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Abstract

A trio is a term «.(.v.0 in the polyadic w-calculus. We show
that restricted parallel composition of possibly replicated trios, where
at most one contains a bound output prefix, is enough to obtain the
expressive power of the full summation-free m-calculus up to weak
bisimulation equivalence. Therefore that fragment of the calculus is
undecidable.

1 Introduction

The m-calculus [MPW92, Mil91] is a basic calculus for describing reactive
processes, i.e., processes that continually interact with an environment. Al-
though there is yet no definite measure on its expressiveness there is strong
evidence that its primitives are enough for a wide variety of purposes. Within
the m-calculus it is possible to naturally encode the functional paradigms of
the A-calculus [Mil92] and of object oriented formalisms [Wal95]. The ability
to directly represent mobility, in the sense of processes that reconfigure their
interconnection structure when they execute, makes it easy to model systems
where processes move between different locations and where resources are al-
located dynamically [OP92, Ora94]. It can also naturally encode higher-order
communication where processes are transmitted in communications [San93|
and in this way lays the foundation for many programming languages.



The expressive power of the m-calculus over other process algebras such
as CCS [Mil89] or ACP [BW90] has been debated. All such algebras have a
construct P|Q which represents P and @) executing in parallel. One feature
which distinguishes the m-calculus from other formalisms is the ability of a
process to invent a new port name and send that name to other processes.
This is achieved with the restriction operator, (vx)P (akin to CCS restric-
tion, P\z) together with the output prefix @z; when these are combined into
(vz)ax . P we have a process emitting a newly invented name. Since that
process may itself be under the scope of an iterative construct such as repli-
cation, written “!”, we can formulate processes such as ! (vz)az. P which
provide an unlimited supply of new names.

The m-calculus is an algebra in the sense that terms are built as arbitrary
combinations of such constructs. For example, replication can operate on
terms of any size and new names can be generated at several places, so
terms can be quite complex. It is then natural to ask how much of this
complexity is necessary in order to attain the full expressive power. In this
paper I shall present a fragment of the calculus, in the form of a subset of its
terms, such that any m-calculus term is weakly equivalent to a term in the
fragment. This throws light on exactly what it is that makes the 7-calculus
so powerful. Another consequence is that all interesting decision problems
for that fragment are undecidable.

The fragment is formed as follows. Prefix operators are limited to occur
in trios, terms of the form a.(3.v.0. A trio is thus capable of at most
three interactions. Replication only operates on such trios. The possibly
replicated trios are combined through the parallel operator, together with a
term ! (vz)ar which invents new names. The main idea is that in order to
emulate an arbitrary m-calculus term P it is enough to have one trio for each
subterm of P, controlling the activities of that subterm. These trios work in
concert to ensure that the right subterms execute at the right time.

There appears to be little work directly aimed at finding such fully ex-
pressible fragments of process algebras. Related efforts within the 7m-calculus
are Sangiorgi’s result that guarded replication can replace all instances of un-
guarded replication while preserving strong equivalence [San94] and Honda
and Tokoro’s work on asynchronous communication [HT92], although neither
of these attempt to reduce terms to the simplest possible parallel compo-
nents. Such a reduction is easier to accomplish with a synchronous parallel
operator, allowing multiway rendezvous, because then one component can



interact with several other simultaneously. Examples of results in this di-
rection are my investigation of a synchronous process algebra [Par90] where
three basic terms combined in parallel generate all finite-control terms, and
Gonthier’s normal forms for MEIJE [Gon85]. Vaandrager [Vaa93| gives a
general account of expressiveness in process algebras, where much effort has
focussed on operators rather than terms following the pioneering work of de
Simone [dS85]. In other models of computation this kind of result is more
common, for example within the A-calculus a small set of combinators is
enough to express any closed A-term [Bar84].

The following three sections contain our notational conventions, an ex-
planation of the translation into trios, and the proof of the main result. This
amounts to a rather technical exercise; a concluding more general section
points out the main implications and variants of the construction.

