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Abstract
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Partial differential equations (PDEs) are used to model various phenomena in nature and society,
ranging from the motion of fluids and electromagnetic waves to the stock market and traffic
jams. There are many methods for numerically approximating solutions to PDEs. Some of the
most commonly used ones are the finite volume method, the finite element method, and the
finite difference method. All methods have their strengths and weaknesses, and it is the problem
at hand that determines which method that is suitable. In this thesis, we focus on the finite
difference method which is conceptually easy to understand, has high-order accuracy, and can
be efficiently implemented in computer software.

We use the finite difference method on summation-by-parts (SBP) form, together with a weak
implementation of the boundary conditions called the simultaneous approximation term (SAT).
Together, SBP and SAT provide a technique for overcoming most of the drawbacks of the finite
difference method. The SBP-SAT technique can be used to derive energy stable schemes for any
linearly well-posed initial boundary value problem. The stability is not restricted by the order
of accuracy, as long as the numerical scheme can be written in SBP form. The weak boundary
conditions can be extended to interfaces which are used either in domain decomposition for
geometric flexibility, or for coupling of different physics models.

The contributions in this thesis are twofold. The first part, papers I-IV, develops stable
boundary and interface procedures for computational fluid dynamics problems, in particular for
problems related to the Navier-Stokes equations and conjugate heat transfer. The second part,
papers V-VI, utilizes duality to construct numerical schemes which are not only energy stable,
but also dual consistent. Dual consistency alone ensures superconvergence of linear integral
functionals from the solutions of SBP-SAT discretizations. By simultaneously considering well-
posedness of the primal and dual problems, new advanced boundary conditions can be derived.
The new duality based boundary conditions are imposed by SATs, which by construction of
the continuous boundary conditions ensure energy stability, dual consistency, and functional
superconvergence of the SBP-SAT schemes.
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1. Introduction

Many problems in the natural sciences can be described in the language of
mathematics as systems of partial differential equations (PDEs). A system
of PDEs typically describes the time-evolution of physical quantities such as
velocity, momentum, and energy in a coupled manner. There are no general
methods to compute analytical solutions to PDEs, and even when there are
analytical solutions available, they are often not suitable for practical applica-
tions due to their complexity. Numerical methods for solving the PDEs are
therefore the preferred and often only choice.

The increase in computing power over the past decades has helped to estab-
lish numerical simulations as the third cornerstone of science, alongside theo-
retical analysis and practical experiments. As the usage of computers grow, the
algorithms which produce the numerical results become increasingly impor-
tant. In particular for solving PDEs, there is a multitude of available methods.
Each of them have their strengths and weaknesses, and the problem at hand
determines which method that is suitable.

In this thesis, the problems under consideration usually appear in compu-
tational fluid dynamics (CFD) applications. The typical and most general ex-
ample is the compressible Navier–Stokes equations which describe the motion
of a compressible fluid. The Navier–Stokes equations provide a challenge for
both mathematicians and numerical analysts. From a mathematical point of
view, it has not yet been proven that a global smooth solution exists in three
space dimensions. From a numerical point of view, the treatment of boundary
conditions and high complexity make the construction of numerical schemes
highly non-trivial.

It is common in CFD to derive numerical methods for model problems
which are subsequently applied to more complicated equations. Model prob-
lems are constructed so that the main mathematical properties of the real prob-
lem are preserved, but the analysis is simplified. Also, when implementing the
solution algorithms for a model problem, flaws in the algorithms are not hid-
den by the algebraic complexity of the equations to be solved.

Whatever numerical method used to solve PDEs, the following require-
ments have to be satisfied;

1. Consistency
2. Stability
3. Efficiency

By the famous theorem of Lax and Richtmeyer [26], the solution of a lin-
ear PDE given by a numerical method converges to the solution of the PDE if,
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and only if, the method is consistent and stable. All schemes which are used in
practice are consistent by construction. Far from all schemes are, however, sta-
ble. That is what brings us to the main topic of this thesis—the construction of
stable and high-order accurate numerical schemes for solving time-dependent
partial differential equations.
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2. The summation-by-parts technique

A finite difference method for solving differential equations is constructed by
approximating the derivatives in discrete points as weighted sums of solution
values in neighboring points. Recall the mathematical definition of the first
derivative;

u′(x) = lim
h→0

u(x+h)−u(x)
h

. (2.1)

A computer has finite precision and hence h in (2.1) can not be made arbitrarily
small. Instead, a computational grid is introduced where h = ∆x > δ > 0 and
the first derivative at the point x = xi in (2.1) becomes approximated as

u′(xi)≈
u(xi +∆x)−u(xi)

∆x
. (2.2)

In (2.2), only one neighbor-point is used. More points can be included to
obtain more accurate approximations of the first derivative. For example the
central approximation, where two neighbor-points are used, given by

u′(xi)≈
u(xi +∆x)−u(xi−∆x)

2∆x
. (2.3)

The geometric interpretations of (2.2) and (2.3) can be seen in Figure 2.1.

Forward approximation

x
i

∆ x ∆ x

(a) Forward difference using one neighbor-
point

Central approximation

x
i

∆ x ∆ x

(b) Central difference using two neighbor-
points

Figure 2.1. Geometric interpretation of first derivative approximation using forward
and central differences
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We say that (2.3) is second-order accurate since substituting the Taylor se-
ries expansion of u(x) around x = xi gives

u(xi +∆x)−u(xi−∆x)
2∆x

= u′(xi)+
∆x2

6
u(3)(ξ )+ . . . ,

where xi−∆x ≤ ξ ≤ xi +∆x. Thus if the third derivative of u is sufficiently
smooth, the error term will behave as ∆x2 and tend to zero as ∆x→ 0.

For Cauchy problems, the stability criteria for a given numerical scheme
can be analyzed with von Neumann analysis. For an initial boundary value
problem (IBVP), however, the formula (2.3) reveals difficulties. For example,
if the point xi = x0 is a boundary point, then x0−∆x is not included in the
discretization and special care has to be taken.

The difficulties at the boundaries for IBVPs using finite difference methods
is what gave birth to the summation-by-parts (SBP) form [23, 24]. We say
that;

Definition 2.1. A finite difference matrix D1 is an SBP operator for the first
derivative if

D1 = P−1Q,

Q+QT = EN−E0 = diag[0, . . . ,0,1]−diag[1,0, . . . ,0],

and the matrix P defines an inner product and norm by

(uh,vh)h = uT
h Pvh, ||uh||2 = uT

h Puh,

for any discrete grid functions uh,vh.

Given these definitions, we have

(uh,D1vh)h = uT
h (EN−E0)vh− (D1uh,vh)h,

which mimics integration by parts in the continuous sense and motivates the
SBP terminology. Essentially, an SBP operator is a central finite difference
operator in the interior while the boundaries have been modified so that the op-
erator is one-sided. For example, the second-order accurate operator is given
by

D1 = P−1Q =
1

2∆x



−2 2 0 0 . . . 0
−1 0 1 0 . . . 0
0 −1 0 1 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 −1 0 1
0 . . . 0 0 −2 2

 ,
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where

P = ∆x


1
2 0 0 . . . 0
0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0
0 . . . 0 0 1

2

 , Q =
1
2


−1 1 0 . . . 0
−1 0 1 . . . 0

...
. . . . . . . . .

...
0 . . . −1 0 1
0 . . . 0 −1 1

 .

There are SBP operators for the first derivative with interior order of ac-
curacy 2p for p = 1,2,3,4. The global accuracy depends on the choice of
the norm matrix P. With the requirement of P being diagonal, the order of
accuracy at the boundaries needs to be reduced to p. The global order of accu-
racy then becomes p+ 1. There are also block-diagonal matrices which give
2p-order global accuracy [46]. While a diagonal P gives less accuracy, it has
more flexibility. For example, a diagonal norm is required to derive energy es-
timates under curvilinear coordinate transforms since P has to commute with
the (diagonal) Jacobian matrix of the coordinate transform [37, 48]. In this
thesis, a diagonal matrix P has been consistently used.

Once an energy estimate has been derived, a higher order accurate solution
can be obtained by simply replacing the difference operator with one of higher
order.

