Distributed Spectral Efficiency Maximization in Full-Duplex Cellular Networks

José Mairton B. da Silva Jr*, Y. Xu*, G. Fodor*†, C. Fischione*

IEEE ICC’16 Workshop on Novel Medium Access and Resource Allocation for 5G Networks
23rd May 2016

*School of Electrical Engineering
KTH Royal Institute of Technology
†Ericsson Research
Stockholm, Sweden
http://www.kth.se/profile/jmbdsj
jmbdsj@kth.se
Why full-duplex at the base station?

- Half-Duplex (HD) systems → Inefficient resource utilization
- Full-Duplex (FD) systems → $\sim 2 \times$ spectral efficiency
Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality

4. Distributed Solution Based on Auction Theory

5. Numerical Results

6. Conclusions
Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality

4. Distributed Solution Based on Auction Theory

5. Numerical Results

6. Conclusions
FD Characteristics in cellular networks

Benefits

- **Spectral efficiency:** $\sim 2 \times$
- **MAC layer:** hidden terminal, collision avoidance, reduced end-to-end delay...
FD Characteristics in cellular networks

Challenges

- **Severe** self-interference (SI)
- UE-to-UE interference
- User to frequency channels pairing and power allocation
Research Gap in FD cellular networks

Need of distributed schemes
- Processing burden at the BS is high*
 - Dense deployment of user
 - New SI cancellation mechanisms
 - Radio Resource Management

Lack of fair and efficient PHY procedures
- How to mitigate UE-to-UE interference and assess fairness?
 - Pairing \rightarrow UL and DL users to share the frequency resource
 - Power allocation \rightarrow mitigate interference
 - Fairness \rightarrow weighted sum spectral efficiency maximization

Contributions

- Study sum spectral efficiency maximization and fairness problem
 - Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency
- Solve this MINLP problem
- Provide distributed mechanisms for FD cellular networks
- Show spectral efficiency gains over HD with distributed schemes
Contributions

- Study sum spectral efficiency maximization and fairness problem
 - Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency
- Solve this MINLP problem
 - Lagrangian duality \rightarrow optimal power allocation $+$ optimal centralized assignment
- Provide distributed mechanisms for FD cellular networks
- Show spectral efficiency gains over HD with distributed schemes
Contributions

- Study sum spectral efficiency maximization and fairness problem
 - Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency
- Solve this MINLP problem
 - Lagrangian duality \rightarrow optimal power allocation + optimal centralized assignment
- Provide distributed mechanisms for FD cellular networks
 - Distributed auction algorithm \rightarrow resource assignment to UL and DL users
- Show spectral efficiency gains over HD with distributed schemes
Contributions

- Study sum spectral efficiency maximization and fairness problem
 - Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency
- Solve this MINLP problem
 - Lagrangian duality \rightarrow optimal power allocation + optimal centralized assignment
- Provide distributed mechanisms for FD cellular networks
 - Distributed auction algorithm \rightarrow resource assignment to UL and DL users
- Show spectral efficiency gains over HD with distributed schemes
 - Realistic system simulations \rightarrow Yes, 89%!
Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality

4. Distributed Solution Based on Auction Theory

5. Numerical Results

6. Conclusions
Definitions (1)

- Single-cell cellular system + only BS is FD-capable
- UL users $\rightarrow I$; DL users $\rightarrow J$; Frequency channels $\rightarrow F$
- Effective path gain values $\rightarrow G_{ib}, G_{bj}, G_{ij}$
- SI cancellation coefficient $\rightarrow \beta$
- Assignment matrix $\rightarrow \mathbf{X} \in \{0, 1\}^{I \times J}$

$$x_{ij} = \begin{cases} 1, & \text{if the UL UE}_i \text{ is paired with the DL UE}_j, \\ 0, & \text{otherwise.} \end{cases}$$
Definitions (2)

