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Introduction

• Classical logic - a very brief overview Chapter 8.1

• Multivalued logic Chapter 8.2
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Classical logic: A brief overview
Propositional logic

• Logic is the study of methods and principles of
reasoning in all its possible forms.

• Propositions - statements that are required to be true
or false .

• The truth value of a proposition is the opposite of the
truth value of its negation .

• Instead of propositions, we use logic variables . Logic
variable may asses one of the two truth values, if it is
substituted by a particular proposition.

• Propositional logic studies the rules by which new
logic variables can be produced from some given logic
variables. The internal structure of the propositions
“behind” the variables does not matter!
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Classical logic: A brief overview
Logic functions

Logic function assigns a truth value to a combination of
truth values of its variables:

f : {true, false}n → {true, false}

2n choices of n arguments → 22n
logic functions of n

variables.
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Classical logic: A brief overview
Logic functions of two variables

v2 1 1 0 0 Function Adopted
v1 1 0 1 0 name symbol
ω1 0 0 0 0 Zero function 0
ω2 0 0 0 1 NOR function v1 ↓ v2

ω3 0 0 1 0 Inhibition v1 > v2

ω4 0 0 1 1 Negation v̄2

ω5 0 1 0 0 Inhibition v1 < v2

ω6 0 1 0 1 Negation v̄1

ω7 0 1 1 0 Exclusive OR v1 ⊕ v2

ω8 0 1 1 1 NAND function v1|v2

ω9 1 0 0 0 Conjunction v1 ∧ v2

ω10 1 0 0 1 Equivalence v1 ⇔ v2

ω11 1 0 1 0 Assertion v1

ω12 1 0 1 1 Implication v1 ⇐ v2

ω13 1 1 0 0 Assertion v2

ω14 1 1 0 1 Implication v1 ⇒ v2

ω15 1 1 1 0 Disjunction v1 ∨ v2

ω16 1 1 1 1 One function 1
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Classical logic: A brief overview
Logic primitives

• Observe, e.g.:

ω14(v1, v2) = ω15(ω6(v1, v2), v2)

ω10(v1, v2) = ω9(ω14(v1, v2), ω12(v1, v2))

• A task : Express all the logic functions of n variables by
using only a small number of simple logic functions,
preferably of one or two variables.

• Such a set is a complete set of logic primitives .

• Examples:
{negation, conjunction, disjunction} = {ω6, ω9, ω15},
{negation, implication} = {ω6, ω14}.
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Classical logic: A brief overview
Logic formulae

Definition

1. If v is a logic variable, then v and v̄ are logic formulae;

2. If v1 and v2 are logic formulae, then v1 ∧ v2 and v1 ∨ v2

are also logic formulae;

3. Logic formulae are only those defined (obtained) by the
two previous rules.
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Classical logic: A brief overview
Logic formulae

Each logic formula generates a unique logic function.
Different logic formulae may generate the same logic
function. Such are called equivalent .

Examples:

(v1 ⇒ v2) ⇔ (v̄1 ∨ v2)

(v1 ⇔ v2) ⇔ ((v1 ⇒ v2) ∧ (v1 ⇐ v2))

Tautology is (any) logic formula that corresponds to a logic
function one .
Contradiction is (any) logic formula that corresponds to a
logic function zero .
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Classical logic: A brief overview
Inference rules

Inference rules are tautologies used for making deductive
inferences.

Examples:

• (a ∧ (a ⇒ b)) ⇒ b modus ponens
• (b̄ ∧ (a ⇒ b)) ⇒ ā modus tollens
• (a ⇒ b) ∧ (b ⇒ c)) ⇒ (a ⇒ c) hypothetical

syllogism
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Classical logic: A brief overview
Predicate logic

• There are situations when the internal structure of
propositions cannot be ignored in deductive reasoning.

• Propositions are, in general, of the form

x is P

where x is a symbol of a subject and P is a predicate
that characterizes a property.

• x is any element of universal set X , while P is a function
on X , which for each value of x forms a proposition.

• P(x) is called predicate ; it becomes true or false for
any particular value of x .