2 Notation

To appreciate the following sections the reader should have some previous ex-
perience with the m-calculus. This section points out the particular notation
and conventions used here.

We will work with the polyadic m-calculus without summation and with-
out matching, and with replication rather than recursion. So assume a count-
able set of names ranged over by a,b,...,z,y,... and let u, v,...range over
sequences of names. The syntax of m-calculus terms, ranged over by P, @, ...
is given by

P:= 0 (inaction)
7.0 (silent prefix)
av.Q  (output prefix)
a(?).Q (input prefix)
(vz)Q  (restriction)
Q|R  (parallel composition)
'Q (replication)

In the input prefix the members of ¥ must be pairwise distinct. Restriction
and input bind names, and the notions of free and bound names are standard
as is the notion of substitution of the name x for the free occurrences of y in
P, written P{Z/y}, generalized to substitutions of sequences of equal length
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IP|P % P

a.P 25 P o
'P — P!
P p M g = P p
PlQ — (va)(P'|Q{#5}) PlQ — P'|Q
P P oyes P P, yda
(vy)P "B pr (vy)P = (vy)P"

Table 1: Transition relations of agents. We assume that all involved bound
names are distinct. Alpha-variants of agents are considered identical and so
have the same transitions. The rules for parallel composition have symmetric
forms.

P{w/i} (where the members of % are pairwise distinct). We will also use
substitutions on prefixes and names with the obvious interpretation. The
empty sequence is written € and can be omitted in the prefix forms (so, e.g.,
@e can be written @) and the length of @ is |4|. The abbreviation (vz; ... z,)P
means (vz1) ...(vz)P, in particular (ve) P means just P.

We will not distinguish between alpha-equivalent terms, and therefore
whenever convenient assume that in each term every bound name is distinct
from all other names in the term.

The semantics of terms is given in a family of transition relations ——
where « is an action, i.e, either 7, the silent action, or @(vz)v, where all
elements in Z are also in ¥, an output action, or a(?), an input action, where
elements of v are pairwise distinct. The subject of the input and output
action above is a, and the object is the rest of the action. Note that the
object of the output action contains not only a sequence of names (v) but
also a binding of a subset of them (vZ). If T = € we omit v and the brackets
and write the output action simply av.

The transition relations are defined in the way which is now standard in
the literature on the m-calculus, see Table 1. We use the “late” version of
the semantics, where the rule for input prefix does not instantiate the bound
names. There is a scope opening rule for restriction which adds a binding in
the object of an output action. There is also a rule for inferring communica-



tion between parallel components which outputs respectively inputs objects
of equal length on the same subject. This entails a substitution of the output
object for the input object and adds a restriction for each name bound in
the output object. The rule for replication simply says that ! P has the same
transitions as (! P) | P.

We will use the open bisimulation equivalences originally proposed by
Sangiorgi [San96]. A strong open bisimulation § is a binary relation on agents
such that if PSQ then for every transition P -+ P’ (where the names bound
in o do not occur free in P or Q) there is a simulating transition Q —* @’
with P'SQ)’" and vice versa; moreover it must also hold that P{Z/y}SQ{%/y}
for all x,y, i.e., the relation is closed under arbitrary substitution!. Two
agents P and @ are strongly equivalent, written P ~ @, if PS(@) for some
strong open bisimulation.

As usual we let == | or sometimes =, mean ( — )" for some n > 0

and, for @« # 7, we let == or = mean =— — =—> . The weak
(open) equivalence, =, is defined in terms of weak open bisimulations where

the simulating transition for P -5 P'is Q == @Q'. Both ~ and ~ are
congruences in this version of the m-calculus, and they are strictly finer than
the “early” and “late” congruences.

