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Abstract--This paper introduces a new image thresholding method based on minimizing the measures of 
fuzziness of an input image. The membership function in the thresholding method is used to denote the 
characteristic relationship between a pixel and its belonging region (the object or the background). In 
addition, based on the measure of fuzziness, a fuzzy range is defined to find the adequate threshold value 
within this range. The principle of the method is easy to understand and it can be directly extended to 
multilevel thresholding. The effectiveness of the new method is illustrated by using the test images of having 
various types of histograms. The experimental results indicate that the proposed method has demonstrated 
good performance in bilevel and trilevel thresholding. 

Image thresholding Measure of fuzziness Fuzzy membership function 

I.  I N T R O D U C T I O N  

Image thresholding which extracts the object from the 
background in an input image is one of the most 
common applications in image analysis. For  example, 
in automatic recognition of machine printed or hand- 
written texts, in shape recognition of objects, and in 
image enhancement, thresholding is a necessary step 
for image preprocessing. Among the image thresholding 
methods, bilevel thresholding separates the pixels of 
an image into two regions (i.e. the object and the 
background); one region contains pixels with gray 
values smaller than the threshold value and the other 
contains pixels with gray values larger than the thre- 
shold value. Further, if the pixels of an image are 
divided into more than two regions, this is called 
multilevel thresholding. In general, the threshold is 
located at the obvious and deep valley of the histogram. 
However, when the valley is not so obvious, it is very 
difficult to determine the threshold. During the past 
decade, many research studies have been devoted to 
the problem of selecting the appropriate threshold 
value. The survey of these papers can be seen in the 
literature31-3) 

Fuzzy set theory has been applied to image thre- 
sholding to partition the image space into meaningful 
regions by minimizing the measure of fuzziness of the 
image. The measurement can be expressed by terms 
such as entropy, {4) index of fuzziness, ~5) and index 
of nonfuzziness36) The "ent ropy"  involves using 
Shannon's function to measure the fuzziness of an 
image so that the threshold can be determined by 
minimizing the entropy measure. It is very different 
from the classical entropy measure which measures 

t Author to whom correspondence should be addressed. 

probabil ist ic information. The index of fuzziness 
represents the average amount of fuzziness in an image 
by measuring the distance between the gray-level image 
and its near crisp (binary) version. The index of non- 
fuzziness indicates the average amount of nonfuzziness 
(crispness) in an image by taking the absolute difference 
between the crisp version and its complement. In ad- 
dition, Pal and Rosenfeld ~7) developed an algorithm 
based on minimizing the compactness of fuzziness to 
obtain the fuzzy and nonfuzzy versions of an ill-defined 
image such that the appropriate nonfuzzy threshold 
can be chosen. They used some fuzzy geometric prop- 
erties, i.e. the area and the perimeter of an fuzzy image, 
to obtain the measure of compactness. The effectiveness 
of the method has been illustrated by using two input 
images of bimodal and unimodal histograms. Another 
measurement, which is called the index of area converge 
(IOAC), ts) has been applied to select the threshold by 
finding the local minima of the IOAC. Since both the 
measures of compactness and the IOAC involve the 
spatial information of an image, they need a long time 
to compute the perimeter of the fuzzy plane. 

In this paper, based on the concept of fuzzy set, an 
effective thresholding method is proposed. Given a 
certain threshold value, the membership function of a 
pixel is defined by the absolute difference between the 
gray level and the average gray level of its belonging 
region (i.e. the object or the background). The larger 
the absolute difference is, the smaller the membership 
value becomes. It is expected that the membership 
value of each pixel in the input image is as large as 
possible. In addition, two measures of fuzziness are 
proposed to indicate the fuzziness of an image. The 
optimal threshold can then be effectively determined 
by minimizing the measure of fuzziness of an image. 
The performance of the proposed approach is compared 
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with three commonly used thresholding methods. The 
method will be stated in detail in the following sections. 