- Power vectors \(p^u = [P^u_1 \ldots P^u_I], \quad p^d = [P^d_1 \ldots P^d_J] \)
- SINR at the BS and at DL user
 \[
 \gamma^u_i = \frac{P^u_i G_{ib}}{\sigma^2 + \sum_{j=1}^{J} x_{ij} P^d_j \beta}, \quad \gamma^d_j = \frac{P^d_j G_{bj}}{\sigma^2 + \sum_{i=1}^{I} x_{ij} P^u_i G_{ij}}.
 \]
- Achievable spectral efficiency
 \[
 C^u_i = \log_2(1 + \gamma^u_i), \quad C^d_j = \log_2(1 + \gamma^d_j).
 \]
- Weights \(\alpha^u_i, \alpha^d_j \)
 \(\alpha^u_i = \alpha^d_j = 1, \forall i, j \rightarrow \) Sum spectral efficiency maximization
 \(\alpha^u_i = G_{ib}^{-1}, \quad \alpha^d_j = G_{bj}^{-1} \rightarrow \) Path loss compensation
Problem Formulation

- Weighted sum spectral efficiency maximization (P-OPT)

\[
\begin{align*}
\text{maximize} \quad & \sum_{i=1}^{I} \alpha_i^u C_i^u + \sum_{j=1}^{J} \alpha_j^d C_j^d \\
\text{subject to} \quad & \gamma_i^u \geq \gamma_{\text{th}}^u, \forall i, \\
& \gamma_j^d \geq \gamma_{\text{th}}^d, \forall j, \\
& P_i^u \leq P_{\text{max}}^u, \forall i, \\
& P_j^d \leq P_{\text{max}}^d, \forall j, \\
& \sum_{i=1}^{I} x_{ij} \leq 1, \forall j, \\
& \sum_{j=1}^{J} x_{ij} \leq 1, \forall i, \\
& x_{ij} \in \{0, 1\}, \forall i, j.
\end{align*}
\]
Problem solution approaches

- Primal Problem (P-OPT)
- Dual Problem
- Centralized Solution
 - Opt power + Hungarian Alg. (C-HUN)
- Distributed Solution
 - Opt power + Auction theory (D-AUC)
Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality

4. Distributed Solution Based on Auction Theory

5. Numerical Results

6. Conclusions
Lagrangian function

- Formulate partial Lagrangian function

\[
L(\lambda^u, \lambda^d, X, p^u, p^d) \triangleq - \sum_{i=1}^{I} \alpha^u_i C_i^u - \sum_{j=1}^{J} \alpha^d_j C_j^d + \\
+ \sum_{i=1}^{I} \lambda^u_i (\gamma^u_{th} - \gamma^u_i) + \sum_{j=1}^{J} \lambda^d_j (\gamma^d_{th} - \gamma^d_j)
\]

- The dual function is

\[
g(\lambda^u, \lambda^d) = \inf_{X \in \mathcal{X}, p^u, p^d \in \mathcal{P}} L(\lambda^u, \lambda^d, X, p^u, p^d)
\]
Dual problem and closed-form solution for assignment

- Rewrite the dual as

\[
g(\lambda^u, \lambda^d) = \inf_{X \in \mathcal{X}, p^u, p^d \in \mathcal{P}} \sum_{n=1}^{N} \left(q^u_{in}(X, p^u, p^d) + q^d_{jn}(X, p^u, p^d) \right),
\]

with

\[
q^u_{in}(X, p^u, p^d) \triangleq \lambda^u_{in} \left(\gamma^u_{th} - \gamma^u_{in} \right) - \alpha^u_{i} C^u_{in},
\]

\[
q^d_{jn}(X, p^u, p^d) \triangleq \lambda^d_{jn} \left(\gamma^d_{th} - \gamma^d_{jn} \right) - \alpha^d_{j} C^d_{jn}.
\]

- Closed-form expression for the assignment

\[
x^*_ij = \begin{cases}
1, & \text{if } (i,j) = \arg \max_{i,j} \left(q^u_{in}^{\text{max}} + q^d_{jn}^{\text{max}} \right) \\
0, & \text{otherwise}
\end{cases}
\]
Dual problem and closed-form solution for assignment