3 Trios and Concerts

A trio is a m-calculus term consisting of exactly three nested prefixes, i.e., of
the form ar. 3. v.0. We will in trios also admit a derived form of output prefix
a(vx)x . P, defined to mean (vx)ax . P, outputting a single bound name along
a. A trio containing such a derived prefix is called an inventive trio (it invents
a new name z and makes that available to its environment). A degenerate
trio contains less than three prefixes. A degenerate trio is of course weakly
equivalent to the proper trio formed by filling the missing prefixes with 7,
so we will include the degenerate trios among the trios. A trailing 0 will be
omitted. Therefore, e.g., « is also a (degenerate) trio, corresponding to the
proper trio a.7.7.0.

!Sangiorgi’s original formulation was slightly different but the present definition yields
the same equivalence and is easier in the context of this paper.



A concert of trios is a restriction of a parallel composition of possibly
replicated trios, i.e., an agent of type

@) ()T | - | (OT)

where each T} is a trio, and at most one of the 7} is inventive. The main
result in this paper is that for each agent there is a weakly equivalent concert.
The idea is that the concert for P will have one trio for each subterm of P.
This trio is responsible for “enacting” that subterm when appropriate. Since
this may involve enacting further subterms — for example, enacting P;|P;
entails enacting P, and P, — the trio may call on other trios to do this.
Furthermore, the only inventive trio will be a general “name provider” which
sends new names to other trios at need.

To make this work we must assume a unique set of names through which
the trios can call each other. We do this as follows. To each term P we
associate a new unique trigger name zp. The intuition is that transmitting
something along zp will invoke the trio responsible for the execution of P.
We further introduce one new name z,. It is along this name that the name
provider will send its new names to other trios. These trigger names are all
distinct. Formally this means that we extend the calculus by introducing
these names; at the end of this section we shall see that this extension,
although convenient, is not strictly necesseray for the main result.

Definition 1 Let P be an agent where we assume that all bound names are
unique, and let 1 be a sequence of pairwise distinct names. The ti-breakdown
of P, written B;(P) is an agent defined inductively as follows.

P B;(P)
0 Zo(a)
T.Q zp(w).T.ZquU

(@) |
av.Q  zp(u).av.zZgu |
a(¥).Q zp(u).a(®).Zguv | By
(v2)Q  zp(0).z,(z).Zgur |
Q | R zp(u).Zqu.Zru |
'Q Lzp(T) . Zpu . ZgU |

Notice that B; binds the names @. The breakdown of P consists of a (possibly
replicated) leading trio, in parallel with the breakdown of the subterms of
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P. The leading trio is called a prefix trio if P is a prefix form, otherwise it is
called a control trio. So, using ! (P|Q) ~!P|'Q and ! P ~! P, we can push
all replication inwards in B;(P) until it becomes a parallel composition of
possibly replicated trios, one for each subterm of P. There will be one prefix
trio for each prefix in P, and one control trio for each other subterm in P.
Each of these has a unique trigger.

The object @ corresponds to the name instantiations which are needed
when executing a subterm. These names are bound outside the subterm, in
other words they are placeholders for something which will be determined
outside the subterm. The intention is that B;(P) in parallel with a trigger
zpw will enact P{W/i}. If we start with B.(P) then each subterm Q in P
will be broken down to B:(Q), where @ is the sequence of bindings outside
@ whose scope extend into (). It may appear strange that % are bound in
B;(Q) whereas they are free in (). But in the definition of B we are interested
in Q as a subterm of P (it may be clearer to think of it as Bp;(Q), even
though the definition turns out to be independent of P) and although @ are
free in () they are bound in P. Of course, using alpha-conversion they can
be renamed so the definition of B:(Q) really only depends on the length of
u. But note that a in the clauses for output and input (and also ¥ in the
clause for output) may be among @.