2. T H E  F U Z Z Y  SET A N D  T H E  P R O P O S E D  M E T H O D  

2.1. The fuzzy set and membership function 

Let X denote an image set of size M × N with L 
levels, and x,"n is the gray level of a (m, n) pixel in X. 
Let lax(X,"n) denote the membership value which rep- 
resents the degree of possessing a certain property by 
the (m, n) pixel in X; that is, a fuzzy subset of the image 
set X is a mapping la from X into the interval [0, 1]. 
In the notation of fuzzy set, the image set X can be 
written as 

X = {(x,".,lax(X,,.))}, (1) 

where 0 _< lax(X.,.) _< 1, m -- 0, 1 . . . .  , M - 1 and n = 
0, 1,. . . ,  N - 1. Here, the membership function lax(X,..) 
can be viewed as a characteristic function that repre- 
sents the fuzziness of a (m, n) pixel in X. For  the pur- 
pose of image thresholding, each pixel in the image 
should possess a close relationship with its belonging 
region: the object or the background. Hence, the mem- 
bership value of a pixel in X can be defined by using 
the relationship between the pixel and its belonging 
region. 

Let h(0) denote the number of occurrences at the 
gray level 0 in an input image. Given a certain threshold 
value t, the average gray levels of the background/t  o 
and the object lal can be, respectively, obtained as 
follows: 

/to = ~ oh(o) h(g) (2) 
g g=O 

and 

la,= y~ gh(~) h(g). (3) 
g = t + l  g 1 

The average gray levels, lao and lal, can be considered 
as the target values of the background and the object 
for the given threshold value t. The relationship between 
a pixel in X and its belonging region should intuitively 
depend on the difference of its gray level and the target 
value of its belonging region. Thus, let the relationship 
possess the property that the smaller the absolute 
difference between the gray level of a pixel and its 
corresponding target value is, the larger membership 
value the pixel has. Hence, the membership function 
which evaluates the above relationship for a (m, n) pixel 
can be defined as: 

1 
lax(Xm) = if x,", < t (4) 

1 + Ix,". - ' l a o ] / C  

1 
- i f  x m  > t, 

1 + I x . , .  - lad/C 

where C is a constant value such that 1/2 < lax(Xm~) < 1. 
For a given threshold t, any pixel in the input image 
should belong to either the object or the background. 

Hence, it is expected that the membership value of any 
pixel should be no less than 1/2. The membership 
function in (4) really reflects the relationship of a pixel 
with its belonging region. 

2.2. Measures of fuzziness 

The measure of fuzziness usually indicates the degree 
of fuzziness of a fuzzy set. It is a function, 

f : A ~ ,  

which gives the fuzzy set A a value to represent the 
degree of fuzziness of A. Several approaches of meas- 
ueing the fuzziness have been proposed. Here, we intro- 
duce two commonly used methods. One is the entropy 
measure by using the Shannon's function ~9) and another 
is the Yager's measure of fuzziness tl°) by using the 
distance between a fuzzy set and its complement. They 
are described in the following. 

2.2.1. Entropy. The entropy which is used as a 
measure of fuzziness is in analogy with the entropy in 
information theory, but with a slight difference in 
definition. Based on the Shannon function, De Luca 
and Termini t4) defined the entropy of a fuzzy set A as: 

E(,t) = ~  1,2, , . ,  S(#A(X~)), i . . . . .  (5) 
In 2 n 

with the Shannon's function 

S(laA(xi)) = - laa(xi)In [la~(x~)] 

- [1 - laA(Xi)] In [1 -- la,dxi)]. (6) 

Extending to the two-dimensional image plane, the 
entropy of an image set X is expressed as 

1 
E(X) X ~ s(#x(x,,n) ) (7) 

MN In 2 .~ 
with m = 0 , 1 , . . . , M -  1 and n = 0 , 1 , . . . , N -  1. 

