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3.1. Examples

Factorial (revisited from Section 2.13)

Program (fact.sml)

fun fact n =
if n < 0 then error "fact: negative argument"
else if n = 0 then 1
else n ∗ fact (n−1)

Useless test of the error case at each recursive call!
Hence we introduce an auxiliary function,
and can then use pattern matching in its declaration:

local
fun factAux 0 = 1

| factAux n = n ∗ factAux (n−1)
in

fun fact1 n =
if n < 0 then error "fact1: negative argument"
else factAux n

end

In fact1: pre-condition verification (defensive programming)
In factAux: no pre-condition verification
Function factAux is not usable directly: it is a local function
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Exponentiation

Specification

function expo x n
TYPE: real → int → real
PRE: n ≥ 0
POST: xn

Construction

Error case: n < 0: produce an error message

Base case: n = 0 : return 1

General case: n > 0 :
return xn = x ∗ xn−1 = x ∗ expo x (n−1)

Program (expo.sml)

local
fun expoAux x 0 = 1.0

| expoAux x n = x ∗ expoAux x (n−1)
in

fun expo x n =
if n < 0 then error "expo: negative argument"
else expoAux x n

end
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Sum

Specification

function sum a b
TYPE: int → int → int
PRE: (none)

POST:
∑

a ≤ i ≤ b

i

Construction

Base case: a > b : return 0

General case: a≤ b :

return
∑

a≤i≤b

i = a +
∑

a+1≤i≤b

i = a + sum (a+1) b

Program (sum.sml)

fun sum a b =
if a > b then 0
else a + sum (a+1) b
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3.2. Induction

Objectives of a construction method

• Construction of programs that are correct
with respect to their specifications

• A correctness proof must be easily derivable
from the construction process

Induction is the basic tool for the construction
and proof of recursive programs:

• Simple induction

• Complete induction
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Simple induction:

Example 1

Objective

Prove S(n):
∑

0≤i≤n

2i = 2n+1 − 1 for all n ≥ 0

Base

Prove S(0):
∑

0≤i≤0

2i = 20+1 − 1

Proof:
20 = 21 − 1
1 = 2− 1

Induction

Hypothesis: S(n) is true, for some n ≥ 0

Prove S(n + 1):
∑

0≤i≤n+1

2i = 2(n+1)+1 − 1

Proof: ∑
0≤i≤n+1

2i =
∑

0≤i≤n

2i + 2n+1

= 2n+1 − 1 + 2n+1

= 2n+2 − 1

Conclusion

S(n) is true for all n ≥ 0
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Simple induction:

Example 2

Program (expo.sml)

local
fun expoAux x 0 = 1.0

| expoAux x n = x ∗ expoAux x (n−1)
in

fun expo x n =
if n < 0 then error "expo: negative argument"
else expoAux x n

end

Correctness proof

Theorem: expo x n = xn for every real x and integer n ≥ 0
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Correctness proof

Theorem: expo x n = xn for every real x and integer n ≥ 0

Proof by induction on n

Error case: n < 0
Invalid input, the program stops with an error message

For the other cases,
it suffices to show that expoAux x n = xn,
for every real x and integer n ≥ 0

Base case: n = 0
We have that expoAux x n reduces to 1, which is xn

General case (induction): n > 0
Hypothesis: expoAux x (n−1) = xn−1

Now, expoAux x n reduces to x ∗ expoAux x (n−1),
which reduces (by the induction hypothesis) to x ∗ xn−1,
which is xn

The essence of the proof was present
during the construction process!
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Simple induction:

Principles

Objective

Prove S(n) for all integers n ≥ a

In practice, we often have a = 0 or a = 1

Base

• Prove S(a)

Induction

• Make the induction hypothesis, for some n ≥ a,
that S(n) is true

• Prove S(n + 1)

That is, prove S(n) ⇒ S(n + 1), for some n ≥ a

S(n+1) S(a)S(a+1)S(n) ...

Conclusion

S(n) is true for all integers n ≥ a
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Simple induction:

Justification

Why is S(n) true for any integer value n ≥ a?

