Chapter 3

Programming with Recursion

(Version of 16 November 2005)

1. Examples 3.2
2. Induction 3.5
3. Construction methodology 3.13
4. Forms of recursion 3.16
5. Application: The Towers of Hanoi 3.28

3.1. Examples

Factorial (revisited from Section 2.13)

Program (fact.sml)
fun fact $\mathrm{n}=$
if $\mathrm{n}<0$ then error "fact: negative argument"
else if $n=0$ then 1
else $\mathrm{n} *$ fact $(\mathrm{n}-1)$

Useless test of the error case at each recursive call!
Hence we introduce an auxiliary function, and can then use pattern matching in its declaration:

local

$$
\begin{aligned}
\text { fun factAux } 0 & =1 \\
\text { | factAux } n & =\mathrm{n} * \text { factAux }(\mathrm{n}-1)
\end{aligned}
$$

in
fun fact1 $\mathrm{n}=$
if $\mathrm{n}<0$ then error "fact1: negative argument" else factAux n
end

In fact1: pre-condition verification (defensive programming)
In factAux: no pre-condition verification
Function factAux is not usable directly: it is a local function

Exponentiation

Specification
function expo $\times n$
TYPE: real \rightarrow int \rightarrow real
PRE: $\mathrm{n} \geq 0$
POST: x^{n}

Construction
Error case: $\mathrm{n}<0$: produce an error message

Base case: $\mathrm{n}=0$: return 1

General case: $\mathrm{n}>0$:
return $\mathrm{x}^{n}=\mathrm{x} * \mathrm{x}^{n-1}=\mathrm{x} * \operatorname{expo} \mathrm{x}(\mathrm{n}-1)$
Program (expo.sml)
local
fun expoAux x $0=1.0$
$\operatorname{expoAux} x \mathrm{n}=\mathrm{x} * \operatorname{expoAux} \times(\mathrm{n}-1)$
in
fun $\operatorname{expo} \times \mathrm{n}=$
if $\mathrm{n}<0$ then error "expo: negative argument" else expoAux x n
end

Sum

Specification

function sum $a b$
TYPE: int \rightarrow int \rightarrow int
PRE: (none)
POST: $\sum_{a \leq i \leq b} i$

Construction

Base case: $\mathrm{a}>\mathrm{b}$: return 0

General case: $\mathrm{a} \leq \mathrm{b}$:
return $\sum_{a \leq i \leq b} i=\mathrm{a}+\sum_{a+1 \leq i \leq b} i=\mathrm{a}+\operatorname{sum}(\mathrm{a}+1) \mathrm{b}$

Program (sum.sml)
fun sum $a b=$
if $a>b$ then 0
else $a+\operatorname{sum}(a+1) b$

3.2. Induction

Objectives of a construction method

- Construction of programs that are correct with respect to their specifications
- A correctness proof must be easily derivable from the construction process

Induction is the basic tool for the construction and proof of recursive programs:

- Simple induction
- Complete induction

Simple induction:
 Example 1

Objective

Prove $S(n)$: $\sum_{0 \leq i \leq n} 2^{i}=2^{n+1}-1 \quad$ for all $n \geq 0$
Base
Prove $S(0): \sum_{0 \leq i \leq 0} 2^{i}=2^{0+1}-1$
Proof:

$$
\begin{aligned}
2^{0} & =2^{1}-1 \\
1 & =2-1
\end{aligned}
$$

Induction

Hypothesis: $S(n)$ is true, for some $n \geq 0$
Prove $S(n+1)$: $\quad \sum \quad 2^{i}=2^{(n+1)+1}-1$

$$
0 \leq i \leq n+1
$$

Proof:

$$
\begin{aligned}
\sum_{0 \leq i \leq n+1} 2^{i} & =\sum_{0 \leq i \leq n} 2^{i}+2^{n+1} \\
& =2^{n+1}-1+2^{n+1} \\
& =2^{n+2}-1
\end{aligned}
$$

Conclusion
$S(n)$ is true for all $n \geq 0$

Simple induction: Example 2

Program (expo.sml)
local
fun expoAux x $0=1.0$
| expoAux x $n=x * \operatorname{expoAux} \times(\mathrm{n}-1)$
in
fun $\operatorname{expo} \times n=$ if $\mathrm{n}<0$ then error "expo: negative argument" else expoAux x n
end

Correctness proof
Theorem: $\operatorname{expo} x n=x^{n}$ for every real x and integer $n \geq 0$