The leading trio corresponding to B (P) begins by awaiting, on its trigger
zp, the reception of the names which shall instantiate the bound names .
When those have been received the trio takes different actions depending on
the form of P. If P is a prefix a. ) the trio will enact o and then activate @)
through its trigger, forwarding . If o is an input prefix then the sequence of
bound names will grow (bound names are unique so @ and ¥ will be disjoint),
and therefore the new names received in the input (¥) will be appended to
the names transferred into ). For o« = 7 we could actually have simplified
the definition to B;(7.Q) = B;(Q) (since =~ 7.@Q) at the expense of the
symmetric treatment of the prefixes.

If P is a restriction (vz)@, then it proceeds to collect along z, a new
name, which it appends to the names transferred into (). The intention is
that B-(P) is executed in parallel with a name provider sending new names
along z,.

If P is a parallel composition then its control trio simply activates the
factors of P. For this to work it is important that each trio begins with a
reception along its trigger. If for example the breakdown of 0 would be 0
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(rather than zo(@)) then B;(0| R) would never reach the point where R is
activated.

Finally, if P is a replication !(@), its replicated control trio does two
things: first it activates a new incarnation of itself and then it activates
(an incarnation of) (). Because of the replications this means that arbi-
trarily many copies of ) can be started. It would not be enough to define
B-(1Q) =!B:(Q); in that case one activation of B (! Q) would only result
in one activation of ().

It is worth explaining a possible controversy here when P has a subterm
occurring in several positions, as in (@.b) | b. In the breakdown of that
term there will be two trios triggered by 25, one for each occurrence of b.
As it turns out this is harmless, since whenever someone signals on z;, the
execution of b will be started in one of the trios — it does not matter which
one (see the proof of Lemma 6 in the next section)! Note that our assumption
about unique bound names forbids agents like a(x).Ty | a(y).Ty where a
subterm Ty occurs in different places with different bound names (in that
case it would really matter which trio was activated).

The translation of an agent into a concert now goes as follows.

Definition 2 Let the name inventor N be defined by
N =17z (vx)z
and let Z(P), the triggers of P, be defined by
Z(P) = {z}U{zg: Q is a subterm of P}.
The translation T (P) of an agent P is defined to be
T(P) = WZP)BAP) | 7 | N)

Restriction is commutative so restricting on a set of names is a well defined
operation, up to strong equivalence. Note that 7 (P) is equivalent (using the
laws ! (P|Q) ~!P|'Q and !! P ~! P) to a restricted parallel composition of
possibly replicated trios where only N is inventive, i.e., 7 (P) is equivalent to
a concert.

Theorem 3 P ~ T(P).



The idea behind the proof is that (vZ(P))(B;(P) | zpw | N) is bisimilar to
P{w/z} for all &, w of equal length. The proof is simply to establish a bisim-
ulation relating these agents, by showing how their transitions correspond to
each other. The details are contained in the next section.

The definition of 7 (P) uses the trigger names only in bound positions.
Since the set of names is infinite and each 7 (P) only contains a finite set
of names, there is an alpha-variant of 7 (P) which does not use the trigger
names. So the extension of the caclulus to include these names is not strictly
necessary, although it simplifies the proof.

A variant of the same result is to redefine By so that all trios in B;(P)
are replicated. Since a trio only starts executing when signalled to do so it is
harmless to replicate it. The concert will then be more uniform, consisting
of replicated trios plus only one non-replicated trio (the trigger Zp in 7 (P)).

4 Proof

To prove the theorem we establish a weak (open) bisimulation including
(P, T(P)). To do this, we begin by defining the agents correlated to P{W/u}
in this bisimulation. These are essentially the agents obtained by starting
B;(P) by sending w along the trigger for P.