SBP operators can also be used to approximate the second derivative. The
most direct way is to apply the first derivative twice, D2 =D1D1, which results
in a wide difference stencil. The order of accuracy is the same as for the
first derivative. A compact stencil can be obtained by considering a second
derivative operator of the form

D2 = P−1(−A+(EN−E0)S),

where A+AT ≥ 0 and S approximates the first derivative at the boundary. In
this case, S can be chosen to be accurate of order p+ 1 instead of p and the
global accuracy increases from p+1 to p+2 for pointwise-stable discretiza-
tions [4, 31, 50].

Several attempts to include the boundary conditions were made after the
construction of the SBP finite difference operator. Injection of the boundary
values destroy the SBP properties and stability is restricted to low-order ac-
curate schemes. An orthonormal projection method which preserves the SBP
properties was proposed in [41, 42], but is not in practical use because of
other complications [28, 30]. The current state-of-the art method for imposing
the boundary conditions was proposed by Carpenter et al. in [3] and has be-
come known as the Simultaneous Approximation Term (SAT). Together, the
SBP-SAT technique provides a method for constructing stable and high-order
accurate approximations of IBVPs.
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2.1 Initial boundary value problems
Analyzing the stability requirements for a full time and space discretization is
difficult. The analysis can be simplified by only discretizing in space while
keeping time continuous. The stability analysis can then be done by using the
energy method which is applicable to complicated problems. Such a semi-
discretization is called a method of lines [47].

2.1.1 Well-posedness of the continuous problem
The semi-discrete energy estimates are closely related to well-posedness of the
continuous problem. One of the earliest definitions of well-posedness were
given by Hadamard [16] in the 1920’s and can be stated as;

Definition 2.2 (Hadamard). A problem is called well-posed if
1. A solution exists
2. The solution is unique
3. The solution depends smoothly on the data of the problem

The two first statements are obvious for a problem to be computable. The
third statement is somewhat vaguely formulated. In Hadamard’s original texts,
data refers to everything from initial and boundary data to the boundary con-
ditions. Even so, it is clear that such a definition is necessary from a numer-
ical point of view. Every numerical computation produces discretization and
round-off errors. These errors can be thought of as data of the problem, and
perturbations due to finite precision arithmetic can not be allowed to affect the
solution too much.

When studying finite difference discretizations of IBVPs, Kreiss [25] made
another definition of well-posedness which became very influential for numer-
ical solutions of PDEs. The definition can be stated as;

Definition 2.3 (Kreiss). A homogeneous IBVP is well-posed if a unique solu-
tion u exists and satisfies the energy estimate

||u|| ≤ Kceαct || f ||, ∀t > 0,

where f is the initial data. The parameters Kc and αc are not allowed to depend
on neither t nor f .

By the principle of Duhamel, it is sufficient to study the homogeneous prob-
lem since well-posedness of the inhomogeneous problem follows. Moreover,
the boundary conditions can also be assumed to be homogeneous [15]. Def-
inition 2.3 quantified the vague definition of Hadamard, and also allowed the
solution to be stable against lower-order perturbations. The later property has
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extensive use in numerics since non-linear and variable coefficient problems
can be treated using linearizations and localizations [22].

2.1.2 Stability of the semi-discrete problem
The definition of Kreiss did not only improve the theory of PDEs in general,
it also suggested a method for proving stability of semi-discretizations. The
same reasoning can namely be applied in the discrete sense as described in;

Definition 2.4 (Kreiss). A semi-discretization of a homogeneous IBVP is
called stable if the discrete solution uh satisfies the energy estimate

||uh|| ≤ Kdeαdt || f ||, ∀t > 0,

where f is the initial data. The parameters Kd and αd are not allowed to depend
on neither t nor f .

Kreiss and Wu [25] showed that when time is kept continuous and a space
discretization is stable according to definition 2.4, a Runge-Kutta time inte-
gration scheme can be used to integrate the solution in time while maintaining
stability.

The outlined procedure of assuming that there is no forcing function and
that the boundary conditions are homogeneous gives the most basic suffi-
cient requirements of well-posedness and stability. There are other definitions
where the data of the problem is included in the estimates, in which case the
continuous problem is called strongly well-posed and the semi-discretization
is called strongly stable. Moreover, the semi-discrete problem is called strictly
stable if αd = αc +O(∆x). More details on the definitions and their usage can
be found in [15, 36, 39].

We can now exemplify the whole idea of the SBP-SAT method by consid-
ering the advection equation with wavespeed ū > 0,

ut + ūux = 0, 0≤x≤ 1,
u(x,0) = f (x),
u(0, t) = gL(t).

(2.4)

Assuming that a unique solution exists, we let gL = 0 and integrate (2.4) over
the spatial domain. We obtain

d
dt
||u||2 =−ūu(1, t)2 ≤ 0,

which leads to an energy estimate and hence (2.4) is well-posed. An SBP-SAT
discretization of (2.4) can be written as

d
dt

uh + ūD1uh = σP−1e0(eT
0 uh−gL(t)) (2.5)

13



where e0 = [1,0, . . . ,0]T . The parameter σ has to be determined such that (2.5)
is stable in the norm defined by P. By multiplying (2.5) with uT

h P, assuming
gL = 0, we get

d
dt
||uh||2 = (ū+2σ)uT

h E0uh− ūuT
h ENuh (2.6)

and a discrete energy estimate is obtained for σ ≤ −ū/2. For those values
of σ , the scheme is stable. Note that there is no restriction on the order of
accuracy for stability in the energy estimate (2.6). Once a discrete energy
estimate has been obtained, the same requirements are valid for all orders of
accuracy.

The construction of stable boundary procedures for the compressible Navier–
Stokes equations with Robin solid wall boundary conditions is the topic of
paper III.

2.2 Coupled problems
To study complex flow phenomena, such as conjugate heat transfer, the flow
equations need to be coupled with the equations for heat transfer [17, 8, 45].
For model problems, well-posed coupling conditions can be derived using the
standard energy method. When the coupling conditions are derived from first
principles of physics, the energy method in its standard setting might be in-
sufficient. The reason is that the energy estimates are derived in the L2-norm
which might not capture the physics of the problem. A simple example is the
coupled heat equations in one dimension, given by

ut = αLuxx, −1≤x≤ 0,
vt = αRvxx, 0≤x≤ 1,

u(−1, t) = gL(t), v(1, t) = gR(t),
u(0, t) = v(0, t), κLux(0, t) = κRvx(0, t),

where αL,R =
κL,R

cL,RρL,R
are the thermal diffusivities and κL,R, cL,R, and ρL,R are

the thermal conductivities, specific heat capacities, and densities, respectively.
The coupling conditions require continuity of temperature and heat fluxes. In
order to obtain an energy estimate, it is necessary to modify the norms as

||u||2L =

0∫
−1

u2
δLdx, ||v||2R =

1∫
0

v2
δRdx,

where δL,R > 0 are to be determined. The energy method (assuming gL = gR =
0) results in

d
dt
(||u||2L + ||v||2R)+2αL||ux||2L +2αR||vx||2R = [δLαLuux−δRαRvvx]x=0 .

(2.7)
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To obtain an energy estimate, using the interface conditions, it is required that
δL,R = cL,RρL,R since then (2.7) reduces to

d
dt
(||u||2L + ||v||2R)+2αL||ux||2L +2αR||vx||2R = [(κLux−κRvx)u]x=0 = 0,

and an energy estimate is obtained.
The modifications of the norms are also seen in the discretization of the

coupled problem. A discretization using the SBP-SAT method can be written
as

d
dt

uh = αLD2
1uh +σ1P−1DT

1 e0(eT
0 uh−gL)

+σ2P−1DT
1 eN(eT

Nuh− eT
0 vh)+σ3P−1eN(κLeT

N(D1uh)−κReT
0 (D1vh))

d
dt

vh = αRD2
1vh + τ1P−1DT

1 eN(eT
Nvh−gR)

+ τ2P−1DT
1 e0(eT

0 vh− eT
Nuh)+ τ3P−1e0(κReT

0 (D1vh)−κLeT
N(D1uh))