Correctness proof

Theorem: $\operatorname{expo} x n=x^{n}$ for every real x and integer $n \geq 0$

Proof by induction on n

Error case: $\mathrm{n}<0$
Invalid input, the program stops with an error message
For the other cases,
it suffices to show that expoAux $x n=x^{n}$,
for every real x and integer $n \geq 0$
Base case: $\mathrm{n}=0$
We have that expoAux $x n$ reduces to 1 , which is x^{n}

General case (induction): $n>0$
Hypothesis: $\operatorname{expoAux} x(n-1)=x^{n-1}$
Now, expoAuxxn reduces to $x * \operatorname{expoAuxx}(\mathrm{n}-1)$, which reduces (by the induction hypothesis) to $\mathrm{x} * \mathrm{x}^{n-1}$, which is x^{n}

The essence of the proof was present during the construction process!

Simple induction: Principles

Objective

Prove $S(n)$ for all integers $n \geq a$

In practice, we often have $a=0$ or $a=1$

Base

- Prove $S(a)$

Induction

- Make the induction hypothesis, for some $n \geq a$, that $S(n)$ is true
- Prove $S(n+1)$

That is, prove $S(n) \Rightarrow S(n+1)$, for some $n \geq a$

Conclusion

$S(n)$ is true for all integers $n \geq a$

Simple induction: Justification

Why is $S(n)$ true for any integer value $n \geq a$?

Proof by iteration
$S(a)$ is true, so $S(a+1)$ is true, \ldots,
thus $S(n-1)$ is true, hence $S(n)$ is true

Proof by contradiction
Suppose $S(n)$ is false for some n
Let j be the smallest integer such that $S(j)$ is false:

- If $j=a$, then the base is incorrect, as $S(a)$ is false
- If $j>a$, then the induction is incorrect, as $S(j)$ is false, hence $S(j-1)$ must be true, but $S(j-1) \Rightarrow S(j)$ is false then

Complete induction

For proving the correctness of a program for the function $f \mathrm{n}$ simple induction can only be used when all recursive calls are of the form $f(n-1)$

If a recursive call is of the form $f(\mathrm{n}-b)$ where b is an arbitrary positive integer, then one must use complete induction

Complete induction: Principles

Objective
Prove $S(n)$ for all integers $n \geq a$

In practice, we often have $a=0$ or $a=1$

Base

- Prove $S(a)$

Induction

- Make the induction hypothesis, for some $n \geq a$, that $S(k)$ is true for every k such that $a \leq k \leq n$
- Prove $S(n+1)$

Conclusion

$S(n)$ is true for all integers n such that $n \geq a$

3.3. Construction methodology

Objective

Construction of an SML program computing the function:

$$
f(x): D \rightarrow R
$$

given its specification S

Methodology

1. Choice of a variant

A case analysis is done on a numeric variant expression:
let a be the chosen variant, of type A, and
let $A^{\prime} \subseteq A$ be the lower-bounded set of possible values of a, considering its type A and the pre-condition of S
2. Handling of the error cases

What if $a \notin A^{\prime}$?
Defensive programming: raise an exception
Otherwise: assume the caller established the pre-condition

3. Handling of the base cases

For all the minimal values of a, directly (without recursion) express the result in terms of x

4. Handling of the general case

When a has a non-minimal value, investigate how the results of one or more recursive calls can be combined with the argument so as to obtain the desired overall result, such that:

1 . Recursive calls are on a^{\prime}, of type A, such that $a^{\prime}<a$
2. Recursive calls satisfy the pre-condition of S

State all this via an expression computing the result

Correctness

If a program is constructed using this methodology, then it is correct with respect to its specification (as long as the cases are correctly expressed)

This methodology makes the following hypotheses:

- The general case can be expressed using recursion
- The resolution of the problem does not involve unspecified and/or unimplemented auxiliary problems
- The set A^{\prime} has a lower bound

A more general program construction methodology

1. Specification

2. Choice of a variant
3. Specification of auxiliary problems (if any)
4. Handling of the error cases
5. Handling of the base cases
6. Handling of the general case
7. Program
8. Construction of programs for the auxiliary problems (if any), following the same methodology again!