Definition 4 Assume @ and @ have equal length, and U are pairwise distinct.
The set of agents C¥(P) is defined to be

CY(P) = {zp@ | B;(P)} U DY(P)



where Dg(P) is defined inductively as follows:

P D¥(P)
0 {0}
T.Q  {r.Zqu | By(Q)}
av.Q  A{av{va} . zqu | By(Q)}
a(v).Q {a(@){®fi} . Zquv | By(Q)}
(r)Q  {z(r) . Zgia | By(Q))
U{(va")Cq : Cq € cor (@)} («' fresh)
Q| R {Zquw.zrw | Bz(Q) | By(R)} .
U{(Cq | Cr):CqeC¥(Q), Cr € C¥(R)}
'Q {(!2p(0).Zpu.zZqu | zpw.Zgw | (Zgw | )" N
1B;@Q) | Ci | -+ | Cn):n,m=0,C; € CE(Q)}

Now define the relation S by

S = {(P{Ta}, R): Re{(wa)(N | Cp):CpeCI(P)},
o] = [a], z=Z(P)}

It is then clear that (P,7(P)) is in S. The significant properties are the
following:

Lemma 5 S is closed under substitution of names (up to strong equiva-
lence).

PROOF: A straightforward and tedious examination of the definitions. Con-
sider a pair (P{@W/i}, R) where R = (vZ)(N|Cp) and Cp € C¥(P). For
a substitution {Z/y} we can assume without loss of generality that z,y ¢
Z (otherwise we have to alpha-convert R to satisfy this). So R{Zjy} is
(v2)(N | Cp{%/y}). The important fact is that if C'p € Cfg(P) then Cp{Zy} €
Cg(P), where {@'/i'} = {@/i}{z}y}. To be precise this holds only up to a
strong version of strong equivalence, which requires the inference of actions
to have equal lengths (i.e., two agents are related if they have related deriva-
tives inferred through proofs of equal length). However, that is enough for
the purpose of the proofs below. O

Lemma 6 Assume P{Wu}SR. If P{Wu} -*+ P', then R = -*» R' and
for some &, P' ~ (vZ)P" and R' ~ (vZ)R" and P"SR".
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PrROOF: The proof is an induction over the length of the inference of the
transition in the antecedent. It consists of a rather long case analysis and
only a few of the cases are shown here.

Consider the case where the antecedent is inferred through the rule for
input prefix. Then a = a{Wa}(®) and P = a(7).Q, where we without
loss of generality assume that v has no element in common with w or @
(otherwise we have to first alpha-convert P). Therefore P’ = Q{W/i}. Now
consider R. There are two possibilities, because Cg(P) has two elements:
C, = zpw | B;(P) and Cy = a{Wa}(?).Zguv | B(Q) (the latter
comes from Dg(P) which here is a singleton). Put R; = (v2)(N | ;).
Clearly Ry, — Ry. Also Ry — R’ where R’ = (vZ)(N | C') where
C" = Zgwb | B(Q). So C' € C¥(Q). So R’ is related in S to Q{¥V/az} =
Q{W/i}, fulfilling the lemma (with 7 = ¢).

Consider next the case where the antecedent is inferred through the rule
for scope opening and P = (vz)Q. So we have o = @(vzy)v, and in a
shorter inference Q{W/u} s P with o/ = a(vy)v, i.e., a extends o' by one
additional binding in the object. There are several possibilities for R, but as
in the previous case all of them can evolve (through one or two 7 actions) to
(vZ)(N | (v2")C") where C' € C%’(Q). Because bound names can be assumed
to be distinct we can choose 2’ = x and assume that z is not in @, u. So,

C' e C%”(Q). Therefore R' is related in S to Q{W«/uz} = Q{W/i}. Therefore,

by induction and Q{W/u} s P’ it holds that (vZ)(N | C") simulates @ as
stated by the lemma. But then R also simulates P, through the scope opening
rule.