(2.8)

and we have to choose σ1,2,3 and τ1,2,3 such that the scheme is stable. For
simplicity, we have assumed that both domains have the same number of grid
points since then the same operators can be used in both domains. This is to
simplify the notation and in general the domains can have different discretiza-
tions. Since a modified norm was required to obtain an energy estimate in the
continuous case, the same modification is required to obtain a discrete energy
estimate. The modified discrete norms are defined analogously as

||uh||2L = δLuT
h Puh, ||vh||2R = δRvT

h Pvh,

with δL,R determined from the continuous energy estimate. To highlight the re-
lation to the continuous energy estimate, we consider only the interface terms
and apply the modified energy method with general δL,R. We get

d
dt
(||uh||2L + ||vh||2R)+2αL||D1uh||2L +2αR||D1vh||2R = qT

h Mqh,

where qh = [eT
Nuh,eT

0 vh,eT
N(D1uh),eT

0 (D1vh)]
T and

M =


0 0 m1 m2
0 0 m3 m4

m1 m3 0 0
m2 m4 0 0

 ,

with

m1 = (αL +σ2 +σ3κL)δL, m2 =−σ3δLκR− τ2δR,

m3 =−σ2δL− τ3δRκL, m4 = (−αR + τ2 + τ3κR)δR.
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In order to obtain an energy estimate, it is required that all parameters are
chosen such that M ≤ 0. Since the main diagonal of M consists of zeros, the
only option is to choose the parameters such that m1,2,3,4 = 0. A little bit of
algebra shows that this requirement is possible if, and only if,

δL

δR
=

cLρL

cRρR
,

which is satisfied by the choices of δL,R from the continuous energy estimate.
Thus, if a modified norm is required to obtain an energy estimate in the con-
tinuous case, the same modification has to be done to the discrete norm. An
example of an implementation of the scheme (2.8) can be seen in Figure 2.2,
where we have chosen the problem parameters such that αL/αR = κL/κR = 10.
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(a) Initial data
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(d) Steady-state

Figure 2.2. A sequence of solutions for two coupled heat equations with different
problem parameters

In Figure 2.2, the initial data did not match the boundary data at the left
boundary. This causes instabilities for schemes with strong implementation
of the boundary conditions. With weak boundary conditions and energy sta-
bility, the solution attains the boundary value and the scheme remains stable
throughout the computation. In this example, we have used 33 grid points in
each subdomain and second-order accurate SBP operators.

16



In paper I and paper IV we investigate coupling procedures for computing
conjugate heat transfer problems. In the first case for a one-dimensional model
problem, and in the second case for the two-dimensional compressible Navier–
Stokes equations. In paper II, the coupling procedure itself is studied using
model problems.
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3. Functionals and dual problems

The solution of the governing equations might not be the output of primary
interest in many CFD applications. Of equal, or even greater, importance is
the computation of functionals from the solution. In general, a functional is
defined as any map from a vector space V into the underlying scalar field K.
Every vector space has an associated vector space called its dual (or adjoint)
space. The dual space is denoted by V ∗ and is defined as the space of all linear
functionals V →K.

The adjoint, or dual, operator L∗ of a linear operator L is the (unique) oper-
ator satisfying

(v,Lu)V = (L∗v,u)V , (3.1)

where (., .)V denotes the inner product on the space V . The study of linear
functionals and dual spaces is the topic of functional analysis and additional
preliminaries can be found in any functional analysis textbook, for example
the classical works [43, 44].

In this section, we consider initial boundary value problems of the form

ut +L (u) = F, x ∈Ω,

B(u) = gΓ, x ∈ Γ⊆ ∂Ω,

u = f , t = 0.
(3.2)

For applications in CFD, a linear functional of interest usually represents the
lift or drag on a solid body in a fluid, which is computed in terms of an integral
of the solution of (3.2). The functional can be represented in terms of an
integral inner product as

J(u) = (g,u) =
∫
Ω

gT udΩ,

where g is a weight function. A main complication in CFD is that no phys-
ically relevant solutions have compact support in the computational domain.
The dual operator is obtained through integration by parts which will introduce
boundary terms that must be removed. The dual PDE has thus to be supplied
with dual boundary conditions to close the system.

The associated dual problem has been extensively studied [11, 12] and used
in the context of error control and adaptive mesh refinement [1, 2, 6, 14, 10, 7]
as well as within optimization and control problems [21, 13]. In error control
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and mesh adaptation, the dual problem is derived and treated as a variational
problem. In optimization and control problems, the dual problem is derived
and treated as a sensitivity problem with respect to design parameters. In the
end, the two different formulations yield the same dual problem. A similar-
ity for the different areas of applications is that most of them are based on
unstructured methods, such as finite elements or discontinuous Galerkin.

3.1 Quadrature accuracy
Only recently was the study of duality introduced to structured methods, such
as the SBP-SAT technique. Recall that the SBP operator was constructed to
satisfy

(vh,D1uh)h = uT
h (EN−E0)vh− (D1vh,uh)h,

which mimics an integration property, rather than a differentiation property.
While the differentiation properties of the SBP operator has been extensively
studied and used [46, 49, 32, 50, 20, 38, 5, 33, 29], the integration properties
of the matrix P have been much less explored. The integration properties of
P was thoroughly investigated by Hicken and Zingg [19]. It was shown that
the requirements on P to obtain an accurate SBP operator include, and extend,
the Gregory formulas for quadrature rules using equidistant points. Two main
results were proven in [19], which are restated here for convenience. The first
theorem establishes the accuracy of P as an integration operator;

Theorem 3.1. Let P be a full, restricted-full, or diagonal mass matrix from
an SBP first-derivative operator D1 = P−1Q, which is a 2p-order accurate
approximation to the first derivative in the interior. Then the mass matrix P
constitutes a 2p-order accurate quadrature for integrands u ∈C2p(Ω).

The second theorem extends the results to include discrete integrands com-
puted from an SBP differentiation;

Theorem 3.2. Let D1 = P−1Q be a an SBP first derivative operator with a
diagonal mass matrix P and 2p-order interior accuracy. Then (vh,D1uh)h is a
2p-order accurate approximation of (v,ux).

These theorems proved in summary that it is possible to retain the full order
of accuracy when computing integrals from an SBP discretization, even with
a diagonal P.
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3.2 Dual consistency
For IBVPs, it is not sufficient to integrate the solution obtained by an SBP-
SAT discretization using P to obtain a functional of 2p-order accuracy. It was
shown in [18] that an additional property of the discretization was required—
the so called dual consistency property. The main result in [18] extends the
results in [19] to include SBP-SAT solutions to IBVPs. Even though the so-
lution uh to an IBVP using SBP-SAT is accurate of order p+1 when using a
diagonal P, any linear functional of uh is accurate of order 2p when integrated
using P, if the discretization is dual consistent.

As suggested by the name, dual consistency requires that the discretization
of the primal problem is also a consistent approximation of the dual problem.
In order to construct a dual consistent discretization, one first have to derive
the dual problem and work with both the primal and dual problems simul-
taneously. To obtain the dual differential operator we consider the linear, or
linearized, Cauchy problem,

ut +Lu = f , x ∈Ω,

u = 0, t = 0,
J(u) = (g,u),

where J(u) is a linear functional of interest. We seek a function θ , in some
appropriate function space, such that

T∫
0

J(u)dt =
T∫

0

(θ , f )dt.

Using integration by parts, we can write

T∫
0

J(u)dt =
T∫

0

J(u)dt−
T∫

0

(θ ,ut +Lu− f )dt

=

T∫
0

(θt −L∗θ +g,u)dt− [(θ ,u)]t=T +

T∫
0

(θ , f )dt

and it is clear that θ = 0 at t = T is needed, and that θ has to satisfy the dual
equation −θt +L∗θ = g. The time transform τ = T − t is usually introduced,
and the dual Cauchy problem becomes

θτ +L∗θ = g, x ∈Ω,

θ = 0, τ = 0.

The situation is more complicated for IBVPs. Since the primal equation does
not have compact support in general, the boundary terms resulting from the
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integration by parts procedure has to be properly taken care of by the homoge-
neous primal boundary conditions. The dual boundary conditions are defined
as the minimal set of homogeneous conditions such that the boundary terms
vanish after the homogeneous primal boundary conditions have been applied.
Still, one needs to investigate the well-posedness of the dual equation with the
resulting dual boundary conditions. A well-posed set of boundary conditions
for the primal problem does not necessary lead to a well-posed dual problem.