Using the histogram information, Equation (7) can be 
further revised as 

1 
E(X) - M N  In 2 ~ S(lax(g))h(v) g = O, 1 . . . . .  L -  I. 

(8) 

Note that the Shannon's function in (6) is monotonically 
increasing in the interval [0, 0.5] and decreasing in the 
interval [0.5, 1]. When lax(X,~,) = 0.5 for all m and n, 
the entropy E will have the maximum measure of 
fuzziness. Thus, the entropy measure E should possess 
the following properties: 

(1) 0 < E(X)  < 1. 
(2) E(X)  has the minimum value 0, iflax(Xm) = 0 or 

1 for all (m, n). 
(3) E(X)  has the maximum value 1, if lax(xm) = 0.5 

for all (m, n). 
(4) E(X)  < E(X'), if X is crisper (sharper) than X'. 
(5) E(X)  = E(X), where )7 is the complement of X. 
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2.2.2. Yager's measure. One major distinction be- 
tween the fuzzy set and the traditional crisp set is that 
the fuzzy set does not always satisfy the law of the 
excluded middle. Yager ~ o) argued that the measure of 
fuzziness should be dependent on the relationship be- 
tween the fuzzy set A and its complement ,4. Thus, he 
suggested that the measure of fuzziness should be 
defined as the measure of lack of distinction between 
A and its complement ,4. The distance between a fuzzy 
image set X and its complement _~ is defined as: 

p =  1,2,3 . . . . .  (9) 

where #x(Xm,)= 1 - l i x (X , .  ), Thus, the measure of 
fuzziness of X can be denoted as: 

O~(X,~) ~/p(X) = 1 Dp(X,)?) 1 (10) 
[XI1W (MN)I/P" 

To simplify the computation, we can use the histogram 
information to compute the Dp(X, X) by 

Dp(X,x)=L~lltx(g)--l,~(g)lP]l/Ph(g), 

g=0 ,1  . . . . .  L - 1 .  (11) 

For p = 1, D 1 is called the Hamming metric, and for 
p = 2, D2 is called the Euclidean metric. Note that the 
measure qp(X) also satisfies the five properties stated 
in the previous entropy measure E(X). 

For a given image set X, it is expected that the 
measure of fuzziness should be as small as possible. 
Hence, our main purpose is to select an appropriate 
threshold value such that the measure of fuzziness of 
X is minimal. The computation method of the proposed 
approach will be presented in the following. 

2.3. The computation method 

Given an M x N image with L levels, let gmax and 
9mi, represent the maximum and minimum gray levels, 
respectively, and let C in (4) be equal to ( g m . -  groin) '  

For convenience, some variables are denoted as follows: 
t 

S(t)= ~ h(g), (12) 
g = 0  

L 1 

f i t ) =  ~ h(g) and S ( L - 1 ) = 0 ,  (13) 
g - t +  l 

W(t) = ~ gh(g), (14) 
g - O  

L - I  

~V(t) = ~ gh(g), and I~'(L- 1) = 0, (15) 
g = t + l  

where 0 < t < L -  1. Note that S(L-- 1) and W ( L -  1) 
are constant values for an input image. The algorithm 
of the proposed method is described in the following. 

Algorithm. 

Step 0. Set the parameter p in (9), if using the Yager's 
measure. Then, calculate the S(L-1 )  and 

W(L-1) for an input image. Given the 
threshold value t = gmi., let S(t - 1) = 0 and 
w(t -  1)=0. 

Step 1. Compute 

Sit) = S(t - 1) + h(t), (16) 

S(t) = S ( L -  1) - S(t), (17) 

W(t) = W(t - 1) + t x h(t), (18) 

ff'(t) = W ( L -  1 ) -  W(t). (19) 

The average gray levels of the background and the 
object are respectively obtained by 

and 

/l 0 = int [W(t)/S(t)] (20) 

tq = int [ffV(t)/S(t)], (21) 

where int [x] takes the integer value near the real x. 

Step 2. Compute the measure of fuzziness of the input 
image by using Equations (4), and (8) or (11). 