The case where the antecedent is inferred through the rule for commu-
nication is notationally heavy so we will just go through the main ideas. If
P = Py|P;, and P 25 P’ with a = 7 is inferred from P as a communication
between P; and P, then we consider the output and input actions from P;
and P, respectively; by induction they must be simulated by (v2)(N |C)
and (v2)(N | Cy) where C; and Cy belong to the proper C-sets. We there-
fore have that (v2)(N|Cy) | (vZ)(IN|Cy) can simulate the communication.
The case is completed by showing that this agent is strongly equivalent with
(vZ)(N |Cy | Cy), which is in the C-set for P itself. When the communica-
tion carries bound names restriction operators may appear in the derivatives.
This explains the necessity of the “(vZ)” in the statement of the lemma.
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To show the strong equivalence needed for this case we establish that
pairs
(w2)(N[Cy) | (W2)(N|Ca) , (W2)(N[C1[Cy))

form a strong bisimulation. Clearly, the only difficulty in finding simulating
transitions is for the left hand side to simulate a transition in the right hand
side (v2)(N|Cy|Cy) where Cy and Cy communicate along a trigger in Z.
Perhaps disappointingly, C'; and C; may actually share such a trigger since
the parallel composition may have been created by replication in an earlier
part of the induction. Assume without loss of generality that the transition
involves a trio in C activating, along z € Z, a trio z(@) . D in Cy. Then in C}
there must also be a trio activated by z (since a trigger is only introduced in
B along with a trio activated by it); moreover by the assumption about the
uniqueness of the triggers and the fact that replication creates syntactically
identical copies this trio must also be z(@).D. So the transition then is of
the kind

(WA(N | € | «(@).D | Cy | 2(@).D) "+
(VZ)(N | CT | 2(w).D | Cy | D{w})

But then of course there is also another transition where C; activates its own
trio rather than the one in Cs:

(WE)(N | €} | 2(3).D | Cy | 2(u).D) -
W2)(N | ¢ | D{®fay | Gy | 2(a).D)

The derivatives of these two transitions are strongly equivalent (since parallel
composition is associative). The latter transition involves a communication
within C} and can therefore be simulated by (v2)(N|Cy) | (v2)(INV|Cy),
which therefore also simulates the former transition, up to strong equivalence.

Finally, consider the case where the antecedent is inferred through the rule
for replication. Again we just provide a sketch. If P =!Q and P{Wu} -
P', then through a shorter inference (P|Q){Wu} -+ P’. Then we know
by induction that this is simulated by R = (v2)(N|C) where C' € C¥(P|Q).
Consider this C; it is (possibly after one or two 7-actions) a parallel compo-
sition Cp|Cq where the factors belong to the C-sets of P and @) respectively.
It then follows (by definition of D for replication: just increase m by one!)
that this parallel composition is itself a member of Cg (P). Therefore the
simulation of R for P|@ also is an adequate simulation for P. O
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Lemma 7 Assume P{W}SR. If R -+ R, then either (i) a = 7 and
P{Wa}S ~ R', or (ii) P{Wa} - P' and for some ¥, P' ~ (vZ)P" and
R ~ (vZ)R" and P"SR’".

PRrROOF: In R we say that the essential prefixes are the ones with subject a,
and also the T-prefix, in the definitions of B, C and D. Thus these correspond
directly to the prefixes in P. We distinguish the cases when R %+ R’ is
inferred from the action from at least one essential prefix, and when it is
inferred without any such actions.

Assume R —%5 R'is inferred without any actions from essential prefixes.
Then it must be an internal communication within R = (v2)(N |C) for
C e Cg(P) , 80 a = 7. We can then show that also P{Wu}S ~ R'. The
proof is through a tedious inspection of the definitions, by showing that if
C € C¥(P)and C = (' does not involve an essential prefix, then in this case

also C" is strongly equivalent to a member of Cg(P). In other words, Cg(P)
is closed under transitions not involving essential prefixes. This satisfies part
(i) of the consequent of the lemma.