Some steps can be useless for the solving of some problems:

- Steps 2 and 5 are useless for non-recursive programs
- Steps 3 and 8 are useless if there are no auxiliary problems

3.4. Forms of recursion

Up to now:

- One recursive call
- Some variant is decremented by one

That is: simple recursion
(construction process by simple induction)

Forms of recursion

- Simple recursion
- Complete recursion
- Multiple recursion
- Mutual recursion
- Nested recursion
- Recursion on a generalised problem

Complete recursion

Example 1: integer division (quotient and remainder)

Specification
function intDiv ab
TYPE: int \rightarrow int \rightarrow (int $*$ int)
PRE: $\mathrm{a} \geq 0$ and $\mathrm{b}>0$
POST: (q, r) such that $a=q * b+r$ and $0 \leq r<b$

Construction
Variant: a

Error case: $\mathrm{a}<0$ or $\mathrm{b} \leq 0$: produce an error message
Base case: $\mathrm{a}<\mathrm{b}$: since $\mathrm{a}=0 * \mathrm{~b}+\mathrm{a}$, return $(0, \mathrm{a})$
This covers more than the minimal value of a (namely 0)!

General case: $\mathrm{a} \geq \mathrm{b}$:
since $a=q * b+r$ iff $(a-b)=(q-1) * b+r$,
the call intDiv $(a-b) b$ will give $q-1$ and r

Program (intDiv.sml)

fun intDiv $a b=$
let
fun intDivAux a $b=$ if $a<b$ then $(0, a)$ else let val $(q 1, r 1)=\operatorname{intDivAux~}(a-b) b$ in ($q 1+1, r 1$) end
in
if $\mathrm{a}<0$ orelse b <= 0 then error "intDiv: invalid argument" else intDivAux ab
end

Necessity of the induction hypothesis not only for a-1, but actually for all values less than a: complete induction!

Example 2: exponentiation (revisited from Section 3.1)

Specification
function fastExpo $\times n$
TYPE: real \rightarrow int \rightarrow real
PRE: $\mathrm{n} \geq 0$
POST: x^{n}

Construction
Variant: n

Error case: $\mathrm{n}<0$: produce an error message

Base case: $\mathrm{n}=0$: return 1

General case: $\mathrm{n}>0$:
if n is even, then return $\mathrm{x}^{n \operatorname{div} 2} * \mathrm{x}^{n \operatorname{div} 2}$
otherwise, return $\mathrm{x} * \mathrm{x}^{n \operatorname{div} 2} * \mathrm{x}^{n}$ div 2

Program (expo.sml)

fun fastExpo $\times \mathrm{n}=$

let

```
fun fastExpoAux x 0 = 1.0
    | fastExpoAux x n =
        let val r= fastExpoAux x ( }n\mathrm{ div 2)
    in if even n then r * r
        else x*r*r
    end
```

in
if $\mathrm{n}<0$ then error "fastExpo: negative argument"
else fastExpoAux x n
end

Complete recursion,
but the size of the input is divided by 2 each time!

Complexity

Let $C(n)$ be the number of multiplications made (in the worst case) by fastExpo:

$$
\begin{aligned}
& C(0)=0 \\
& C(n)=C(n \operatorname{div} 2)+2 \quad \text { for } n>0
\end{aligned}
$$

One can show that $C(n)=O(\log n)$

Multiple recursion

Example: the Fibonacci numbers

Definition

fib $(0)=1$
fib $(1)=1$
fib $(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$ for $\mathrm{n}>1$

Specification
function fib n
TYPE: int \rightarrow int
PRE: $\mathrm{n} \geq 0$
POST: fib (n)

Program (fib.sml)
Variant: n
fun fib $0=1$
| fib $1=1$
| fib $n=f i b(n-1)+f i b(n-2)$

- Double recursion
- Inefficient: multiple recomputations of the same values!

Mutual recursion

Example: recognising even integers and odd integers
Specification
function even n
TYPE: int \rightarrow bool
PRE: $\mathrm{n} \geq 0$
POST: true if n is even
false otherwise
function odd n
TYPE: int \rightarrow bool
PRE: $\mathrm{n} \geq 0$
POST: true if n is odd
false otherwise

Program (even.sml)
Variant: n
fun even $0=$ true
। even $\mathrm{n}=$ odd $(\mathrm{n}-1)$
and odd $0=$ false
| odd $n=$ even $(n-1)$

- Simultaneous declaration of the functions
- Global correctness reasoning

Nested recursion and lexicographic order

Example 1: the Ackermann function

Definition

For $m, n \geq 0$:
acker $(0, \mathrm{~m})=\mathrm{m}+1$
$\operatorname{acker}(\mathrm{n}, 0)=\operatorname{acker}(\mathrm{n}-1,1) \quad$ for $\mathrm{n}>0$
$\operatorname{acker}(n, m)=\operatorname{acker}(n-1, \operatorname{acker}(n, m-1)) \quad$ for $n, m>0$