Proof by iteration

S(a) is true, so S(a + 1) is true, . . . ,
thus S(n− 1) is true, hence S(n) is true

Proof by contradiction

Suppose S(n) is false for some n

Let j be the smallest integer such that S(j) is false:

• If j = a, then the base is incorrect, as S(a) is false

• If j > a, then the induction is incorrect,
as S(j) is false, hence S(j − 1) must be true,
but S(j − 1) ⇒ S(j) is false then
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Complete induction

For proving the correctness of a program for the function f n
simple induction can only be used when
all recursive calls are of the form f (n−1)

If a recursive call is of the form f (n−b)
where b is an arbitrary positive integer,
then one must use complete induction
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Complete induction:

Principles

Objective

Prove S(n) for all integers n ≥ a

In practice, we often have a = 0 or a = 1

Base

• Prove S(a)

Induction

• Make the induction hypothesis, for some n ≥ a,
that S(k) is true for every k such that a ≤ k ≤ n

• Prove S(n + 1)

S(n) S(a)S(a+1)S(a+2)S(n-1)S(n+1) ...

Conclusion

S(n) is true for all integers n such that n ≥ a
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3.3. Construction methodology

Objective
Construction of an SML program computing the function:

f (x) : D → R

given its specification S

Methodology

1. Choice of a variant

A case analysis is done on a numeric variant expression:
let a be the chosen variant, of type A, and
let A′ ⊆ A be the lower-bounded set of possible values of a,
considering its type A and the pre-condition of S

2. Handling of the error cases

What if a 6∈ A′?
Defensive programming: raise an exception
Otherwise: assume the caller established the pre-condition
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3. Handling of the base cases

For all the minimal values of a,
directly (without recursion) express the result in terms of x

4. Handling of the general case

When a has a non-minimal value,
investigate how the results of one or more recursive calls
can be combined with the argument
so as to obtain the desired overall result, such that:

1.Recursive calls are on a′, of type A, such that a′ < a

2.Recursive calls satisfy the pre-condition of S

State all this via an expression computing the result

Correctness

If a program is constructed using this methodology,
then it is correct with respect to its specification
(as long as the cases are correctly expressed)

This methodology makes the following hypotheses:

• The general case can be expressed using recursion

• The resolution of the problem does not involve
unspecified and/or unimplemented auxiliary problems

• The set A′ has a lower bound
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A more general program
construction methodology

1.Specification

2.Choice of a variant

3.Specification of auxiliary problems (if any)

4.Handling of the error cases

5.Handling of the base cases

6.Handling of the general case

7.Program

8.Construction of programs for the auxiliary problems
(if any), following the same methodology again!

Some steps can be useless for the solving of some problems:

• Steps 2 and 5 are useless for non-recursive programs

• Steps 3 and 8 are useless if there are no auxiliary problems
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3.4. Forms of recursion

Up to now:

• One recursive call

• Some variant is decremented by one

That is: simple recursion
(construction process by simple induction)

Forms of recursion

• Simple recursion

• Complete recursion

• Multiple recursion

• Mutual recursion

• Nested recursion

• Recursion on a generalised problem
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Complete recursion

Example 1: integer division (quotient and remainder)

Specification

function intDiv a b
TYPE: int → int → (int ∗ int)
PRE: a ≥ 0 and b > 0
POST: (q,r) such that a = q ∗ b + r and 0 ≤ r < b

Construction

Variant: a

Error case: a < 0 or b≤ 0 : produce an error message

Base case: a < b : since a = 0 ∗ b + a, return (0,a)
This covers more than the minimal value of a (namely 0)!

General case: a≥ b :
since a = q ∗ b + r iff (a−b) = (q−1) ∗ b + r,
the call intDiv (a−b) b will give q−1 and r
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Program (intDiv.sml)

fun intDiv a b =
let

fun intDivAux a b =
if a < b then (0,a)
else let val (q1,r1) = intDivAux (a−b) b

in (q1+1,r1) end
in

if a < 0 orelse b <= 0 then error "intDiv: invalid argument"
else intDivAux a b

end

Necessity of the induction hypothesis not only for a−1,
but actually for all values less than a: complete induction!
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Example 2: exponentiation (revisited from Section 3.1)

Specification

function fastExpo x n
TYPE: real → int → real
PRE: n ≥ 0
POST: xn

Construction

Variant: n

Error case: n < 0: produce an error message

Base case: n = 0 : return 1

General case: n > 0 :
if n is even, then return xn div 2 ∗ xn div 2

otherwise, return x ∗ xn div 2 ∗ xn div 2
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Program (expo.sml)

fun fastExpo x n =
let

fun fastExpoAux x 0 = 1.0
| fastExpoAux x n =

let val r = fastExpoAux x (n div 2)
in if even n then r ∗ r

else x ∗ r ∗ r
end

in
if n < 0 then error "fastExpo: negative argument"
else fastExpoAux x n

end

Complete recursion,
but the size of the input is divided by 2 each time!