Fuzzy Sets
and Fuzzy
Techniques

Nataša
Sladoje

Introduction

Fuzzy Logic

Fuzzy
Implications

Binary Fuzzy
Relations

Approximate
Reasoning

Classical logic: A brief overview
Predicate logic-extensions

• n-ary predicates P(x1, x2, . . . , xn)

• Quantification of applicability of a predicate with respect
to the domain of its variables

Existential quantification : (∃x)P(x)
Universal quantification : (∀x)P(x)

• It holds:

(∃x)P(x) =
∨

x∈X

P(x) (∀x)P(x) =
∧

x∈X

P(x)
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Multivalued Logics
Three-valued logic

• Third truth value is allowed:
truth: 1, false: 0, intermediate: 1

2 .

• While it is accepted to have p̄ = 1 − p, the definitions of
other primitives differ in different three-valued logics.

• For the best known three-valued logics (Łukasiewicz,
Bochvar, Kleene, Heyting, Reichenbach), primitives
coincide with two valued counterparts for the variables
having values 0 or 1 (see Table 8.4, p.218).

• None of the mentioned logics satisfies law of excluded
middle, or law of contradiction.

• quasi-tautology is a logic formula that never assumes
truth value 0;

• quasi-contradiction is a logic formula that never
assumes truth value 1.
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Multivalued Logics
n-valued logic

The set of truth values is

Tn = {0 =
0

n − 1
,

1
n − 1

,
2

n − 1
, . . . ,

n − 2
n − 1

,
n − 1
n − 1

= 1}.

Truth values are interpreted as degrees of truth .
Primitives in n-valued logics of Łukasiewicz, denoted by Ln,
are:

p̄ = 1 − p

p ∧ q = min[p,q]

p ∨ q = max[p,q]

p ⇒ q = min[1,1 + q − p]

p ⇔ q = 1 − |p − q|
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Multivalued Logics
Łukasiewicz n-valued logic

• L2 is a classical two valued logic.

• L∞ takes truth values to be all rational numbers in [0,1].

• By L1, the logic with truth values being all real numbers
in [0,1] is denoted.

It is called the standard Łukasiewicz logic .
It is isomorphic with a fuzzy set theory based
on standard operations.

There exists no finite complete set of logic primitives for any
infinite-valued logic. Using a finite set of primitives, only a
subset of all logic functions can be defined.
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Fuzzy logic

• Fuzzy propositions Chapter 8.3

• Linguistic hedges Chapter 8.5

• Fuzzy quantifiers Chapter 8.4
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Fuzzy propositions

The range of truth values of fuzzy propositions is not only
{0,1}, but [0,1].
The truth of a fuzzy proposition is a matter of degree .

Classification of fuzzy propositions:

• Unconditional and unqualified propositions
“The temperature is high.”

• Unconditional and qualified propositions
“The temperature is high is very true."

• Conditional and unqualified propositions
“If the temperature is high, then it is hot.”

• Conditional and qualified propositions
“If the temperature is high, then it is hot is true.”
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Linguistic hedges

• Linguistic hedges are linguistic terms by which other
linguistic terms are modified.

“Tina is young is true.”
“Tina is very young is true.”
“Tina is young is very true.”
“Tina is very young is very true.”

• Fuzzy predicates and fuzzy truth values can be
modified.
Crisp predicates cannot be modified.

• Examples of hedges: very, fairly, extremely .
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Linguistic hedges (modifiers)

For a given predicate F on X and a given linguistic hedge
H, a new (modified) fuzzy predicate HF is defined as:

HF (x) = h(F (x)), for all x ∈ X .

A modifier h is a unary operation h : [0,1] → [0,1] such
that:

• h(0) = 0 and h(1) = 1:

• h is a continuous function;

• If h(a) < a for all a ∈ [0,1], (i.e., if h is strong ), then
h−1(a) > a for all a ∈ [0,1], (i.e., then h−1 is weak ).

• A composition of modifiers is also a modifier.

Strong modifier reduces the truth value of a proposition.
Weak modifier increases the truth value of a proposition
(by weakening the proposition).
An identity modifier is a function h(a) = a.
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Modifiers

One commonly used class of modifiers is

hα(a) = aα
, for α ∈ R+ and a ∈ [0,1].