- Rewrite the dual as

\[
g(\lambda^u, \lambda^d) = \inf_{X \in \mathcal{X}} \sum_{n=1}^{N} \left(q_{i_n}^u(X, p^u, p^d) + q_{j_n}^d(X, p^u, p^d) \right),
\]

with

\[
q_{i_n}^u(X, p^u, p^d) \triangleq \lambda_{i_n}^u \left(\gamma_{th}^u - \gamma_{i_n}^u \right) - \alpha_{i_n}^u C_{i_n}^u,
\]

\[
q_{j_n}^d(X, p^u, p^d) \triangleq \lambda_{j_n}^d \left(\gamma_{th}^d - \gamma_{j_n}^d \right) - \alpha_{j_n}^d C_{j_n}^d.
\]

- Closed-form expression for the assignment

\[
x_{ij}^\star = \begin{cases}
1, & \text{if } (i, j) = \arg \max_{i, j} \left(q_{i_n}^{u, \max} + q_{j_n}^{d, \max} \right) \\
0, & \text{otherwise}
\end{cases}
\]
Dual problem and optimal power allocation

- Analyse the dual problem

\[
\begin{align*}
\text{maximize} & \quad \lambda^u, \lambda^d \\
\text{subject to} & \quad \lambda_i^u, \lambda_j^d \geq 0, \forall i, j,
\end{align*}
\]

- Turn our attention to the power allocation problem

\[
\begin{align*}
\text{minimize} & \quad p^u, p^d - \sum_{i=1}^J \alpha_i^u C_i^u - \sum_{j=1}^J \alpha_j^d C_j^d \\
\text{subject to} & \quad p^u, p^d \in \mathcal{P}.
\end{align*}
\] (1a)

Optimal solution for (1) available:

\[^\dagger\text{D. Feng, L. Liu, Y. Yuan-Wu, G. Y. Li, Q. Feng and S. Li, “Device-to-Device Communications Underlaying Cellular Networks,” IEEE TC, vol. 61, no. 8, pp. 3541-3551, August 2013.}\]
Dual problem and optimal power allocation

- Analyse the dual problem

\[
\begin{align*}
\text{maximize} \quad & \lambda^u, \lambda^u \\
\text{subject to} \quad & g(\lambda^u, \lambda^d) \\
& \lambda^u_i, \lambda^d_j, \geq 0, \forall i, j,
\end{align*}
\]

- Turn our attention to the power allocation problem

\[
\begin{align*}
\text{minimize} \quad & p^u, p^d \\
\text{subject to} \quad & p^u, p^d \in \mathcal{P}.
\end{align*}
\]

Optimal solution for (1) available\(^*\)

†D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, Q. Feng and S. Li, "Device-to-Device Communications Underlaying Cellular Networks," IEEE TC, vol. 61, no. 8, pp. 3541-3551, August 2013
Dual problem and optimal power allocation

- Analyse the dual problem

\[
\begin{align*}
\text{maximize} & \quad \lambda^u, \lambda^d \\
\text{subject to} & \quad \lambda^u_i, \lambda^d_j \geq 0, \forall i, j,
\end{align*}
\]

- Turn our attention to the power allocation problem

\[
\begin{align*}
\text{minimize} & \quad p^u, p^d \\
\text{subject to} & \quad p^u, p^d \in \mathcal{P}.
\end{align*}
\]

\footnote{D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng and S. Li, "Device-to-Device Communications Underlaying Cellular Networks," IEEE TC, vol. 61, no. 8, pp. 3541-3551, August 2013}
Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality

4. Distributed Solution Based on Auction Theory

5. Numerical Results

6. Conclusions
Problem Reformulation

Reformulate closed-form assignment with optimal power allocation as

\[
\text{maximize } \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij} x_{ij}
\]

subject to

\[
\sum_{i=1}^{I} x_{ij} = 1, \forall j,
\]

\[
\sum_{j=1}^{J} x_{ij} = 1, \forall i,
\]

\[
x_{ij} \in \{0, 1\}, \forall i, j.
\]

- Centralized solution → Hungarian Algorithm
- Distributed solution → Auction Theory
Problem Reformulation

- Reformulate closed-form assignment with optimal power allocation as

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij} x_{ij} \\
\text{subject to} & \quad \sum_{i=1}^{I} x_{ij} = 1, \forall j, \\
& \quad \sum_{j=1}^{J} x_{ij} = 1, \forall i, \\
& \quad x_{ij} \in \{0, 1\}, \forall i, j.
\end{align*}
\]