Complexity

Let C(n) be the number of multiplications made
(in the worst case) by fastExpo:

C(0) = 0
C(n) = C(n div 2) + 2 for n > 0

One can show that C(n) = O(log n)
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Multiple recursion

Example: the Fibonacci numbers

Definition

fib (0) = 1
fib (1) = 1
fib (n) = fib (n−1) + fib (n−2) for n > 1

Specification

function fib n
TYPE: int → int
PRE: n ≥ 0
POST: fib (n)

Program (fib.sml)

Variant: n

fun fib 0 = 1
| fib 1 = 1
| fib n = fib (n−1) + fib (n−2)

• Double recursion

• Inefficient: multiple recomputations of the same values!
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Mutual recursion

Example: recognising even integers and odd integers

Specification

function even n
TYPE: int → bool
PRE: n ≥ 0
POST: true if n is even

false otherwise

function odd n
TYPE: int → bool
PRE: n ≥ 0
POST: true if n is odd

false otherwise

Program (even.sml)

Variant: n

fun even 0 = true
| even n = odd (n−1)

and odd 0 = false
| odd n = even (n−1)

• Simultaneous declaration of the functions

• Global correctness reasoning
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Nested recursion

and lexicographic order

Example 1: the Ackermann function

Definition

For m, n ≥ 0:
acker (0,m) = m+1
acker (n,0) = acker (n−1, 1) for n > 0
acker (n,m) = acker (n−1, acker (n, m−1)) for n, m > 0

Program (acker.sml)

Variant: the pair (n,m)

fun acker 0 m = m+1
| acker n 0 = acker (n−1) 1
| acker n m = acker (n−1) (acker n (m−1))

where
(n′,m′) <lex (n,m) iff n′ < n or (n′ = n and m′ < m)
This is called a lexicographic order

• The function acker always terminates

• It is not a primitive-recursive function,
so it is impossible to estimate an upper bound for acker n m
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Example 2: Graham’s number, the “largest” number

Definition

Operator ↑n (invented by Donald Knuth):

a ↑1 b = ab

a ↑n b = a ↑n−1 (b ↑n−1 b) for n > 1

Program (graham.sml)

Variant: n

fun opKnuth 1 a b = Math.pow (a,b)
| opKnuth n a b = opKnuth (n−1) a (opKnuth (n−1) b b)

- opKnuth 2 3.0 3.0 ;
val it = 7.62559748499E12 : real

- opKnuth 3 3.0 3.0 ;
! Uncaught exception: Overflow

Graham’s number is opKnuth 63 3.0 3.0
It is in the Guiness Book of Records!
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Recursion on a generalised problem

Example: recognising prime numbers

Specification

function prime n
TYPE: int → bool
PRE: n > 0
POST: true if n is a prime number

false otherwise

Construction

It is impossible to determine whether n is prime
via the reply to the question “is n− 1 prime”?
It seems impossible to directly construct a recursive program

We thus need to find another function:

• that is more general than prime, in the sense
that prime is a particular case of this function

• for which a recursive program can be constructed
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Specification of the generalised function

function divisors n low up
TYPE: int → int → int → bool
PRE: n, low, up ≥ 1
POST: true if n has no divisors in {low, . . . , up}

false otherwise

Construction of a program for the generalised function

Variant: up− low + 1, which is the size of {low, . . . , up}

Base case: low > up :
return true because the set {low, . . . , up} is empty

General case: low≤ up :
if n is divisible by low, then return false
otherwise, return whether n has a divisor in {low+1, . . . , up}

Construction of a program for the original function

The function prime is a particular case of the function divisors,
namely when low is 2 and up is n−1
One can also take up as b√nc, and this is more efficient
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Program (prime.sml)

fun divisors n low up =
low > up orelse
(n mod low) <> 0 andalso divisors n (low+1) up

fun prime n =
if n <= 0 then error "prime: non-positive argument"
else if n = 1 then false
else divisors n 2 (floor (Math.sqrt (real n)))

• The function divisors has not been declared as local to the
function prime because it can be useful for other problems

• The discovery of divisors requires imagination and creativity

• There are some standard methods of generalising problems:

– descending generalisation (aka accumulator introduction):
see Section 4.7 of this course

– ascending generalisation

– tupling generalisation: replace a parameter by a list of
parameters of the same type

These standard methods aim at improving the time and/or
space consumption of programs constructed without
generalisation
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Example: Analysing an Algorithm
for the Towers of Hanoi

The end of the world, according to a Buddhist story . . .