A discretization of a problem with a functional of interest can be written as

d
dt

uh +Lhuh = f ,

Jh(uh) = (g,uh)h,
(3.3)

where the entire spatial discretization, including the boundary conditions, has
been collected into the discrete operator Lh. Recall that the inner product is
defined as

(vh,uh)h = vT
h Puh (3.4)

in an SBP-SAT framework. The discrete adjoint operator L∗h is defined, analo-
gously to (3.1), as the unique operator satisfying

(vh,Lhuh)h = (L∗hvh,uh)h. (3.5)

The discrete adjoint operator can hence be explicitly computed, using (3.4)
and (3.5), as

L∗h = P−1LT
h P. (3.6)

The discrete dual problem is obtained analogously to the continuous case by
finding θh such that

∫ T
0 Jh(uh)dt =

∫ T
0 (θh, f )dt. Integration by parts and (3.6)

gives

T∫
0

Jh(uh)dt =
T∫

0

(g,uh)hdt−
T∫

0

(θh,
d
dt

uh +Lhuh− f )hdt

=

T∫
0

(
d
dt

θh−L∗hθh +g,uh)hdt− [(θh,uh)h]t=T +

T∫
0

(θh, f )hdt

and hence the θh has to satisfy the discrete dual problem

d
dτ

θh +L∗hθh = g,

θh = 0, τ = 0,

where τ = T − t. Dual consistency can now be defined in terms of L∗h and L∗;
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Definition 3.3. A discretization is called dual consistent if L∗h is a consistent
approximation of L∗ and the continuous dual boundary conditions.

The above definition is not specific for SBP-SAT discretizations. Any dis-
cretization which can be written in the form (3.3) is applicable. The SBP-SAT
technique is particularly well-suited for this framework because of the well-
defined inner product and operator form.

It is common, in optimization for example, that continuous and discrete ad-
joint methods are distinguished [34, 35, 9]. This is because the discrete adjoint
operator does not approximate the continuous adjoint operator and boundary
conditions in general. In the SBP-SAT framework, the dual consistency prop-
erty can allow for very efficient use of adjoint based techniques due to the
unification of the continuous and discrete adjoints. SBP-SAT is not the only
method which offers consistency with the dual equations. It was shown that,
for example, the discontinuous Galerkin method can also exhibit this property
[27, 40].

The dual consistency property can be easily exemplified using the model
problem (2.4). Dual consistency does not depend on any data of the problem
but only the differential operator and the form of the boundary conditions. We
hence consider the inhomogeneous problem with homogeneous boundary and
initial conditions,

ut + ūux = f , 0≤x≤ 1
u(0, t) = 0,
u(x,0) = 0,

J(u) = (g,u),

(3.7)

where J(u) is a linear functional of interest. We seek a function θ so that∫ T
0 J(u)dt =

∫ T
0 (θ , f )dt and integration by parts gives

T∫
0

J(u)dt =
T∫

0

J(u)dt−
T∫

0

(θ ,ut + ūux− f )dt

=

T∫
0

(θt + ūθx +g,u)dt−
1∫

0

[θu]t=T dx−
T∫

0

[ūθu]x=1dt +
T∫

0

(θ , f )dt.

It is clear that θ has to satisfy the dual problem

θτ − ūθx = g, 0≤x≤ 1,
θ(1,τ) = 0,
θ(x,0) = 0,

(3.8)

where we have introduced the time transform τ = T − t.
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The model problem (3.7) can be discretized as

d
dt

uh + ūD1uh = σP−1(eT
0 uh−0)e0 + f ,

Jh(uh) = (g,uh)h,
(3.9)

and the parameter σ has to be determined so that the scheme is not only stable,
but also a consistent approximation of the dual problem (3.8). It is convenient
to rewrite (3.9) in operator form as

d
dt

uh +Lhuh = f ,

where the spatial discretization, including the boundary condition, is included
in the operator

Lh = ūD1−σP−1E0.

The discrete dual operator can be directly computed as

L∗h = P−1LT
h P =−ūD1 + ūP−1EN− (σ + ū)P−1E0, (3.10)

and it is seen that L∗h imposes a boundary condition at x= 0, due to the last term
in (3.10), unless σ =−ū. With σ =−ū, the discrete dual problem becomes

d
dτ

θh− ūD1θh =−ūP−1ENθh +g,

which is a consistent approximation of the dual problem (3.8). Since σ =−ū
does not contradict the stability condition (σ ≤ −ū/2), the scheme is both
stable and dual consistent. In Table 3.1 we show the convergence rates q for
the solution and the functionals, together with the functional error, using the
dual inconsistent and consistent schemes.

Table 3.1. Convergence rates q, and functional errors for the dual inconsistent and
consistent schemes

5th-order (2p = 8)
σ =−1/2 σ =−1

N q(uh) q(Jh(uh)) Error q(uh) q(Jh(uh)) Error
96 4.58 4.51 1.87e-05 5.14 8.20 7.54e-09
128 4.87 4.80 3.02e-06 5.34 7.96 2.71e-10
160 4.97 4.91 7.58e-07 5.41 8.02 2.74e-11
192 5.02 4.97 2.53e-07 5.44 8.06 4.58e-12
224 5.05 5.01 1.02e-07 5.46 8.21 1.05e-12
256 5.06 5.04 4.72e-08 5.46 8.62 2.97e-13

As we can see from Table 3.1, the convergence rate for the linear functional
increases from p+1 to 2p when using the dual consistent discretization. Also
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notice that dual consistency is merely a choice of parameters. The solution of
the dual problem is never required and hence the increased rate of convergence
for linear functionals comes at no extra computational cost.

In paper V we establish the dual consistency theory for time-dependent
problems, and relate the dual consistency property to stability using several
model problems of different types. A general proof is presented which shows
that stable and dual consistent SBP-SAT schemes produces superconvergent
linear integral functionals. In paper VI we extend the theory to include ad-
vanced boundary conditions which further enhances the performance of dual
consistent schemes.
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4. Summary of papers

4.1 Contributions
The ideas of the papers in this thesis have been developed in close collabora-
tion between the authors. The papers have been written by the author of this
thesis. The computations in the papers have been performed by the author of
this thesis. The analysis in the papers have been done to large extent by the
author of this thesis in close collaboration with the co-author.

4.2 Paper I
J. Lindström and J. Nordström. A stable and high-order accurate conjugate heat trans-
fer problem. Journal of Computational Physics, 229(14):5440–5456, 2010.

This paper was a first attempt to compute conjugate heat transfer problems
using the SBP-SAT framework. In previous work, the coupling procedures
have been focused on multi-block couplings to split the computational domain.
For conjugate heat transfer problems, not only is the domain split, there are
also different governing equations in the blocks describing the fluid and solid,
respectively.

A one-dimensional model problem was analyzed. An incompletely parabolic
system of equations was coupled to the scalar heat equation and well-posed
interface conditions were derived for the continuous problem. The coupled
problem was discretized and it was shown how to construct an SAT so that the
coupling is stable, and that the target high-order accuracy was obtained.

The stable discrete coupling was derived as a function of one parameter
describing the weight between Dirichlet and Neumann conditions, showing
that there are no restrictions on how the coupling is done. The results extends
earlier results where restrictions on the coupling were required for stability.

The spectral properties of the discretization were investigated as a function
of the interface parameter and it was shown that both the rate of convergence
to steady-state as well as the stiffness of the coupled system could be enhanced
compared to having pure Dirichlet or Neumann conditions.
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4.3 Paper II
J. Berg and J. Nordström. Spectral analysis of the continuous and discretized heat and
advection equation on single and multiple domains. Applied Numerical Mathematics,
62(11):1620–1638, 2012.

To obtain further insights in how numerical coupling procedures affect the
overall discretization, two model problems were investigated. Most physical
problems consist of advective and/or diffusive terms which have very differ-
ent mathematical and numerical properties. We hence considered the advec-
tion and heat equation on single and multiple domains. This was done to see
which effects the multi-block coupling have, compared to a single domain dis-
cretization. Second-order accurate SBP operators were used since they allow
analytic computations of spectral properties.

For the heat equation, we derived a closed form expression of the eigenval-
ues for the discrete single domain operator and showed asymptotical second-
order convergence of all discrete eigenvalues. For the multi-block domain we
showed that the eigenvalues from the single domain operator were included in
the set of eigenvalues of the multi-block operator. The stable coupling con-
ditions were derived as a function of one coupling parameter, similarly as in
paper I, for which the discretization properties were studied.

For the advection equation, we showed how the eigenvalues of the multi-
block operator are again included in the set of eigenvalues of the single do-
main operator. The multi-block coupling was derived as a function of one
semi-bounded parameter for which the discretization is both stable and con-
servative. Two different values of the parameter could be distinguished. One
value which gives minimal interface dissipation, and another which gives a
fully upwinded scheme. It was shown by several examples that the upwinded
interface treatment is the preferred choice since it improves the errors, stiff-
ness, and rate of convergence to steady-state. In the latter case, adding several
interfaces can enhance the convergence rate to steady-state by several orders
of magnitude.