For α < 1, hα is a weak modifier.
Example: H : fairly ↔ h(a) =

√
a.

For α > 1, hα is a strong modifier.
Example: H : very ↔ h(a) = a2.

h1 is the identity modifier.
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Modifiers

Example: Tina is 26.
p1: Tina is young. YOUNG(26) = 0.8
p2: Tina is very young. VERY _YOUNG(26) = 0.82 = 0.64
p3: Tina is fairly young. FAIRLY _YOUNG(26) =

√
0.8 = 0.89
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Fuzzy quantifiers

• Absolute quantifiers:
“about 10”; “much more than 100”, ...

• Relative quantifiers:
“almost all”; “about half”, ...

Examples:
p: “There are about 3 high-fluent students in the group.”

q: “Almost all students in the group are high-fluent.”
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Fuzzy quantifiers

To determine the truth value of a quantified proposition, we
need to know

1. “how many” students in the group are high-fluent
i.e., cardinality of a fuzzy set High-fluent

2. “how much” is that value about 3
i.e., membership of the obtained value
to the fuzzy set About 3

or

1. “how many” students in the group are high-fluent,
relatively to the size of the group

i.e., cardinality of a fuzzy set High-fluent
divided by the size of the group

2. “how much” is that value almost all
i.e., membership of the obtained value
to the fuzzy set Almost all.
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Fuzzy quantifiers
An example

Group = { Adam, Bob, Cathy, David, Eve }.
Fluency is represented by the value from the interval [0, 100].
Fuzzy set F represents “High fluency” on [0,100].
Fuzzy set Q represents fuzzy quantifier “about 3”.

E = 0/Adam + 0/Bob + 0.75/Cathy + 1/David + 0.5/Eve

is a fuzzy set “High fluency´´ on the domain Group.

|E | = 2.25 T (p) = Q(|E |) = Q(2.25) = 0.625.
|E |

|Group| = 0.45 T (q) = Q1(0.45) = 0.
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Fuzzy propositions
Unconditional and unqualified propositions

The canonical form

p : ν is F

ν is a variable on some universal set V
F is a fuzzy set on V that represents a fuzzy predicate

(e.g., low, tall, young, expensive...)

The degree of truth of p is

T (p) = F (v), for v ∈ ν.

T is a fuzzy set on V . Its membership function is derived form the
membership function of a fuzzy predicate F .

The role of a function T is to connect fuzzy sets and fuzzy propositions.

In case of unconditional and unqualified propositions, the identity function

is used.
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Fuzzy propositions
Unconditional and unqualified propositions

An illustration:

Note: The proposition can be expressed as “ ν is F is true.”
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Fuzzy propositions
Unconditional and qualified propositions

The canonical form

p : ν is F is S (truth qualified proposition)

where ν is a variable on some universal set V ,
F is a fuzzy set on V that represents a fuzzy predicate,
and S is a fuzzy truth qualifier .

To calculate the degree of truth T (p) of the proposition p,
we use:

T (p) = S(F (v))
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Fuzzy propositions
Unconditional and qualified propositions

An illustration:
p: “ Tina is young is very true”.
Tina is 26.

Young(26) = 0.87, and VeryTrue(0.87) = 0.76

T (p) = 0.76.
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Fuzzy propositions
Conditional and unqualified propositions

The canonical form

p : If X is A, then Y is B,

where X ,Y are variables on X ,Y respectively,
and A,B are fuzzy sets on X ,Y respectively.

Alternative form:
〈X ,Y〉 is R

where R(x , y) = J (A(x),B(x)) is a fuzzy set on X × Y
representing a suitable fuzzy implication.
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Fuzzy propositions
Conditional and qualified propositions

The canonical form

p : If X is A, then Y is B is S

where X ,Y are variables on X ,Y respectively,
A,B are fuzzy sets on X ,Y respectively,
and S is a truth qualifier.
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Fuzzy implications

• Fuzzy implications Chapter 11.2

• Selection of fuzzy implications Chapter 11.3

Fuzzy Sets
and Fuzzy
Techniques

Nataša
Sladoje

Introduction

Fuzzy Logic

Fuzzy
Implications

Binary Fuzzy
Relations

Approximate
Reasoning

Fuzzy implications
Definition(s)