Initial state:

A B C

Rules:
Only move the top-most disk of a tower
Only move a disk onto a larger disk

Objective and final state: Move all the disks
from tower A to tower C, without violating any rules

Problem: Write a program that determines
a (minimal) sequence of movements to be done
for reaching the final state from the initial state,
without violating any rules

This is an example of a planning problem:
Artificial Intelligence
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Specification

Movements

The movements are represented by a string of characters:

MOVE A B
MOVE A C
MOVE B C

which shall be written in SML as:

"MOVE A B \n MOVE A C \n MOVE B C \n"

Specification

function hanoi n (start,aux,arrival)
TYPE: int→ (string ∗ string ∗ string)→ string
PRE: n≥ 0
POST: description of the movements to be done

for transferring n disks from tower start to tower arrival,
using tower aux, without violating any rules
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Example 1

A B C

MOVE A C
MOVE A B
MOVE C B
MOVE A C
MOVE B A
MOVE B C
MOVE A C

A B C
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Example 2

A B C

MOVE A B MOVE A C
MOVE B C MOVE A B
MOVE C A MOVE C B
MOVE A B MOVE A C
MOVE B C MOVE B A
MOVE C A MOVE B C
MOVE A B MOVE A C
MOVE B C

A B C
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Strategy

Movements to be done: hanoi (n-1) ("B","A","C") 

Movements to be done: hanoi (n-1) ("A","C","B") 

How to solve hanoi n ("A","B","C")?

B CA

A B C
Movement to be done: MOVE A C

A B C

A B C

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 3.32



Ch.3: Programming with Recursion 3.5. Towers of Hanoi

Construction of a program
Variant: n
Error case: n < 0 : produce an error message
Base case: n = 0 : no movement is needed
General case: n > 0 : double recursive usage of hanoi with n−1

Program (hanoi.sml)

local
fun hanoiAux 0 (start,aux,arrival) = ""

| hanoiAux n (start,aux,arrival) =
(hanoiAux (n−1) (start,arrival,aux))
ˆ "MOVE " ˆ start ˆ " " ˆ arrival ˆ "\n"
ˆ (hanoiAux (n−1) (aux,start,arrival))

in fun hanoi n (start,aux,arrival) =
if n < 0 then error "hanoi: negative number of disks"
else hanoiAux n (start,aux,arrival)

end

Example

- print (hanoi 3 ("A","B","C")) ;
MOVE A C

MOVE A B

MOVE C B

MOVE A C

MOVE B A

MOVE B C

MOVE A C
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Complexity

Will the end of the world be provoked soon
if we evaluate hanoi 64 ("A","B","C"),
even on the fastest computer of the year 2020?!

How many movements must be made for solving
the problem of the Towers of Hanoi with n disks?
Let M(n) be this number of movements
The complexity of the function hanoi n is Θ(M(n))

From the SML program, we get the recurrence equations :

M(0) = 0
M(n) = 2 ·M(n− 1) + 1 for n > 0

How to solve these equations?

• Guess the result and prove it by induction

• Iterative method

• Application of a pre-established formula
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Proof by induction

Theorem: M(n) = 2n − 1

Base: n = 0

M(0) = 0 = 20 − 1

Induction: n > 0

M(n) = 2 ·M(n− 1) + 1
= 2 · (2n−1 − 1) + 1
= 2n − 1

Hence: the complexity of hanoi n is Θ(2n)

Iterative method

M(n) = 2 ·M(n− 1) + 1
= 2 · (2 ·M(n− 2) + 1) + 1
= 4 ·M(n− 2) + 3
= 8 ·M(n− 3) + 7
= 23 ·M(n− 3) + (23 − 1)
= . . .
= 2k ·M(n− k) + (2k − 1)
= . . .
= 2n ·M(0) + (2n − 1)
= 2n − 1

Hence: the complexity of hanoi n is Θ(2n)
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Application of a pre-established formula

General formula

C(n) = a · C(n− 1) + b

Normal form

C(n) = an · C(0) + b ·
∑

0≤i<n

ai

Particular cases

a = 1: C(n) = C(0) + b · n = Θ(n)

a = 2: C(n) = 2n · C(0) + b · (2n − 1) = Θ(2n)

a 6= 1: C(n) = an · C(0) + b · an−1
a−1 = Θ(an)

Hence: the complexity of hanoi n is Θ(2n)

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II 3.36