4.4 Paper III
J. Berg and J. Nordström. Stable Robin solid wall boundary conditions for the Navier–
Stokes equations. Journal of Computational Physics, 230(19):7519–7532, 2011.

There are multiple choices of well-posed solid wall boundary conditions for
the compressible Navier–Stokes equations. The most commonly used ones are
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the no-slip conditions for the velocity with an isothermal or adiabatic temper-
ature condition. These boundary conditions make sure that there are no veloc-
ities in neither the normal nor tangential directions, and that the temperature
or temperature gradient is specified. It is well-known that the no-slip condi-
tions are accurate as long as the characteristic length scale is large enough.
For flows on the micro or nano scale, molecular interactions have to be taken
into account, and the Navier–Stokes equations do no longer give an accurate
description of the physics. The effects of molecular dynamics can be modeled
by slip-flow boundary conditions where the tangential velocities are allowed
to be non-zero.

All of the above mentioned boundary conditions can be represented by
Robin solid wall boundary conditions on the tangential velocity and tempera-
ture. This allows for a transition from no-slip to slip, and from isothermal to
adiabatic, by varying parameters. We have proved that the SBP-SAT method
can be made stable for all choices of parameters, using sharp energy estimates.
All physically relevant solid wall boundary conditions for the compressible
Navier–Stokes equations are thus contained within one uniform, energy sta-
ble, formulation.

4.5 Paper IV
J. Nordström and J. Berg. Conjugate heat transfer for the unsteady compressible
Navier–Stokes equations using a multi-block coupling. Accepted for publication in
Computers & Fluids, 2012.

There are two possible choices for how to compute conjugate heat transfer
problems: 1) the Navier–Stokes equations are coupled to the heat equation,
and 2) the Navier–Stokes equations themselves govern heat transfer in the
solid. The first is the most obvious choice due to the simplicity of the scalar
heat equation. The latter is common for incompressible fluids because the
energy component is decoupled from the momentum, and reduces exactly to
the heat equation for zero velocities. For compressible fluids, the latter choice
is less explored since stability and accuracy become problematic.

We used a modified multi-block coupling, where only the temperature is
coupled over the interface, and let the compressible Navier–Stokes equations
govern heat transfer also in the solid region. In the continuous case, we
showed how to scale and choose the coefficients in the energy component of
the Navier–Stokes equations, so that it becomes as similar to the heat equation
as possible. Well-posedness of the modified multi-block coupling was shown
using energy estimates in a modified norm.
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In the discrete case, we showed that the coupling can be made stable us-
ing the same modified norm. Computations using both approaches were per-
formed and it was shown that the differences can be made very small.

4.6 Paper V
J. Berg and J. Nordström. Superconvergent functional output for time-dependent prob-
lems using finite differences on summation-by-parts form. Journal of Computational
Physics, 231(20):6846–6860, 2012.

The theory of dual consistency and functional superconvergence for SBP-SAT
discretizations was first derived for steady problems. In this paper, we ex-
tended the theory to time-dependent problems and related dual consistency to
stability. We gave a general proof that dual consistency and stability implies
superconvergence for linear (integral) functionals. Several model problems of
different kinds were analyzed. It was shown how to construct schemes which
are stable and dual consistent, and that superconvergence was obtained for all
cases.

4.7 Paper VI
J. Berg and J. Nordström. On the impact of boundary conditions on dual consistent
finite difference discretizations. Accepted for publication in Journal of Computational
Physics, 2012.

In paper V, the model PDEs were supplied with Dirichlet boundary conditions
to simplify the analysis in the continuous case. Dirichlet boundary conditions
automatically ensures that both the primal and dual problems are well-posed.
The discretization, however, became more complicated as it was required to
reduce the equations to first-order form to derive stability conditions. In real-
istic applications, Dirichlet boundary conditions are rarely suitable at far-field
boundaries. It is well-known that they give large reflections which eventually
will pollute the whole solution unless exact boundary data is known. Other
kind of boundary conditions can significantly enhance both the stability and
accuracy of a numerical scheme.

We considered a linear incompletely parabolic system of PDEs in one di-
mension. The boundary conditions of far-field type were derived using energy
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estimates, under the restriction that both the primal and dual problems were
well-posed. By simultaneously considering the primal and dual problems, the
amount of free parameters could be reduced, which allowed the construction
of new advanced boundary conditions.

The equations were discretized using the SBP-SAT technique, and it was
shown that the construction of the continuous boundary conditions are suffi-
cient for both stability and dual consistency. In fact, with the new boundary
conditions, stability and dual consistency are equivalent. Several computations
were performed with the new boundary conditions, and it was shown that they
provide both error boundedness in time, fast convergence to steady-state, and
superconvergence of linear integral functionals.
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6. Summary in Swedish

Stabila finita differensmetoder med hög
noggrannhetsordning för multifysik- och flödesproblem
Många problem inom teknik och naturvetenskap, och även inom andra om-
råden, kan modelleras med hjälp av partiella differentialekvationer (PDE:er).
Några exempel är dynamiken hos fluider och elektromagnetisk vågutbredning,
men även problem från aktiemarknaden och trafikstockningar kan beskrivas
med PDE:er. I allmänhet finns inga generella metoder för att hitta exakta lös-
ningar till dessa problem. Även i de fall där det finns exakta lösningar så är de i
allmänhet för komplexa för att vara praktiskt användbara. Numeriska metoder
är därför ofta nödvändiga.

Under de senaste årtiondena har datorerna utvecklats till den grad att nu-
meriska simuleringar har etablerat sig som ett av vetenskapens fundament,
likvärdigt med teori och experiment. Den ökade användningen av datorer är
inte enbart tack vare att hårdvaran har blivit snabbare och effektivare. Algorit-
merna som används för beräkningar har även de utvecklats i samma takt. Den
ökade användningen av datorsimuleringar ställer höga krav på algoritmerna.
Bra hårdvara är betydelselös om algoritmen som används är ineffektiv eller
inte beräknar ett korrekt resultat.

Det finns en uppsjö av olika metoder för att lösa PDE:er. Några av de
vanligaste är finita volymsmetoden, finita elementmetoden, och den som är
huvudfokus i den här avhandlingen – finita differensmetoden. Vilken metod
som än används så krävs det att metoden är;

1. Konsistent
2. Stabil
3. Effektiv

I allmänhet är två av de tre ovanstående kraven relativt lätta att åstadkomma.
Att metoden är konsistent betyder att den faktiskt löser den PDE vi är intresser-
ade av. Stabilitet betyder att störningar, t.ex. i data eller från diskretiserings-
eller avrundningsfel, inte påverkar lösningen alltför mycket. Effektivitet bety-
der att metoden levererar en lösning inom rimlig tid. De flesta metoder som
används är i praktiken är konsistenta. Däremot är långt ifrån alla metoder som
används stabila och effektiva. En konsistent och stabil numerisk metod har
ofta en låg noggrannhetsordning och är därmed ineffektiv, eftersom det krävs
hög upplösning för ett noggrant resultat. En konsistent metod med hög nog-
grannhetsordning är ofta instabil.
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Finita differensmetoder är i sitt grundutförande konsistenta och effektiva.
Effektiviteten kommer av att det är lätt att åstadkomma hög noggrannhetsor-
dning, samt att de lämpar sig väl för implementering på datorer. Ett stort
problem är stabilitet. För att komma till rätta med stabilitetsproblemen har
finita differensmetoder på partiell summationsform (eng. summation-by-parts,
SBP) utvecklats. En SBP-operator är i grunden en central differensoperator
som har modifierats för att vara ensidig vid ränderna. SBP-egenskapen i sig är
tillräcklig för att varje linjärt välställt Cauchy-problem ska ha en stabil diskre-
tisering.

För initial- och randvillkorsproblem (eng. initial boundary value problems,
IBVP) är situationen lite mer komplicerad. De flesta PDE:er av fysikaliskt
intresse, t.ex. Navier-Stokes ekvationer, kräver randvillkor för att vara väl-
definierade. SBP-metodiken i sig har ingen hantering av randvillkor utan
dessa måste läggas till separat. Den mest användbara metoden är att lägga
till randvillkoren svagt, genom en så kallad SAT (eng. simultaneous approxi-
mation term). Tillsammans ger SBP-SAT ett ramverk för att konstruera kon-
sistenta och stabila finita differensapproximationer av linjärt välställda IBVP,
där noggrannhetsordningen inte är begränsad av stabilitetskrav.