A fuzzy implication J of two fuzzy propositions p and q is
a function of the form

J : [0,1]× [0,1] → [0,1],

which for any truth values a = T (p) and b = T (q) defines
the truth value J (a,b) of the conditional proposition

“if p, then q”.
Fuzzy implications as extensions of the classical logic implication:

Crisp implication a ⇒ b Fuzzy implication J (a, b)
(S) ā ∨ b u(c(a), b)
(R) max{x ∈ {0, 1} | a ∧ x ≤ b} sup{x ∈ [0, 1] | i(a, x) ≤ b}
(QL) ā ∨ (a ∧ b) u(c(a), i(a, b))
(QL) (ā ∧ b̄) ∨ b u(i(c(a), c(b)), b)
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Fuzzy implications
Axiomatic requirements

Ax1. a ≤ b implies J (a, x) ≥ J (b, x) monotonicity in first argument

Ax2. a ≤ b implies J (x , a) ≤ J (x , b) monotonicity in sec. arg.

Ax3. J (0, a) = 1 dominance of falsity

Ax4. J (1, b) = b neutrality of truth

Ax5. J (a, a) = 1 identity

Ax6. J (a,J (b, x)) = J (b,J (a, x)) exchange property

Ax7. J (a, b) = 1 iff a ≤ b boundary condition

Ax8. J (a, b) = J (c(b), c(a)) contraposition

Ax9. J is a continuous function continuity
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Fuzzy implications
Examples
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Fuzzy implications
How to select fuzzy implication

Criteria related to fuzzy inference rules
modus ponens, modus tollens, hypothetical syllogism .

Idea: If reduced to crisp sets, these rules should coincide with
corresponding classical inference rules.

More formally: for fuzzy sets A(x), B(y) representing truth values by
membership grades in [0,1]

B(y) = supx∈X i(A(x),J (A(x),B(y))) modus ponens
c(A(x)) = supy∈Y i(c(B(y)),J (A(x),B(y))) modus tollens

J (A(x),C(z)) = supy∈Y i(J (A(x),B(y)),J (B(y),C(z))) hypothet. syllog.

should hold.
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Fuzzy implications
How to select fuzzy implication

Look at Table 11.2 , Table 11.3, and Table 11.4
(pp. 315-317).

One good choice:

Js(a, b) =
{

1 a ≤ b
0 a > b

One frequently used implication: Łukasiewicz

Ja(a, b) = min[1, 1 − a + b]
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Binary fuzzy relations

• Binary fuzzy relations – definition Chapter 5.3
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Binary fuzzy relations
A super-brief introduction

• A crisp binary relation R on sets X ,Y is any (crisp)
subset of X × Y .

• xRy
( x ∈ X is in relation R with y ∈ Y ) iff (x , y) ∈ R

• A fuzzy binary relation R on sets X ,Y is any fuzzy
subset of X × Y .

• Elements x ∈ X and y ∈ Y are in relation R up to some
extent.
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Binary fuzzy relations
A super-brief introduction

Terminology: for a given fuzzy relation R(X ,Y )

• domain of R is domR(x) = maxy∈Y R(x , y), for each x ∈ X .

• range of R is ranR(y) = maxx∈X R(x , y), for each y ∈ Y .

• height of R is h(R) = maxy∈Y maxx∈X R(x , y).

The standard composition of two fuzzy relations, P(X ,Y ) and Q(Y ,Z),
is a binary relation R(X ,Z) defined by

R(x , z) = [P ◦ Q](x , z) = max
y∈Y

min[P(x , y),Q(y , z)]

for all x ∈ X and all z ∈ Z .

This composition is based on standard t-norm, and standard t-conorm. It is

also referred to as max-min composition .
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Binary fuzzy relations
A super-brief introduction

To represent (fuzzy) binary relations, membership
matrices are convenient.

R = [rxy ], where rxy = R(x , y).

