
Ch.9: Conclusion Plan

Chapter 9

Conclusion

(Version of 4 January 2005)

1. Functional programming in SML 9.2

2. Beyond functional programming 9.4

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.1

Ch.9: Conclusion 9.1. Functional programming in SML

9.1. Functional programming in SML

Covered and fundamental elements

• Evaluation by reduction of expressions

• Recursion

• Functions as basic objects

• Higher-order functions

• Polymorphism via type variables

• Strong typing

• Type inference

• Pattern matching

• Definition of new types

• Type and value constructors

• Abstract datatypes

• Modules

• Exceptions and error recovery

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.2

Ch.9: Conclusion 9.1. Functional programming in SML

Non-covered elements

• Imperative programming aspects,
such as variables and references, control structures, . . .

• Input/output

• Inference techniques

Interest of functional programming in SML

• Fast program development

• Easy representation of new types

• Easy realisation of abstract datatypes

• Power of the functional paradigm

• Power of the SML language itself

• Conciseness of the developed programs

Warning

The apparent ease of program development in SML
does not imply that one need not think nor be creative!

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.3

Ch.9: Conclusion 9.2. Beyond functional programming

9.2. Beyond functional programming

Functional programming

The evaluation of f (a) gives at most one result,
and always gives the same result

Multifunctional programming

The evaluation of f (a) gives several (0, 1, or more) results,
either all-at-once or one-by-one
Example:

multifunction split L
TYPE: α list→ (α list ∗ α list)
PRE: (none)
POST: (xs,ys) such that xs @ ys = L

fun split [] = ([],[])
| split (x::xs) = ([],x::xs)

‖ let val (L1,L2) = split xs
in (x::L1,L2) end

- split [4,5,2] ;
val it = ([] , [4,5,2]) ;

val it = ([4] , [5,2]) ;

val it = ([4,5] , [2]) ;

val it = ([4,5,2] , []) ;

no other solutions

• This feature does not exist in SML

• There are very few multifunctional languages

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.4

Ch.9: Conclusion 9.2. Beyond functional programming

Relational programming (aka logic programming)

Example:

relation append (X,Y,Z)
TYPE: int list ∗ int list ∗ int list
PRE: (none)
POST: Z is the concatenation of X and Y

For which triples does the append relation hold?

append ([], [], [])
append ([3], [1,2], [3,1,2])
append ([4,8], [], [4,8])
append ([5,0,2,1], [2,3,0], [5,0,2,1,2,3,0])
. . .

• No differentiation between arguments and results!

• Several possible usages of the same program for append:

- append ([1,2], [0,3], [1,2,0,3]).
Yes

- append ([1,2], [0,3], [1,5,3]).
No

- append ([1,2], [0,3], L).
L=[1,2,0,3] ;

No

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.5

Ch.9: Conclusion 9.2. Beyond functional programming

- append (L1, L2, [1,5,3]).
L1=[], L2=[1,5,3] ;

L1=[1], L2=[5,3] ;

L1=[1,5], L2=[3] ;

L1=[1,5,3], L2=[] ;

No

- append (L1, [5,3], [1,5,3]).
L1=[1] ;

No

- append ([1,5], L2, L3).
L3=[1,5|L2] ;

No

- append (L1, L2, L3).
L1=[], L3=L2 ;

L1=[X], L3=[X|L2] ;

L1=[X,Y], L3=[X,Y|L2] ;

...

- append ([1,X,4], [Y|Ys], [1,2,4,3]).
X=2, Y=3, Ys=[] ;

No

- append ([1,2], [0,3], L), append (L, [4,2], R).
L=[1,2,0,3] , R=[1,2,0,3,4,2] ;

No

- append (L1, L2, [1,5,3]), L2=[X,Y].
L1=[1], L2=[5,3], X=5, Y=3 ;

No

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.6

Ch.9: Conclusion 9.2. Beyond functional programming

• Backtracking mechanism to enumerate all the possibilities

How to “program” the append relation?
With relational programming languages: Prolog, Mercury, ...

Example:

append ([], Ys, Ys) ←
append ([X|Xs], Ys, [X|Zs]) ← append (Xs, Ys, Zs)

• Two clauses

• Unification mechanism,
as a generalisation of pattern matching

Interest of relational programming

• Power of the logic paradigm

• Power of the relational framework

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 9.7