Den här avhandlingen fokuserar på stabila och högre ordningens SBP-SAT-
approximationer av olika IBVP som förekommer inom beräkningsfluiddy-
namik. I åtanke finns speciellt Navier-Stokes ekvationer samt multifysikprob-
lem inklusive konjugerad värmeöverföring. Avhandlingen kan delas in i två
delar. Den första delen består av artikel I–IV. I dessa utvecklas SBP-SAT-
tekniken för kopplade problem samt randvillkorshantering för Navier–Stokes
ekvationer. Det visas hur SBP-SAT används för att koppla ihop olika fysik-
modeller och vilka egenskaper hos diskretiseringen som ändras vid kopplin-
gen. Väggrandvillkor för Navier-Stokes ekvationer som leder till välställd-
het för det kontinuerliga problemet härleds, tillsammans med stabilitet för det
diskreta. Väggrandvillkoren är formulerade så att alla relevanta fysikaliska
randvillkor, t.ex. no-slip, slip, isoterma och adiabatiska, finns representerade i
en enhetlig formulering som är energistabil med skarpa energiuppskattningar.

I den andra delen, bestående av artikel V–VI, utvecklas SBP-SAT-tekniken
för hantering av duala problem. Dualkonsistens relateras till stabilitet vilket
resulterar i superkonvergenta linjära integralfunktionaler. Genom att samtidigt
betrakta välställdhet hos det primära och duala problemet kan nya avancerade
randvillkor härledas, vilka i en SBP-SAT-diskretisering direkt ger stabilitet
och dualkonsistens, och därmed superkonvergenta funktionaler.
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a b s t r a c t

This paper analyzes well-posedness and stability of a conjugate heat transfer problem in
one space dimension. We study a model problem for heat transfer between a fluid and a
solid. The energy method is used to derive boundary and interface conditions that make
the continuous problem well-posed and the semi-discrete problem stable. The numerical
scheme is implemented using 2nd-, 3rd- and 4th-order finite difference operators on Sum-
mation-By-Parts (SBP) form. The boundary and interface conditions are implemented
weakly. We investigate the spectrum of the spatial discretization to determine which type
of coupling that gives attractive convergence properties. The rate of convergence is verified
using the method of manufactured solutions.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The coupling of fluid and heat equations is an area that has many interesting scientific and engineering applications. From
the scientific side it is interesting to mathematically derive conditions to make the coupled system well-posed and compare
with actual physics. The applications for conjugate heat transfer ranges between cooling of turbine blades, electronic com-
ponents, nuclear reactors or spacecraft re-entry just to name a few. The particular application we are working towards here
is a microscale satellite cold gas propulsion system with heat sources that will be used for controlling the flow rate [1]. See
Fig. 1.

This paper is the first step of understanding the coupling procedure within our framework. The computational method
that we are using is a finite difference method on Summation-By-Parts (SBP) form with the Simultaneous Approximation
Term (SAT), a weak coupling at the fluid–solid interface. This method has been developed in many papers [2–7] and used
for many difficult problems where it has proven to be robust [8–11]. The extensions to multiple dimensions is relatively
straightforward once the one-dimensional case has been investigated. The difficulty in extending to multiple dimensions lies
rather in a high performance implementation than in the theory.

The main idea of the SBP and SAT framework is that the difference operators should mimic integration by parts in the
continuous case. This framework makes the discrete equations closely related to the PDE:s themselves. The difference oper-
ators are constructed such that they shift to one-sided close to the boundaries. This results in an energy estimate which gives
stability for a well-posed Cauchy problem. The SAT method implements the boundary conditions weakly and an energy esti-
mate, and hence stability, can be obtained for a well-posed initial boundary value problem.
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Since the operators shift to one-sided close to boundaries and interfaces there is no need to introduce ghost points
or extrapolate values which in general causes stability issues. Once the scheme is correctly written and all coefficients
determined the order of the scheme depends only on the order of the difference operators. In this paper we will present
2nd-, 3rd- and 4th-order operators and study their performance. The details of these operators can be found in for example
[2,3,12].

2. The continuous problem

The equations we are studying in this paper are motivated by a gas flow in a long channel with heat sources. The channel
is long compared to the height and hence the changes in the tangential direction are small in comparison to the changes in
the normal direction, see Fig. 2.

The equations are an incompletely parabolic system of equations for the flow and the scalar heat equation for the heat
transfer,

wt þ Awx ¼ eBwxx; �1 6 x 6 0 ð1Þ

and

Tt ¼ kTxx; 0 6 x 6 1; ð2Þ

where

w ¼
q
u

T

264
375; A ¼

a b 0
b a c

0 c a

264
375; B ¼

0 0 0
0 a 0
0 0 b

264
375: ð3Þ

We can view (1) as the Navier–Stokes equations linearized and symmetrized around a constant state. In that case we would
have

a ¼ �u; b ¼
�cffiffifficp ; c ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

s
; a ¼ kþ 2l

�q
; b ¼ cl

Pr�q
; ð4Þ

where �u; �q and �c is the mean velocity, density and speed of sound. c is the ratio of specific heats, Pr the Prandtl number and k
and l are the second and dynamic viscosities, [8,13,14]. At this point the only assumption on the coefficients is that a,b > 0.

Our main objective is to couple (1) and (2) at x = 0 and investigate which boundary and interface conditions that will lead
to a well-posed coupled system.

Fig. 2. By assuming an infinitely long channel with homogenicity in the tangential direction y we get an one-dimensional problem in the normal direction x
for the conjugate heat transfer problem.

Fig. 1. A micro machined nozzle with 3 heater coils positioned just before the nozzle throat. The nozzle throat is approximately 30 lm in a heat exchange
chamber.
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To simplify, we assume for the rest of the paper that a > 0. We are allowed to use three boundary conditions at x = �1,
three interface conditions at x = 0 and one boundary condition at x = 1. See e.g. [8,9,13,15].

2.1. Boundary conditions at x = �1

The boundary and interface conditions will be derived using the energy method. Define the energy norm of w as

kwk2 ¼
Z 0

�1
wT wdx: ð5Þ

By multiplying (1) with wT and integrating over the domain we get

wk k2
t ¼ �wT Aw

��0
�1 þ 2ewT Bwx

��0
�1 � 2e

Z 0

�1
wT

x Bwxdx: ð6Þ

Let

X ¼ 1ffiffiffi
2
p

d

�
ffiffiffi
2
p

c b b

0 d dffiffiffi
2
p

b c c

264
375; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

q
; ð7Þ

be the diagonalizing matrix of A. We have X�1 = XT and A = XKXT where

K ¼
a 0 0
0 aþ d 0
0 0 a� d

264
375; ð8Þ

contains the eigenvalues of A. Using these relations we can write (6) as

kwk2
t ¼ ðX

T wÞTKðXT wÞ � 2ewT Bwx � 2e
Z 0

�1
wT

x Bwxdx; ð9Þ

where all boundary terms are evaluated at x = �1. We make the change of variables

XT w ¼ 1ffiffiffi
2
p

d

�
ffiffiffi
2
p

cqþ
ffiffiffi
2
p

bT
bqþ duþ cT
bq� duþ cT

264
375 ¼ c1

c2

c3

264
375; ð10Þ

which are the characteristic variables for the hyperbolic part, cf. [13,15]. In order to bound the energy for the hyper-
bolic part we need to put boundary conditions on the characteristic variables that are related to the positive eigenvalues
of A. If we assume that a < d which corresponds to subsonic inflow, then A has two positive eigenvalues and we need to
use two boundary conditions on the corresponding characteristic variables. Thus we need to impose the boundary
conditions

c1 ¼
1ffiffiffi
2
p

d
�

ffiffiffi
2
p

cqþ
ffiffiffi
2
p

bT
� �

¼ f1ðtÞ; ð11Þ

c2 ¼
1ffiffiffi
2
p

d
ðbqþ duþ cT Þ ¼ f2ðtÞ; ð12Þ

to bound the hyperbolic part.
We are allowed to use one more boundary conditions that will need to bound the parabolic term �2ewTBwx. Assume

f1 = f2 = 0. By taking linear combinations of (11) and (12) we can eliminate q and obtain

cuþ dT ¼ 0: ð13Þ

The parabolic term is expanded using relation (13) to obtain

�2ewT Bwx ¼ �2eu aux �
bc
d
T x

� �
: ð14Þ

If we put

adux � bcT x ¼ f3ðtÞ; ð15Þ

as the final boundary condition for (1) at x = �1, then with f3 = 0 the parabolic term (14) is zero and all the boundary terms
are bounded.
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Remark 2.1. The assumption of zero boundary data is necessary to obtain Eq. (15). If we could have bounded the left
boundary terms with non-zero boundary data, it could lead to a strongly well-posed problem [16].