- Centralized solution \(\rightarrow\) Hungarian Algorithm
- Distributed solution \(\rightarrow\) Auction Theory
Distributed Auction

- **Input:** c_{ij}, and tolerance ϵ

Bidding Phase
- UL bids for a DL user that maximizes $c_{ij} - \hat{p}_j$
- Wait for acknowledgement on assignment or update price

Assignment Phase
- BS is responsible for DL users
- BS selects the highest bid and update the prices \hat{p}_j
- Send updates and wait until the assignment matrix X is feasible

- Messages exchanged using control channels, e.g., PUCCH or PDCCH
1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality

4. Distributed Solution Based on Auction Theory

5. Numerical Results

6. Conclusions
Simulation Parameters

- $F = I = J$ and $I + J = 8, \ldots, 50$
- Path-loss compensation $\rightarrow \alpha_i^u = G_{ib}^{-1}$, $\alpha_j^d = G_{bj}^{-1}$
- SI cancellation $\beta = [-70, -100]$ dB
- Proposed algorithm
 - **D-AUC**: Dual solution with distributed Auction compared to
 - **P-OPT**: Primal optimal from brute-force solution
 - **C-HUN**: Centralized solution based on Duality and Hungarian algorithm
 - **R-EPA**: Random assignment + equal power allocation
 - **HD**: Traditional Half-Duplex scheme
Optimality Gap Comparison with $\beta = -100\text{dB}$

Negligible difference between P-OPT, C-HUN and D-AUC

Possible to use distributed solutions without losing too much
Optimality Gap Comparison with $\beta = -100\,\text{dB}$

- Negligible difference between P-OPT, C-HUN and D-AUC
- Possible to use distributed solutions without losing too much
Sum Spectral Efficiency Comparison for different β

\[
\begin{align*}
\beta &= -110 \text{dB} \rightarrow \text{UE-to-UE interference is the limiting factor} \\
\beta &= -70 \text{dB} \rightarrow \text{residual SI is the limiting factor}
\end{align*}
\]
Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality

4. Distributed Solution Based on Auction Theory

5. Numerical Results

6. Conclusions
Take home message

- Distributed algorithms to FD cellular networks
 - Perform close to centralized schemes
 - Fair and efficient
 - Almost double spectral efficiency (89% gain)
Take home message

- Distributed algorithms to FD cellular networks
 - Perform close to centralized schemes
 - Fair and efficient
 - Almost double spectral efficiency (89% gain)
 - Trade-off: residual SI × UE-to-UE interference
Take home message

- Distributed algorithms to FD cellular networks
 - Perform close to centralized schemes
 - Fair and efficient
 - Almost double spectral efficiency (89% gain)

- Trade-off: residual SI × UE-to-UE interference
Take home message

- Distributed algorithms to FD cellular networks
 - Perform close to centralized schemes
 - Fair and efficient
 - Almost double spectral efficiency (89% gain)
- Trade-off: residual SI × UE-to-UE interference
 - UE-to-UE interference is the limiting factor for low β
 - Residual SI is the limiting factor for high β
Distributed algorithms to FD cellular networks
- Perform close to centralized schemes
- Fair and efficient
- Almost double spectral efficiency (89% gain)

Trade-off: residual SI \times UE-to-UE interference
- UE-to-UE interference is the limiting factor for low β
- Residual SI is the limiting factor for high β
Take home message

- Distributed algorithms to FD cellular networks
 - Perform close to centralized schemes
 - Fair and efficient
 - Almost double spectral efficiency (89% gain)
- Trade-off: residual SI × UE-to-UE interference
 - UE-to-UE interference is the limiting factor for low β
 - Residual SI is the limiting factor for high β
Distributed Spectral Efficiency Maximization in Full-Duplex Cellular Networks

José Mairton B. da Silva Jr*, Y. Xu*, G. Fodor*†, C. Fischione*

IEEE ICC’16 Workshop on Novel Medium Access and Resource Allocation for 5G Networks
23rd May 2016

*School of Electrical Engineering
KTH Royal Institute of Technology
†Ericsson Research
Stockholm, Sweden
http://www.kth.se/profile/jmbdsj
jmbdsj@kth.se