Step 3. Set t = t + 1 and go to Step 1 until t = gmax -- 1. 
Step 4. Find the minimum measure to determine the 

optimal threshold value. 

The two average gray levels (the two target values) 
in (20) and (21) are taken as integer values so that the 
membership value and the measure of fuzziness of each 
gray level can be evaluated in advance and are stored 
in a table. When the given threshold value t is iteratively 
changed from gmi, to gmax, the use of the data in the 
table can significantly reduce the computation time in 
Step 2. Hence, it is necessary to construct the table in 
Step 0. 

Sometimes, the threshold value located by minimiz- 
ing the measure of fuzziness is not necessarily the 
deepest valley between two peaks. To make sure that 
the threshold should locate at the real valley, a fuzzy 
range is defined such that the measures within the 
range are equal to or less than a tolerance 6, 

6 = minv + (maxv - minv) x ~%, (22) 

where minv = minimum measure of fuzziness; maxv = 
maximum measure of fuzziness; ~ is a specified value 
(0 < ~ < 100). 

By using the fuzzy range, we can further determine 
an improved threshold t*, which is the best location of 
deep valley in the gray-level histogram. In other words, 
the threshold t* can be obtained according to the 
following equation: 

Minimize h(g - 1) + h(g) + h(g + 1) 
# 

ge the fuzzy range. (23) 

Theoretically, the threshold t* should have a better 
chance of being located at the real valley than the 
threshold obtained by minimizing the measure of 
fuzziness, and it should have a better threshold result 
in practice. 
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2.4. E x t e n s i o n  to mul t i leve l  threshold iny  

The proposed thresholding method can be directly 
extended to multilevel thresholding using the same 
concept presented in Sections 2.1 and 2.2. For example, 
if an image needs to be classified into three meaningful 
regions, two threshold values are required. Assume 
that the two threshold values, t 1 and t2, 0 ~ t I ~ t 2 

L -  I, are used to separate the input image into three 
classes. Then, by the same concept as (4), the member- 
ship function of each pixel can be defined as 

1 
#'x(Xmn) = 1 + IXm~ --  # o l / C '  if Xm, < t~ (24) 

1 
if t~ < xm, < t2, 

1 + ]Xmn --  ~ I I / C '  

1 
if Xmn > t 2, 

1 + Ixmn --  Iz2l /C 

where g0, #1, and /~2 are targets (the average gray 
levels) of the three regions separated by t I and tz, and 
C', like C in (4), is also a constant to control the range 
of #~(x,,) in 10.5, 1]. We hope to obtain the optimal 
thresholds t* and t* such that the measure of fuzziness 
of an image set X is the minimum. Hence, the criterion 
function can be written as a function of the two vari- 
ables, tl, and t2. The two optimal threshold values t* 
and t$ can be determined by minimizing the measure 
of fuzziness E ( X )  in (7) or r/p(X)in (10). 

3. EXPERIMENTAL RESULTS AND EVALUATION 

In order to evaluate the effectiveness of the proposed 
method, several images shown in Fig. 1 were tested. 
These images grabbed from a CCD camera are 256 x 

256 in size, with gray levels L = 256. All the objects in 
these images are meaningful. And, their corresponding 
gray-level histograms are shown in Fig. 2. In addition 
to the proposed method, three other methods, which 
are the Otsu's method, ~11} the moment-preserving 
method,O 2} and the minimum error method, "3} were 
used for comparison. The reason for choosing the 
three methods is that they are global thresholding 
approaches. The threshold values determined by the 
above methods are presented in Table !. The indices 
E and r/in Table 1 represent the entropic measure of 
fuzziness and the Yarger's (p = I) measure of fuzziness, 
respectively. The indices E* and r/*, respectively, rep- 
resent the entropic measure and the Yager's (p = 1) 
measure of fuzziness of the improved approach (~ = 5). 
The thresholding results of the testing images obtained 
by the evaluating methods are shown in Figs 3 6. 

