Ch.9: Conclusion Plan

Chapter 9
Conclusion

(Version of 4 January 2005)

1. Functional programming in SML 9.2

2. Beyond functional programming 9.4

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.1

Ch.9: Conclusion 9.1. Functional programming in SML

9.1. Functional programming in SML

Covered and fundamental elements

e Fvaluation by reduction of expressions
e Recursion

e Functions as basic objects

e Higher-order functions

e Polymorphism via type variables
e Strong typing

e Type inference

e Pattern matching

e Definition of new types

e Type and value constructors

e Abstract datatypes

e Modules

e ['xceptions and error recovery

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.2

Ch.9: Conclusion 9.1. Functional programming in SML

Non-covered elements

e Imperative programming aspects,
such as variables and references, control structures, . ..

e [nput/output

e Inference techniques

Interest of functional programming in SML

e Fast program development

e Easy representation of new types

e Fasy realisation of abstract datatypes
e Power of the functional paradigm

e Power of the SML language itselt

e Conciseness of the developed programs

Warning

The apparent ease of program development in SML
does not imply that one need not think nor be creative!

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.3

Ch.9: Conclusion 9.2. Beyond functional programming

9.2. Beyond functional programming

Functional programming

The evaluation of f(a) gives at most one result,
and always gives the same result

Multifunctional programming

The evaluation of f(a) gives several (0, 1, or more) results,
either all-at-once or one-by-one
Example:

multifunction split L

TYPE: o list — (v list * v list)
PRE: (none)

POST: (xs,ys) such that xs @ ys =L

fun split [] = ([][])
| split (xixs) = ([],x:xs)
| let val (L1,L2) = split xs
in (x:L1,L2) end

- split [4,5,2] ;
val it = (], [4,5,2]) ;
val it = ([4] , [5,2]) ;
val it = ([45] , [2]) ;
val it = ([452], 1) ;
no other solutions

e This feature does not exist in SML

e There are very few multifunctional languages

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.4

Ch.9: Conclusion 9.2. Beyond functional programming

Relational programming (aka logic programming)

Example:

relation append (X,Y,2)

TYPE: int list * int list int list

PRE: (none)

POST: Z is the concatenation of X and Y

For which triples does the append relation hold?

append ([, [], []

append ([3], [1,2], [3,1,2])

append ([4,8], [], [4,8])

append ([5,0,2,1], [2,3,0], [5,0,2,1,2,3,0])

e No differentiation between arguments and results!
e Several possible usages of the same program for append:

- append ([1,2], [0,3], [1,2,0,3]).
Yes

- append ([1,2], [0,3], [1,5,3)).
No

- append ([1,2], [0,3], L).
L=[1,2,0,3] ;
No

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.5

Ch.9: Conclusion 9.2. Beyond functional programming

append (L1, L2, [1,5,3]).
L1=[], L2=[1,5,3] ;
L1=[1], L2=[5,3] ;
L1=[1,5], L2=[3] ;
L1=[1,5,3], L2=[] ;
No

- append (L1, [5,3], [1,5,3]).
L1=[1] ;
No

- append ([1,5], L2, L3).
L3=[1,5|L2] ;
No

- append (L1, L2, L3).
L1=[], L3=L2 ;
L1=[X], L3=[X|L2] ;
L1=[X,Y], L3=[X,Y|L2] ;

- append ([1,X,4], [YIYs], [1,2,4,3]).
X=2, Y=3, YsT[] ;
No

- append ([1,2], [0,3], L), append (L, [4,2], R).
L=[1,2,0,3] , R=[1,2,0,3,4,2] ;
No

- append (L1, L2, [1,5,3]), L2=[X,Y].

L1=[1], L2=[5,3], X=5, Y=3 :
No

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.6

Ch.9: Conclusion 9.2. Beyond functional programming

e Backtracking mechanism to enumerate all the possibilities

How to “program” the append relation?
With relational programming languages: Prolog, Mercury, ...
Example:

append ([], Ys, Ys) «—
append ([XIXs], Ys, [XIZs]) «<— append (Xs, Ys, Zs)

e 'T'wo clauses

e Unification mechanism,
as a generalisation of pattern matching

Interest of relational programming

e Power of the logic paradigm

e Power of the relational framework

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.7