2.2. Boundary conditions at x = 1

At x = 1 we have the scalar heat equation. By applying the energy method we get

Tk k2
t ¼ 2kTTx � 2k Txk k2; ð16Þ

from which it is easy to see that either

T ¼ h1ðtÞ; Tx ¼ h2ðtÞ or a1T þ b1Tx ¼ h3ðtÞ; ð17Þ

will result in an energy estimate (for suitable choices of the constants a1 and b1). In the rest of the paper and in the numerical
experiments we have used T = h1(t).

2.3. Interface conditions at x = 0

At the interface we apply the energy method to both equations and add them together to get (when ignoring boundary
terms)

d
dt
kwk2 þ kTk2
� �

¼ �wT Awþ 2ewT Bwx � 2kTTx � 2e
Z 0

�1
wT

x Bwx dx� 2k
Z 1

0
T2

x dx: ð18Þ

Since we are considering the interface as a solid wall which separates the fluid from the solid and since we want a continuous
heat transfer we impose

u ¼ 0; T ¼ T: ð19Þ

Using the interface conditions (19), Eq. (18) reduces to

d
dt
kwk2 þ kTk2
� �

¼ �aðq2 þ T 2Þ þ 2T ðbeT x � kTxÞ � 2e
Z 0

�1
wT

x Bwx dx� 2k
Z 1

0
T2

x dx ð20Þ

and we can easily see that if we impose

beT x � kTx ¼ 0; ð21Þ

as the final interface condition we get an energy estimate. Without (21), the interface can act as an unphysical heat source.
Using all these boundary and interface conditions we can conclude the following.

Proposition 2.1. Eqs. (1) and (2) coupled at x = 0 are well-posed with boundary conditions (11), (12), (15) and (17) and interface
conditions (19) and (21).

Remark 2.2. Note that in arriving at Proposition 2.1 we have assumed that the data is identically zero. If we had been able to
obtain an energy estimate for non-zero data the problem would have been strongly well-posed [16].

3. The semi-discrete problem

Eq. (1) is discretized on the single domain [-1,0] on a uniform grid of M + 1 grid points. The vector w ¼
½w0;w1; . . . ;wM �T ¼ ½q0;u0; T 0;q1;u1; T 1; . . . ;qM;uM ; T M �T is the discrete approximation of w. The derivatives are approxi-
mated by the operators on SBP form

wx � DL
1 � I3

� �
w ¼ P�1

L Q L � I3

� �
w; ð22Þ

wxx � DL
2 � I3

� �
w ¼ P�1

L Q L � I3

� �2
w; ð23Þ

where PL is a symmetric positive definite matrix and QL is an almost skew symmetric matrix satisfying QL þ Q T
L ¼

BL ¼ diagð�1;0; . . . ;0;1Þ [2,3]. I3 is the 3 � 3 identity matrix. Eq. (2) is similarly discretized on a uniform grid of N + 1 grid
points.

Remark 3.1. The approximation (23) has the drawback that the computational stencil is wide. This is however necessary for
variable coefficients. Compact formulations that uses minimal bandwidth does however exist for constant coefficient
problems [3].
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In (22) and (23) we have introduced the Kronecker product, defined as

A� B ¼
a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

2664
3775 ð24Þ

for the m � n and p � q matrices A and B respectively. It is a special case of a tensor product so it is bilinear and associative.
Some of its important properties are

ðA� BÞðC � DÞ ¼ ðAC � BDÞ; ð25Þ
ðA� BÞ�1 ¼ ðA�1 � B�1Þ; ð26Þ

if the usual matrix products and inverses are defined.
Given a partial differential equation,

v t ¼ Pðx; t;vÞ; x 2 X; t P 0;
vðx; 0Þ ¼ f ðxÞ; x 2 X; t ¼ 0;
Lv ¼ gðtÞ; x 2 @X; t P 0;

ð27Þ

the SAT method will be used to implement the boundary condition Lv = g weakly. This means that Lv� g ¼ OðhpÞ in the dis-
crete case. The discretization of (27) using the SAT method would schematically look like

vt ¼ Dv þ ðP�1E� RÞðLv� gÞ; ð28Þ

where D is a discrete SBP approximation of P and L is a matrix that approximates the continuous operator L. E is a matrix
which picks the correct boundary terms at the correct positions in space. R is an unknown matrix of the same size as the
system of PDE:s to be determined for stability.

With these tools and the boundary and interface conditions derived in Proposition 2.1 we can discretize (1) and (2) using
the SAT method as

wt ¼ � DL
1 � A

� �
wþ e DL

2 � B
� �

wþ P�1
L EL

0 � R0
1

� �
XT w0 � g0

1

� �
þ P�1

L EL
0 � R0

3

� �
ad DL

1u
� �

0
� bc DL

1T
� �

0
� g0

3

� �
þ P�1

L DL
1

� �T
EL

0 � R0
5

� �
cu0 þ dT 0 � g0

5

� 	
þ P�1

L EL
M � RM

1

� �
wM � gM

1

� 	
þ P�1

L EL
M � RM

2

� �
wM � gM

1

� 	
þ P�1

L EL
M � RM

3

� �
T M � T0ð Þ þ P�1

L DL
1

� �T
EL

M � RM
4

� �
ðT M � T0Þ þ P�1

L EL
M � RM

5

� �
be DL

1T
� �

M

�
�k DR

1T
� �

0

�
� P�1

L � I3

� � eDT
L
eBL
eDL � I3

� �
; ð29Þ

Tt ¼ kDR
2Tþ s0

1P�1
R ER

0ðT0 � T MÞ þ s0
2P�1

R DR
1

� �T
ER

0ðT0 � T MÞ þ s0
3P�1

R ER
0 k DR

1T
� �

0
� be DL

1T
� �

M

� �
þ sN

1 P�1
R ER

N TN � hN
1

� �
� P�1

R
eDT

R
eBR
eDR: ð30Þ

The matrices EL
0 ¼ diagð1;0; . . . ;0Þ; EL

M ¼ diagð0; . . . ;0;1Þ and ER
0;N similarly defined, are used to select boundary elements. The

3 � 3 matrices R0;M
i and coefficients s0;N

j are called penalty matrices and penalty coefficients which have to be determined for
stability [2–4]. All g0;M

i and hN
1 are arbitrary boundary data, except for g0

5 ¼
bg0

1þ
ffiffi
2
p

cg0
3ffiffi

2
p

d
which was derived as a linear combination

of the other boundary conditions.

Remark 3.2. In (29) we have XT w0 � g0
1 ¼ ½c1 � f1; c2 � f2; c3 � f3�T where c1, c2 and c3 are the characteristic variables.

Moreover wM � gM
1 ¼ ½qM � g1;uM � g2; T M � g3�

T . The rest of the SAT boundary and interface terms are 3 � 1 vectors with
the scalar values given on each row. The penalty matrices are constructed such that they select the correct entries and
cancels the rest.

The terms eDT
L;R
eBL;R

eDL;R are artificial dissipation operators which reduce spurious oscillations. The matrices eDL;R are undi-
vided forward or backward difference operators and BL,R are diagonal matrices which make the dissipation operator symmet-
ric and determines the amount and location of the dissipation. In this case we have for 2nd-order the dissipation operators

eDL;R ¼

�1 1 0 � � � 0
0 �1 1 � � � 0
..
. . .

. . .
. . .

. ..
.

0 � � � 0 �1 1
0 � � � 0 0 �1

26666664

37777775;
eBL;R ¼ diagðcL;R; cL;R; . . . ; cL;R;0Þ
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eDT
L;R
eBL;R

eDL;R ¼ cL;R

1 �1 0 0 � � � 0
�1 2 �1 0 � � � 0

..

. . .
. . .

. . .
. . .

. ..
.

0 � � � 0 �1 2 �1
0 � � � 0 0 �1 1

26666664

37777775; ð31Þ

where cL, R is a positive parameter determining the amount of dissipation. These operators lead to an energy estimate and
does not reduce the order of the scheme. An extensive study of these dissipation operators can be found in [12].

