cryptography, public/private keys.

• Secure Storage, is a bit harder.

Secure Storage

Self-Certifying Data Use cryptographic hash.

Information Dispersal Files encoded into m blocks s.t. any n is
sufficient to reassemble the original data with m < n.

Secret Sharing Encrypt the data into l shares, so that any k nodes
can decrypt but not k − 1.

Other topics, secure routing, distributed stenographic file systems

Anonymity

• With bit-torrent it is easy to find a list of people downloading
a file. Just connect and look at the list of peers.

• Various types of anonymity are desirable:
• hide the author or publisher of the content
• hide the identity of a node storing the content
• hide the identity and details of the content
• hide details of queries for content.

Anonymity

Freenet peer-to-peer content distribution system that makes
it infeasible to discover the true origin or destination
of a file passing through its network.

Onion routing provides a mechanism for anonymous connection
between nodes (neither node knows the identity of
each other but messages still get through).

Note that these schemes can be quite sophisticated. Via the use of
techniques from cryptography it can be impossible (almost) to
break the anonymity. It is more complex than just throwing away
server logs.

Other uses of P2P

Skype uses peer-to-peer protocol to forward phone calls
around the net. Closed protocol, not sure how it
works.

Joost Peer-to-peer internet television.

OcenStore http://oceanstore.cs.berkeley.edu/ large
scalable, fault tolerant storage system.

Distributed Databases takes files up to the next level.

Distributed Computation Seti@Home, look for messages from the
little green men, or folding@home find out how
proteins fold.

http://oceanstore.cs.berkeley.edu/