Then assume R — R’ involves an essential prefix. In this case we
can show part (ii) of the consequent of the lemma. The proof is mainly a
converse of the proof of Lemma 6, noting that when R has an unguarded
essential prefix then the corresponding prefix in P also is unguarded. We
omit the details which are long but routine given the proof of Lemma 6. O

We can now easily complete the proof of Theorem 3. From the three
lemmata above it follows that S is a weak open bisimulation up to restriction
and strong equivalence. Bisimulations up to restriction and equivalence have
been treated extensively in previous work on the 7-calculus [MPW92]| and
in a similar manner we conclude that agents related by & are weak open
equivalent. In particular, P =~ T (P).

5 Conclusion

We have seen that concerts inherit all the expressive power of the full -
calculus, up to weak equivalence. The concerts are limited in that prefixes
are nested to the depth of at most three, that parallel composition does
not occur under prefix, that replication is only applied to trios, and that
there is only one occurrence of restriction under replication. This type of
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“minimal parallel components” is to our knowledge the only of its kind for
the m-calculus or indeed for any process algebra with an asynchronous parallel
operator (disallowing multiway rendezvous).

The consequences of this result are significant in the theory of the n-
calculus. We still have no good measure on the expressiveness of the full
calculus. Obtaining such a measure may involve demonstrating that other
basic formalisms can encode the m-calculus and here it may be useful to
know that it suffices to encode a limited form of the calculus, for example
where parallel composition occurs only at a top level. Also, when designing
implementation strategies for the calculus it may help to know that it suffices
to implement limited forms, for example that one central name provider is
enough.

The result can also be seen as a negative result in the quest for de-
cidable subcalculi. It is known that in the full 7w-calculus it is possible to
constructively encode arbitrary Turing machines. Therefore problems such
as equivalence and model checking and termination of m-calculus terms are
undecidable. The expressive power and hence undecidability can be seen as
emanating from the replication operator, which is the only operator through
which the size of a term can increase in a transition. Without replication the
sets of transition sequences from terms are finite (up to alpha-conversion)
and hence the problems mentioned above are decidable. But there are decid-
able subcalculi which admit terms with infinite sets of transition sequences;
a prime example is the so called “finite-control” fragment investigated by
Dam [Dam95] formed by using recursion rather than replication and requir-
ing that parallel composition does not occur in recursive definitions. It may
have been hoped that a similar decidable subcalculus can be found with
replication rather than recursion, but this appears now not to be the case:
even if replication is limited to trios the calculus is fully expressive and hence
undecidable (since our translation into concerts is constructive). Since re-
cursion and replication are interdefinable (! P can be defined recursively as

'p Lip | P, note that this is not finite-control) the result also puts a limit

on the complexity of recursive definitions required for full expressiveness.
An obvious question is whether a similar result holds for duos, two nested

prefixes, of kind «. 3. 0, in place of trios. The answer is negative: when repli-

cation is limited to duos, even some finite-control agents are not expressible!

To see this consider the agent P ' 4 b. P where for simplicity the prefixes
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a,b have empty objects. (Using replication instead of recursion we would
write P = (vz)(Z|!z.a.b.%Z)). Let D be an agent where replication only
operates on duos and assume D =~ P. We shall derive a contradiction. For
D = P to hold there must be an infinite transition sequence

D — D, - D, == D, % Dy =% ...

where D,, =~ D, ., and D = D,. Each of the actions a in this sequence must
emanate from some prefix in D. But D is syntactically finite so some prefix
in D must give rise to infinitely many a. That prefix therefore must lie under
a replication and hence in a duo in D. Consider some D,, —— D5y, 11 where
such a prefix gives rise to the a action. There are two cases depending on
where in the duo the prefix resides. Either the prefix is the first in the duo
in D, asin !'a.~.0. Then the same duo is present in D,, (the operands of
replication do not change as a result of transitions) and since it is replicated
and can yield one @ transition it can yield several, i.e. Dy, —— D' —%5 ...,
contradicting Dy, ~ D. Or the prefix is the last in the duo in D, then
D,,, must have formed from D by executing the first prefix in that duo
leaving a parallel factor a.0. In Dy, —%+ Ds,.; we then have that Dy, is
formed by replacing the factor a.0 by 0. Since Dy, 4 =Y+ it then follows
Dy, =Y+ because the addition of a parallel factor cannot decrease the possible
transitions. But Do, L5 contradicts D,, ~ D. The conclusion is that no
such D can exist.