An example:
Two fuzzy binary relations, P(X ,Y ) and Q(Y ,Z) are given:

P =





0.3 0.5 0.8
0.0 0.7 1.0
0.4 0.6 0.5



 Q =





0.9 0.5 0.7 0.7
0.3 0.2 0.0 0.9
1.0 0.0 0.5 0.5



 .

We read that, e.g.,

dom P(x2) = max[0.0, 0.7, 1.0] = 1.0,

ran Q(y3) = max[0.7, 0.0, 0.5] = 0.7.
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Binary fuzzy relations
A super-brief introduction

We can also determine
R = P ◦ Q = [rij ] = [pik ] ◦ [qkj ] = [maxk min(pik ,qkj)]

R = P ◦ Q =





0.3 0.5 0.8
0.0 0.7 1.0
0.4 0.6 0.5



 ◦





0.9 0.5 0.7 0.7
0.3 0.2 0.0 0.9
1.0 0.0 0.5 0.5





=





0.8 0.3 0.5 0.5
1.0 0.2 0.5 0.7
0.5 0.4 0.5 0.6



 .

For example

r23 = max[min(0.0, 0.7),min(0.7, 0.0), min(1.0, 0.5)]

= max[0.0, 0.0, 0.5] = 0.5.
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Approximate reasoning

• Inference rules from conditional fuzzy propositions
Chapter 8.6

• Multiconditional approximate reasoning
Chapter 11.4
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Inference rules

Fuzzy inference rules are basis for approximate
reasoning .

As an example, three classical inference rules
(Modus ponens, Modus Tollens, Hypothetical syllogism)

are generalized by using compositional rule of inference

For a given fuzzy relation R on X × Y , and a given fuzzy set
A′ on X , a fuzzy set B′ on Y can be derived for all y ∈ Y , so
that

B′(y) = sup
x∈X

min[A′(x),R(x , y)].

In matrix form, compositional rule of inference is

B′ = A′ ◦ R
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Inference rules
Fuzzy propositions as relations

The fuzzy relation R is, e.g., given by (one or more)
conditional fuzzy propositions.

For a given fuzzy proposition

p : If X is A, then Y is B

a corresponding fuzzy relation is

R(x , y) = J [A(x),B(y)], for all x ∈ X , y ∈ Y

where J stands for a fuzzy implication.
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Inference rules
Generalized modus ponens

Rule: If X is A, then Y is B
Fact: X is A′

Conclusion: Y is B′

In this case,
R(x , y) = J [A(x),B(y)]

and
B′(y) = sup

x∈X
min[A′(x),R(x , y)].
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Inference rules
Generalized modus ponens – an example

Example:
Let X = {x1, x2, x3} and Y = {y1, y2} be the sets of values of variables X ,Y .
Let A = 0.5/x1 + 1/x2 + 0.6/x3 and B = 1/y1 + 0.4/y2.
Let A′ = 0.6/x1 + 0.9/x2 + 0.7/x3.
Let R(x , y) = J [A(x),B(y)] = min[1, 1 − A(x) + B(y)].
By using Generalized modus ponens, derive the conclusion Y is B′.

We compute:

R = 1/x1, y1 + 0.9/x1, y2 + 1/x2, y1 + 0.4/x2, y2 + 1/x3, y1 + 0.8/x3, y2

B′(y1) = sup
x∈X

min[A′(x), R(x , y1)]

= max[min(0.6, 1),min(0.9, 1), min(0.7, 1)]

= max[0.6, 0.9, 0.7] = 0.9

B′(y2) = sup
x∈X

min[A′(x), R(x , y2)]

= max[min(0.6, 0.9),min(0.9, 0.4), min(0.7, 0.8)]

= max[0.6, 0.4, 0.7] = 0.7

We conclude that B′ = 0.9/y1 + 0.7/y2.