For  the dragon image in Fig. l(a), all the proposed 
methods have generated acceptable thresholding re- 
sults except the minimum error method, as shown in 
Fig. 3. Figure 4 illustrates the thresholded images of the 
gear image in Fig. l(b). As can be seen, Otsu's method, 
the moment-preserving method, and the proposed 
method using Yager's measure (r/) do not generate 
good binary results, and some noise pixels are still 
present. Similarly in Fig. 5, the best outcome is from 
E* and the output images of the other methods involve 
some noise pixels. This is because the two populations 
in the gray-level histogram have a large overlap. As for 
the coin image in Fig. 1 (d), the corresponding histogram 
has four peaks due to poor illumination, but it only 
needs to be separated into two regions (classes). By 
examining the thresholded images in Fig. 6, the pro- 
posed method and the Otsu method can provide rea- 
sonable thresholding results for the coin image, but 
the moment-preserving method and the minimum error 

Fig. 1. The four test images: (a) "dragon" image; (b)"gear" image; (c)"dragon text" image; (d) "coin" image. 
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Fig. 2. The gray-level histograms for images of Fig. 1: (a) "dragon" image; (b) "gear" image; (c) "dragon text" 
image; (d) "coin" image. 

Table 1. The thresholding results of applying the proposed method to the four 
testing images 

Method Fig. l(a) Fig. l(b) Fig. l(c) Fig. l(d) 

E 67 60 158 138 
E* 68 56 152 141 
q 55 70 156 147 
r/* 68 56 156 141 
Otsu 71 67 157 155 
Moment-preserving 77 81 160 173 
Minimum error 86 50 159 125 
Max. uniformity 72 68 156 156 
Max. shape 72 32 152 148 

method cannot. The experimental results indicate that 
the proposed method based on the measures of fuzziness 
seems to have satisfactory thresholding performance. 

One important concern in image thresholding is the 
effectiveness in segmentation. According to the thre- 
sholding results, the proposed method has demon- 
strated satisfactory results. However, it is somewhat 
difficult to compare quantitatively the performance of 
global thresholding results. Two common performance 
evaluation criteria, the uniformity and the shape 
measure of the objects, ~14} are employed to evaluate 
the thresholding methods. ~z'3) The uniformity indicates 
the degree of spread of the segmented regions from the 
mean. The uniformity of a region (the object or the 
background) is inversely proportional to the variance 
of the values evaluated at those pixels belonging to 
that region. The shape measure sums a generalized 

gradient value of every pixel (m, n) t2) by checking the 
relationship between the determined threshold value 
and the gray values of its neighboring pixels. The more 
adequate the determined threshold, the larger the shape 
measure. Further, by using the two performance meas- 
ures, Table 2 shows the results of evaluation using the 
testing images shown in Fig. 1. In Table 2, the two 
performance measures have been normalized within 
the range [0,1] according to their corresponding 
maximum measures, which can be evaluated by the 
best threshold values in Table 1. 

For  the shape evaluation results in Table 2(a-d), the 
proposed method has significantly better shape per- 
formance measures. It has the best shape measures of 
all the methods, particularly for the improved approach 
by using the fuzzy range. Further, the Otsu method has 
the best uniformity performance. This is because Otsu's 
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Fig. 3. The binary images of Fig. l(a) tested by methods considered: (a) E; (b) E*; (c) ~/; (d) ~/*; (e) Otsu 
method; (f) moment-preserving method; (g) minimum error method. 
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Fig. 4. The binary images of Fig. lib) tested by methods considered: (a) E; (b) E ; (c) r/; (d) r/ ; (e) Otsu method; 
(f) moment-preserving method; (g) minimum error method. 
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Fig. 5. The binary images of Fig. l(c) tested by the methods considered: (a) E; (b) E*; (c) q; (d) q*; (e) Otsu 
method; (f) moment-preserving method; (g) minimum error method. 
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Fig. 6. The binary images of Fig.l(d) tested by the methods considered: (a) E; (b) E*; (c) r/; (d) ~/*; (e) Otsu 
method; (f) moment-preserving method; (g) minimum error method. 
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Fig. 7. The "cell" image for tri-level thresholding: (a) the "cell" image; (b) the gray-level histogram; (c) the 
thresholded image at level 139 and 190. 