Limiting replication to duos we can still define some non-finite-control
processes (e.g., 'a.b.0 is not finite-control) so the decidability of equivalence
in this situation is open. If we restrict attention to concerts of possibly
replicated duos (forbidding agents like a.!b.c.0) then there are even finite
agents which are not expressible. For example, a.b.a.0 is not expressible
as a concert of duos; an argument similar to the above shows that b here can
occur neither at the head nor at the tail of a duo. Combining such arguments
we get the picture in Figure 1 exhibiting relative expressive power of some
classes of agents.

If replication is limited to solos (one prefix) then agents are finite-control
and equivalence is therefore decidable (the agent ! .0 is equivalent to the

finite-control recursive definition P % . P).
In this paper we have used the polyadic m-calculus. A corresponding
result appears impossible in the monadic m-calculus, where the objects in
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ca.b.a

PP

la.b

1
2
3:
4: a.b.'a
5
6
7 a.b.la.b

Figure 1: Relative expressiveness of the classes FC (finite-control), F (finite),
RD (replication restricted to duos) and CD (concerts of possibly replicated
duos). All regions are nonempty, the numbers show examples of inhabitants.

input and output actions must have length one, i.e., exactly one name is
transferred in each communication. For consider the agent

a(xy). -+ .a(z,) . bry. -+ bz,

If we want to translate this with a similar strategy where each subagent
is enacted by starting a designated agent, then the designated agent for the
subterm bz . - - - . bx,, must receive n names, and in the monadic calculus this
requires a string of n input prefixes. However, by generalizing the notion of
concert so that arbitrary strings of prefixes (rather than just trios) are allowed
we can obtain a similar construction. This of course leaves open the question
of expressiveness and decidability of concerts of trios in the monadic calculus.

Also, the construction is impossible for CCS, which can be thought of
as the zero-ary m-calculus in that no objects are allowed in actions. The
reason has here to do with the restriction operator. If restriction occurs
under a replication operator then that entails a mechanism for creating new
names. In the m-calculus concerts this mechanism is localized to a single
name provider which sends those names, as objects in communications, to the
places where they are needed. In CCS this is not possible so a similar strategy
for encoding restriction will not work. Even relaxing the requirement that
there can only be one inventive trio will not help; for example when encoding
'(vz)(P| Q) the encodings of P and () must somehow learn of their new
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common private name . For this reason it appears that parallel compositions
under replication is necessary in CCS, though again the question is open.

Finally, the result is not applicable in the presence of summation. Using
unguarded summation, P + (), means that weak equivalence is not a congru-
ence and it is difficult to see how the translation could be extended. However
with guarded summation, of the form

a1P1++anPn

I conjecture an extension which requires the use of branch trios of the kind
a.(B+v.9) (these contain four prefixes and only earn the attribute “trio”
in that prefix is still nested to depth three). The translation of the guarded
summation above is a parallel composition of one branch trio

zi(0) . (Zipu + «; . Zp )

for each summand ¢; . P; where addition in the index of z is modulo n. The
parallel composition of the branch trios works like a round-robin protocol
in a ring through the triggers z;; the “token” w is passed around the ring
until one of the trios decides on its leading action «;. For finitely branching
agents unguarded summation can be encoded with guarded summation so
this device is quite powerful. Of course, using only proper concerts it is im-
possible to encode any kind of summation since a+ 3 is not weakly equivalent
to any summation-free agent. Similarly, instances of the matching operator
[z = y]P (read “if z = y then P”) from many version of the 7-calculus cannot
be encoded because [x = y]a is not equivalent to any matching-free agent.
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