Fuzzy Sets
and Fuzzy
Techniques

Nataša
Sladoje

Introduction

Fuzzy Logic

Fuzzy
Implications

Binary Fuzzy
Relations

Approximate
Reasoning

Inference rules
Generalized modus tollens

Rule: If X is A, then Y is B
Fact: Y is B′

Conclusion: X is A′

In this case,
R(x , y) = J [A(x),B(y)]

and
A′(x) = sup

y∈Y
min[B′(y),R(x , y)].
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Generalized modus tollens – an example

Example:
Let X = {x1, x2, x3} and Y = {y1, y2} be the sets of values of variables X ,Y .
Let A = 0.5/x1 + 1/x2 + 0.6/x3 and B = 1/y1 + 0.4/y2.
Let B′ = 0.9/y1 + 0.7/y2.
Let R(x , y) = J [A(x),B(y)] = min[1, 1 − A(x) + B(y)].
By using Generalized modus tollens, derive the conclusion X isA′.

We compute:

R = 1/x1, y1 + 0.9/x1, y2 + 1/x2, y1 + 0.4/x2, y2 + 1/x3, y1 + 0.8/x3, y2.

A′(x1) = sup
y∈Y

min[B′(y), R(x1, y)]

= max[min(0.9, 1), min(0.7, 0.9)] = max[0.9, 0.7] = 0.9

A′(x2) = sup
y∈Y

min[B′(y), R(x2, y)]

= max[min(0.9, 1), min(0.7, 0.4)] = max[0.9, 0.4] = 0.9

A′(x3) = sup
y∈Y

min[B′(y), R(x3, y)]

= max[min(0.9, 1), min(0.7, 0.8)] = max[0.9, 0.7] = 0.9

We conclude that A′ = 0.9/x1 + 0.9/x2 + 0.9/x3.
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Generalized hypothetical syllogism

For variables X ,Y,Z taking values from sets X ,Y ,Z respectively,
and A,B,C being fuzzy sets on X ,Y ,Z , respectively:

Rule 1: If X is A, then Y is B
Rule 2: If Y is B, then Z is C

Conclusion: If X is A, then Z is C

In this case, three relations are defined:

R1(x , y) = J [A(x),B(y)]

R2(y , z) = J [B(y),C(z)]

R3(x , z) = J [A(x),C(z)].

The generalized hypothetical syllogism holds if

R3(x , z) = sup
y∈Y

min[R1(x , y),R2(x , y)]

or, in matrix notation, if

R3 = R1 ◦ R2.
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Example:
Let X = {x1, x2, x3}, Y = {y1, y2}, and Z = {z1, z2} be the sets of values
of variables X ,Y,X .

Let A = 0.5/x1 + 1/x2 + 0.6/x3,
B = 1/y1 + 0.4/y2

C = 0.2/z1 + 1/z2.

Let

R(x , y) = J [A(x),B(y)] =
{

1 a ≤ b
b a > b

.

Check if generalized hypothetical syllogism holds.

We write

R1 =





1 0.4
1 0.4
1 0.4



 , R2 =

[

0.2 1
0.2 1

]

, R3 =





0.2 1
0.2 1
0.2 1





and we check that R1 ◦ R2 = R3.
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General schema is of the form:

Rule 1: If X is A1, then Y is B1

Rule 2: If X is A2, then Y is B2

. . .
Rule n: If X is An, then Y is Bn

Fact: X is A′

Conclusion: Y is B′

A′,Aj are fuzzy sets on X ,

B′,Bj are fuzzy sets on Y , for all j.
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Method of interpolation

Most common way to determine B′ is by using
method of interpolation .

Step 1. Calculate the degree of consistency between the given
fact and the antecedent of each rule.
Use height of intersection of the associated sets:

rj(A′) = h(A′ ∧ Aj) = sup
x∈X

min[A′(x),Aj(x)].

Step 2. Truncate each Bj by the value rj(A′) and determine B′ as
the union of truncated sets:

B′(y) = sup
j∈Nn

min[rj(A′),Bj(y)], for all y ∈ Y .

Note that interpolation method is a special case of the composition rule
of inference, with

R(x , y) = sup
j∈Nn

min[Aj(x),Bj(y)]

where then B′(y) = supx∈X min[A′(x),R(x , y)] = (A′ ◦ R)(y).
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Method of interpolation-Example
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An application
Region growing based on fuzzy rule based system

A. Steudel and M.Glesner: “Fuzzy segmented image coding using orthonormal bases and derivative chain

coding”, Pattern Recognition, 32, 1999.
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