
Distributed Systems Lecture 3 1

Today’s Topics

Chapter 10.

• Clocks

– Physical Clocks.

– Synchronising physical clocks

• Logical Clocks

Distributed Systems Lecture 3 2

What is time?

”What, then, is time? If no one asks me, I know what it is.

If I wish to explain it to him who asks me, I do not know.”

St. Augustine, Confessions Bk 11, Ch XIV

Distributed Systems Lecture 3 3

What is time?

• How do you define a second?

– The answer depends on how accurate you want to be. You

could define a second to be a 60th of a minute and a minute to

be a 60th of an hour and there to be 24 hours in a day. (Easy

to work out how long a day). In fact there are ways of working

out the length of the mean solar day, by solar observations.

– Is was discovered in the ’40s that the period of the earth’s

rotation is not constant. The earth is slowing down due to

tidal friction and atmospheric drag. It is believed that 300

million years ago there where about 400 days per a year.

Distributed Systems Lecture 3 4

The Atomic Clock

• In 1948 it the atomic clock was invented and a second was

defined as 9,192,631,770 transitions of a cesium 133 atom. The

choice of 9,192,631,770 was made to make the atomic second

equal to the mean solar second in the year of its introduction.

• An atomic clock counts how many ticks of a cesium atom have

been made since midnight Jan 1, 1958. This is TAI

(International Atomic Time as defined by the Bureau

International de l’Heure in Paris).

Distributed Systems Lecture 3 5

Leap Seconds

.

• But now a TAI day 86400 TAI seconds is about 3 msec longer

than a mean solar day.

• If this carried the calender would be out of phase with the days.

• So to avoid problems leap seconds are introduced whenever the

discrepancy between TAI and solar time grows to 800 msec. The

corrected time is called Universal Coordinated Time, UTC.

• By January 1999, 29 leap seconds had been introduced.

Distributed Systems Lecture 3 6

Real Clocks

• Let t be the real time given a clock A let CA(t) be the time clock

A reads at time t.

• If the clock was perfect the for all t then CA(t) = t

• But a real clock there is some clock drift and there is some

constant ρ such that:

1 − ρ ≤
dC

dt
≤ 1 + ρ

• For clocks based on quartz crystals ρ is about 10−6

seconds/seconds given about 1 second difference every 11.6 days.

Distributed Systems Lecture 3 7

When to Synchronise Clocks?

• Given two clocks A and B with drift ρ how often should we

synchronise them so that the difference is no more than δ?

• Suppose that the worst thing happens:

dCA(t)

t
= 1 − ρ and

dCB(t)

t
= 1 + ρ

• Assume that at time 0, CA(0) = CB(0) = 0 after t seconds

CA(t) = (1 − ρ)t and CB(t) = (1 + ρ)t so the difference is:

CB(t) − CA(t) = t(1 + ρ − (1 − ρ)) = 2ρt

and we want δ < 2ρt so we need to synchronise at least every

δ/(2ρ) seconds.

Distributed Systems Lecture 3 8

Why Bother to Synchronise clocks

• Many applications depend on timestamps.

• For example the unix make system will compare the timestamp of

a source file hello.c with its object code hello.o if the source file is

older than the the object code then the file has to be recompiled.

• If the compiler is running on a different machine to the editor

and the clocks generating the timestamps of the file where out of

phase then bad things might happen.

Distributed Systems Lecture 3 9

Clock Synchronisation Algorithms

• Cristian’s Algorithm: Poll a central server, estimate the round

trip time.

• The Berkeley Algorithm: Distributed, try to find a common

notion of time.

• The Network Time Protocol, practical method to synchronise

clocks in a network.

Distributed Systems Lecture 3 10

What is the problem?

• Network delay is unbounded and unpredictable.

• If you ask the time the answer you get back is out of date by the

time it gets to you.

• The best you can do is produce an algorithm that within a

certain probability will synchronise the clocks within a certain δ.

Distributed Systems Lecture 3 11

Cristian’s Algorithm

• Basic architecture. Client and Server. The server holds the

correct time.

• Client request the time from server, server replies with the time.

The Client tries to calculate the round-trip time.