Program (acker.sml)
Variant: the pair (n, m)
fun acker $0 m=m+1$
| acker $\mathrm{n} 0=\operatorname{acker}(\mathrm{n}-1) 1$
| acker $\mathrm{n} m=\operatorname{acker}(\mathrm{n}-1)$ (acker $\mathrm{n}(\mathrm{m}-1)$)
where
$\left(n^{\prime}, m^{\prime}\right)<_{l e x}(n, m)$ iff $n^{\prime}<n$ or $\left(n^{\prime}=n\right.$ and $\left.m^{\prime}<m\right)$ This is called a lexicographic order

- The function acker always terminates
- It is not a primitive-recursive function,
so it is impossible to estimate an upper bound for acker nm

Example 2: Graham's number, the "largest" number

Definition

Operator \uparrow^{n} (invented by Donald Knuth):

$$
\begin{aligned}
& a \uparrow^{1} b=a^{b} \\
& a \uparrow^{n} b=a \uparrow^{n-1}\left(b \uparrow^{n-1} b\right) \quad \text { for } n>1
\end{aligned}
$$

Program (graham.sml)
Variant: n
fun opKnuth $1 \mathrm{ab}=$ Math.pow (a, b)
। opKnuth n a $\mathrm{b}=$ opKnuth $(\mathrm{n}-1)$ a (opKnuth $(\mathrm{n}-1) \mathrm{b}$ b)

- opKnuth 23.03 .0 ;
val it $=7.62559748499 E 12$: real
- opKnuth 33.03 .0 ;
! Uncaught exception: Overflow

Graham's number is opKnuth 633.03 .0
It is in the Guiness Book of Records!

Recursion on a generalised problem

Example: recognising prime numbers

Specification

function prime n
TYPE: int \rightarrow bool
PRE: $\mathrm{n}>0$
POST: true if n is a prime number
false otherwise

Construction

It is impossible to determine whether n is prime via the reply to the question "is $n-1$ prime"?
It seems impossible to directly construct a recursive program

We thus need to find another function:

- that is more general than prime, in the sense that prime is a particular case of this function
- for which a recursive program can be constructed

Specification of the generalised function
function divisors n low up
TYPE: int \rightarrow int \rightarrow int \rightarrow bool
PRE: n, low, up ≥ 1
POST: true if n has no divisors in $\{$ low, \ldots, up $\}$
false otherwise

Construction of a program for the generalised function Variant: up - low +1 , which is the size of $\{$ low, \ldots, up $\}$

Base case: low > up :
return true because the set $\{$ low, ..., up $\}$ is empty

General case: low \leq up :
if n is divisible by low, then return false otherwise, return whether n has a divisor in $\{$ low $+1, \ldots$, up $\}$

Construction of a program for the original function The function prime is a particular case of the function divisors, namely when low is 2 and up is $n-1$
One can also take up as $\lfloor\sqrt{n}\rfloor$, and this is more efficient

Program (prime.sml)

fun divisors n low up = low > up orelse
(n mod low) <> 0 andalso divisors n (low+1) up
fun prime $\mathrm{n}=$
if n <= 0 then error "prime: non-positive argument"
else if $\mathrm{n}=1$ then false
else divisors n 2 (floor (Math.sqrt (real n)))

- The function divisors has not been declared as local to the function prime because it can be useful for other problems
- The discovery of divisors requires imagination and creativity
- There are some standard methods of generalising problems:
- descending generalisation (aka accumulator introduction): see Section 4.7 of this course
- ascending generalisation
- tupling generalisation: replace a parameter by a list of parameters of the same type

These standard methods aim at improving the time and/or space consumption of programs constructed without generalisation

Example: Analysing an Algorithm for the Towers of Hanoi

The end of the world, according to a Buddhist story ...