Table 2. The performance measures for the image in Fig. 1. 

Method Threshold Uniformity Shape 

a:Fig, l(a) 

E 67 0.9973 0.9890 
E* 68 0.9987 0.9880 
q 55 0.9648 0.8926 
q* 68 0.9987 0.9880 
Otsu 71 0.9999 0.9601 
Moment preserving 77 0.9733 0,8798 
Minimum error 86 0.9542 0.6671 

b:Fig, l(b) 
E 60 0.9971 0.9314 
E* 56 0.9943 0.9239 
q 70 0.9994 0.8413 
q* 56 0.9943 0.9239 
Otsu 67 0.9999 0.8854 
Moment preserving 81 0.9656 0.6733 
Minimum error 50 0.9876 0.8435 

c: Fig. l(c) 
E 158 0.9982 0.9023 
E* 152 0.9857 1.0000 
r/ 156 1.0000 0.9618 
q* 156 1.0000 0.9618 
Otsu 157 0.9999 0.9316 
Moment preserving 160 0.9892 0.7982 
Minimum error 159 0.9943 0.8577 

d:Fig, l(d) 
E 138 0.9956 0.9188 
E* 141 0.9970 0.9570 
r/ 147 0.9988 0.9981 
r/* 141 0.9970 0.9570 
Otsu 155 0.9998 0.9860 
Moment preserving 173 0.9633 0.7222 
Minimum error 125 0.9850. 0.6866 

method is an uniformity-oriented algorithm. Overall, 
the proposed method has demonstrated outstanding 
results in both performance measures. 

Furthermore,  the proposed method was applied to 
trilevel thresholding using the cell image shown in 
Fig. 7(a). The corresponding gray-level histogram 
shown in Fig. 7(b) has three rough peaks. By applying 
the proposed method to the cell image, the two thre- 
shold values de termined by min imiz ing  the two 
measures of fuzziness are at levels 139 and 190. The 
thresholding result is shown in Fig. 7(c). By comparing 
the original image with the thresholded image, it seems 
that the proposed method has again demonstrated 
excellent performance. 

4. CONCLUSION 

Based on the concept of fuzzy sets and the definition 
of membership function, a new thresholding method 
is proposed. It utilizes the measures of fuzziness of an 
input image to identify the appropriate threshold value. 
The two fuzziness measures (i.e. one using Shannon's  
function and one using Yager's measure) have maximum 
fuzziness when lax(X,,,)= 0.5 and minimum fuzziness 
when lax(X,,,)= 1. Since C in equation (4) is taken as 
(gmax -- 9mi,) in our algorithm, the membership values 
of all pixels are in the interval [0.5, 1]. It is expected 
that the membership values of each pixel can be as 
close to 1 as possible, so that the fuzziness of each pixel 
is as minimal as possible. 

In conclusion, the proposed method which is based 
on minimizing the measure of fuzziness of an image 
has demonstrated very satisfactory performance in 
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bilevel and trilevel thresholding. The use of the fuzzy 
range can help to locate effectively the deep valley of 
the histogram. Furthermore,  a simple algorithm that 
can improve the computat ion time is also suggested. 

5. SUMMARY 

Based on the concept of fuzzy sets and the definition 
of membership function, a new image thresholding 
method is proposed. It utilizes the measure of fuzziness 
to evaluate the fuzziness of an image and to determine 
an adequate threshold value. 

Two common performance evaluation criteria, the 
uniformity and the shape measure, were employed to 
evaluate some thresholding methods. The experimental 
results indicate that the proposed method can effec- 
tively find an appropriate threshold value. 
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