Client

Request

Time
Time server

CUTC

T0 T1

I, Interrupt handling time

Both T and T are measured with the same clock0 1

Distributed Systems Lecture 3 12

Cristian’s Algorithm

• The Client process measures the round-trip time using its

internal time. Assumption Round trip time is of a larger enough

order of magnitude so that clock drift does not matter.

• Assume that the outgoing and incoming messages are roughly

the same.

• So the propagation delay is then (T1 − T0 − I)/2 this can be then

used to set the clock of the client together with the time sent

back from the server.

Distributed Systems Lecture 3 13

The Berkeley Algorithm

Time daemon

3:00 3:00 3:053:00 0 +5

3:00 -10 +15

3:00 +25 -20

3:25 3:25 3:052:50 2:50 3:05

Network

(a) (b) (c)

Distributed Systems Lecture 3 14

The Berkely Algorithm

• One process is designated the master.

• The master periodically polls all the slaves for their times.

• Round-trip times are estimated as in Cristian’s algorithm.

• The master process averages all the times and sends out new

corrections.

• On average differences are cancelled out and the clocks converge

to a common time.

Distributed Systems Lecture 3 15

The Berkely Algorithm

• If the maximum round-trip time, TM , is know (or if the master

discard messages with a round-trip time longer than TM) then

the minimal possible transmission time between two nodes can

be calculated:

ǫ =
TM − 2 min(TAB , TBA)

2

where TAB is the minimum transmission time from A to B and

TBA is the minimum transmission time from B to A.

• Then it can be shown that if you synchronise every T seconds

then the time of all non-faulty clocks will be within the range

4ǫ + 2ρT (ρ = clock drift).

Distributed Systems Lecture 3 16

Lamport Time Stamps

A quote from Lamport’s original papera

The concept of time is fundamental to our way of thinking.

It is derived from the more basic concept of order in which

events occur. We say that something happened at 3:15 if it

occurred after our clock read 3:15 and before it read 3:15.

The concept of the temporal ordering of event pervades our

thinking about systems. For example in an airline

reservation system we specify that a request for a reservation

should be granted if it made before the flights filled.

However, we will see that this concept must be carefully

reexamined when considering events in a distributed system.
a“Time, Clocks, and the Ordering of Events in a Distributed System”, Leslie

Lamport. Communications of the ACM 1978, VOl. 21 No.7 558-565

Distributed Systems Lecture 3 17

Lamport Time Stamps

• In a distributed system network delays are unbounded.

• Two travel agents booking a flight at the same time, the server

does not know which one was sent first.

• Lamport timestamps try to characterise the notion of happens

before. But it no longer a total order, but a partial order. There

are some events that you don’t know which order they happened

in.

Distributed Systems Lecture 3 18

Lamport Timestamps

• Let → be the happens before relation, a → b reads that a

happens before b.

• → has to obey some axioms:

– For all events it should be false that a → a.

– If a happens before b on the same processor then a → b.

– a → b and b → c implies a → c.

– If a is the event of sending a message and b is the event of

receiving that message then a → b.

Distributed Systems Lecture 3 19

Lamport Timestamps

• A logical clock is a mapping L from events to the natural

numbers such that:

a → b ⇒ L(a) < L(b)

• It does not mean that if L(a) < L(b) then a → b.

Distributed Systems Lecture 3 20

Lamport Timestamps

Lamport’s logical clock is quite simple it uses the following three

rules to give a stamp to each event in the system. Each process, i,

has its own counter Li which is maintained as follows:

1. When ever an event happens in process i, set Li to Li + 1.

2. A process pi sends a message m, it adds a timestamp to m Li.

3. When process j receives a message (m, Li), Lj is set to

max(Lj , Li) ands then applies the first rule before timestamping

the receive event.

Distributed Systems Lecture 3 21

Lamport Timestamps

p1 a1 b2

(b,2)

ÂÂ
?

?

?

?

?

?

?

?

//

p2 c3 d4

(b,4)

ÂÂ
@

@

@

@

@

@

@

//

p3 e1 f5
//

In this example a → b, b → c, c → d , e → f and d → f .

But not e → a or a → e.

Distributed Systems Lecture 3 22

Lamport Timestamps

• Lamport timestamps put a total order on a partial order.

• It is a total order that every process can agree on.

• The total order can be used to decide on the ordering or requests.

• Of course it does not really tell you which happened first, but it

gives you an order than every body can agree on.