Initial state:

Rules:

Only move the top-most disk of a tower
Only move a disk onto a larger disk
Objective and final state: Move all the disks from tower A to tower C, without violating any rules

Problem: Write a program that determines a (minimal) sequence of movements to be done for reaching the final state from the initial state, without violating any rules

This is an example of a planning problem:
Artificial Intelligence

Specification

Movements

The movements are represented by a string of characters:

MOVE A B
MOVE A C
MOVE B C
which shall be written in SML as:
"MOVE A B \n MOVE A C \n MOVE B C \n"

Specification

function hanoi n (start,aux,arrival)

TYPE: int \rightarrow (string $*$ string $*$ string $) \rightarrow$ string
PRE: $\mathrm{n} \geq 0$
POST: description of the movements to be done
for transferring n disks from tower start to tower arrival, using tower aux, without violating any rules

Example 1

MOVE A C
MOVE A B
MOVE C B
MOVE A C
MOVE B A
MOVE B C
MOVE A C

Example 2

MOVE A B MOVE A C MOVE B C MOVE A B MOVE C A MOVE C B MOVE A B MOVE A C MOVE B C MOVE B A MOVE C A MOVE B C MOVE A B MOVE A C MOVE B C

Strategy

Construction of a program

Variant: n
Error case: $\mathrm{n}<0$: produce an error message
Base case: $\mathrm{n}=0$: no movement is needed
General case: $n>0$: double recursive usage of hanoi with $n-1$
Program (hanoi.sml)

local

$$
\begin{aligned}
& \text { fun hanoiAux } 0 \text { (start,aux,arrival) = "" } \\
& \text { | hanoiAux n (start,aux,arrival) = } \\
& \text { (hanoiAux (} n-1 \text {) (start,arrival,aux)) } \\
& \text { ^ "MOVE " " start " " " ^ arrival ^ " } \backslash n " \\
& \text { ^ (hanoiAux (} n-1 \text {) (aux,start,arrival)) }
\end{aligned}
$$

in fun hanoi n (start,aux, arrival) $=$ if $\mathrm{n}<0$ then error "hanoi: negative number of disks" else hanoiAux n (start,aux,arrival)

end

Example

- print (hanoi 3 ("A","B","C")) ;

MOVE A C
MOVE A B
move C B
MOVE A C
MOVE B A
MOVE B C
MOVE A C

Complexity

Will the end of the world be provoked soon if we evaluate hanoi 64 ("A","B","C"), even on the fastest computer of the year 2020?!

How many movements must be made for solving the problem of the Towers of Hanoi with n disks?
Let $M(n)$ be this number of movements The complexity of the function hanoi n is $\Theta(M(n))$

From the SML program, we get the recurrence equations:

$$
\begin{aligned}
& M(0)=0 \\
& M(n)=2 \cdot M(n-1)+1 \quad \text { for } n>0
\end{aligned}
$$

How to solve these equations?

- Guess the result and prove it by induction
- Iterative method
- Application of a pre-established formula

Proof by induction

Theorem: $M(n)=2^{n}-1$
Base: $n=0$

$$
M(0)=0=2^{0}-1
$$

Induction: $n>0$

$$
\begin{aligned}
M(n) & =2 \cdot M(n-1)+1 \\
& =2 \cdot\left(2^{n-1}-1\right)+1 \\
& =2^{n}-1
\end{aligned}
$$

Hence: the complexity of hanoi n is $\Theta\left(2^{n}\right)$

Iterative method

$$
\begin{aligned}
M(n) & =2 \cdot M(n-1)+1 \\
& =2 \cdot(2 \cdot M(n-2)+1)+1 \\
& =4 \cdot M(n-2)+3 \\
& =8 \cdot M(n-3)+7 \\
& =2^{3} \cdot M(n-3)+\left(2^{3}-1\right) \\
& =\ldots \\
& =2^{k} \cdot M(n-k)+\left(2^{k}-1\right) \\
& =\ldots \\
& =2^{n} \cdot M(0)+\left(2^{n}-1\right) \\
& =2^{n}-1
\end{aligned}
$$

Hence: the complexity of hanoi n is $\Theta\left(2^{n}\right)$

Application of a pre-established formula

General formula

$$
C(n)=a \cdot C(n-1)+b
$$

Normal form

$$
C(n)=a^{n} \cdot C(0)+b \cdot \sum_{0 \leq i<n} a^{i}
$$

Particular cases
$\mathbf{a}=1: \quad C(n)=C(0)+b \cdot n=\Theta(n)$
$\mathbf{a}=\mathbf{2 :} \quad C(n)=2^{n} \cdot C(0)+b \cdot\left(2^{n}-1\right)=\Theta\left(2^{n}\right)$
$\mathbf{a} \neq \mathbf{1}: \quad C(n)=a^{n} \cdot C(0)+b \cdot \frac{a^{n}-1}{a-1}=\Theta\left(a^{n}\right)$
Hence: the complexity of hanoi n is $\Theta\left(2^{n}\right)$