3.1. Stability conditions at x = �1

We will use the discrete analogue of the energy method to show that the scheme is stable. Define the discrete energy
norm

kwk2
PL
¼ wTðPL � I3Þw; ð32Þ

where I3 is the 3 � 3 identity matrix. Omit all terms which are not related to the left boundary, and multiply (29) with
wT(P � I3). Since DL

1 and DL
2 are on SBP form we obtain after some algebra

d
dt

wk k2
PL
¼ wT

0Aw0 � 2ewT
0B DL

1w
� �

0
� 2e DL

1w
� �T

ðINþ1 � BÞ DL
1w

� �
þ 2wT

0R
0
1 XT w0 � g0

1

� �
þ 2wT

0R
0
3 ad DL

1u
� �

0
� bc DL

1T
� �

0
� g0

3

� �
þ 2 DL

1w
� �T

0
R0

5 cu0 þ dT 0 � g0
5

� 	
: ð33Þ

As in the continuous case we let g0
1 ¼ g0

3 ¼ g0
5 ¼ 0 and consider the hyperbolic and parabolic parts separately.

The hyperbolic part with the corresponding penalty term is

wT
0Aw0 þ 2wT

0R
0
1XT w0: ð34Þ

By diagonalizing A and make a change of variables in the same way as in the continuous case we obtain that with

R0
1 ¼

1ffiffiffi
2
p

d

�
ffiffiffi
2
p

cr0
1 br0

2 0
0 dr0

2 0ffiffiffi
2
p

br0
1 cr0

2 0

264
375; ð35Þ

where

aþ 2r0
1 6 0; aþ dþ 2r0

2 6 0; ð36Þ

the hyperbolic part is bounded.
The parabolic part with the corresponding penalty terms is

�2ewT
0B DL

1w
� �

0
þ 2wT

0R
0
3 ad DL

1u
� �

0
� bc DL

1T
� �

0

� �
þ 2 DL

1w
� �T

0
R0

5 cu0 þ dT 0ð Þ ð37Þ

and again we have to choose R0
3 and R0

5 such that (37) is negative semi-definite. Let

R0
3 ¼

0 0 0
0 er0

3 0
0 0 er0

4

264
375; R0

5 ¼
0 0 0
0 er0

5 0
0 0 er0

6

264
375: ð38Þ

We formulate (37) as a quadratic form evT
0M0v0 with v0 ¼ ½u0; ðDL

1uÞ0; T 0; ðDL
1T Þ0�

T and

M0 ¼

0 �aþ adr0
3 þ cr0

5 0 �bcr0
3 þ cr0

6

�aþ adr0
3 þ cr0

5 0 adr0
4 þ dr0

5 0
0 adr0

4 þ dr0
5 0 �b� bcr0

4 þ dr0
6

�bcr0
3 þ cr0

6 0 �b� bcr0
4 þ dr0

6 0

26664
37775: ð39Þ

In order for (37) to be negative semi-definite we need to choose the coefficients r0
i such that M0 6 0. Since all diagonal en-

tries of M0 is zero, all other entries must also be zero. This results in a system of equations with one parameter family of
solutions

r 2 R; r0
3 ¼

1þ cr
d

; r0
4 ¼ r; r0

5 ¼ �ar; r0
6 ¼

bð1þ crÞ
d

: ð40Þ

The arbitrary parameter r will later be used in the analysis of the discrete spectrum when we study convergence and stiffness
properties of the discretization. With these choices M0 = 0 and we obtain an energy estimate and hence the left boundary is
stable.
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3.2. Stability conditions at x = 1

Consider the semi-discrete scheme (30) at x = 1, where all interface terms have been neglected,

Tt ¼ kDR
2Tþ sN

1 P�1
R ER

N TN � hN
1

� �
: ð41Þ

By assuming hN
1 ¼ 0 and multiplying with TTPR we get (when ignoring interface terms)

d
dt
kTk2

PR
¼ 2kTN DR

1T
� �

N
þ 2sN

1 T2
M � 2k DR

1T
� �T

PR DR
1T

� �
: ð42Þ

Define pR
N as the last entry on the diagonal of PR, that is pR

N ¼ PðN;NÞR . Then (42) is bounded by choosing

sN
1 6

�k
4pR

N

: ð43Þ

This means that sN
1 is proportional to 1

Dx, and in particular we have k
4pR

N
¼ k

2Dx ;
12k

17Dx ;
10800k

13649Dx for 2nd-, 3rd- and 4th-order operators
respectively. This technique is discussed in e.g. [5,6].

3.3. Stability conditions at x = 0

At x = 0 we have the two interface schemes

wt ¼ � DL
1 � A

� �
wþ e DL

2 � B
� �

wþ P�1EL
M � RM

1

� �
wM � gM

1

� 	
þ P�1EL

M � RM
2

� �
wM � gM

1

� 	
þ P�1EL

M � RM
3

� �
ðT M � T0Þ þ P�1 DL

1

� �T
EL

M � RM
4

� �
T M � T0ð Þ

þ P�1EL
M � RM

5

� �
be DL

1T
� �

M
� k DR

1T
� �

0

� �
; ð44Þ

Tt ¼ kDR
2Tþ s0

1P�1
R ER

0ðT0 � T MÞ þ s0
2P�1

R DR
1

� �T
ER

0ðT0 � T MÞ þ s0
3P�1

R ER
0 k DR

1T
� �

0
� beðDL

1T ÞM
� �

: ð45Þ

The penalty terms related to the outer boundaries are omitted.
A formulation which clearly shows the coupled system can be written

w

T

" #
t

¼
DL

1 � ð�AÞ 0

0 0

" #
w

T

" #
þ

DL
1 � �B 0

0 kDR
2

" #
w

T

" #
þ P�1 eL

M � ~RM
3

�s0
1eR

0

" #
eL

M � f3

�eR
0

" #T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J1

w

T

" #

þ P�1
ðDL

1Þ
T eL

M � eRM
4

�s0
2ðD

R
1Þ

T eR
0

" #
eL

M � f3

�eR
0

" #T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J2

w

T

" #
þ P�1 eL

M � eRM
5

�s0
3eR

0

" #
b�ðDL

1 � I3ÞTðeL
M � f3Þ

�kðDR
1Þ

T eR
0

" #T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J3

w

T

" #
;

ð46Þ

where

P�1 ¼
P�1

L � I3 0

0 P�1
R

" #
; eRM

i ¼ ½0;0;rM
i �

T
; f 3 ¼ ½0;0;1�

T
: ð47Þ

The interface matrices Ji are sparse with entries only close to the interface. For 2nd-order difference operators they are

J1 ¼

0 � � � � � � 0
..
. ..

. ..
. ..

.

� � � rM
3 �rM

3 � � �
� � � �s0

1 s0
1 � � �

..

. ..
. ..

. ..
.

0 � � � � � � 0

266666666664

377777777775
; ð48Þ
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J2 ¼

0 � � � � � � 0
..
. ..

. ..
. ..

.

� � � � rM
4

DxL

rM
4

DxL
� � �

� � � 0 0 � � �
� � � 0 0 � � �
� � � rM

4
DxL

� rM
4

DxL
� � �

� � � � s0
2

DxR

s0
2

DxL
� � �

� � � s0
2

DxR
� s0

2
DxL

� � �

..

. ..
. ..

. ..
.

0 � � � � � � 0

2666666666666666666666664

3777777777777777777777775

; ð49Þ

J3 ¼

0 � � � � � � 0
..
. ..

. ..
. ..

.

� � � � rM
5 b�
DxL

0 0 rM
5 b�
DxL

� rM
5 b�
DxL

rM
5 b�
DxL

� � �

� � � � s0
3k

DxR
0 0 s0

3k
DxR

� s0
3k

DxR

s0
3k

DxR
� � �

..

. ..
. ..

. ..
.

0 � � � � � � 0

2666666666664

3777777777775
: ð50Þ

By letting gM
1 ¼ 0, applying the energy method to both equations and adding together we get (when ignoring the outer

boundary terms)

d
dt
kwk2

PL
þ kTk2

PR

� �
¼ �wT

MAwM þ 2ewT
MB DL

1w
� �

M
� 2e DL

1w
� �T

ðIN � BÞ DL
1w

� �
þ 2wT

MRM
1 wM þ 2wT

MRM
2 wM

þ 2wT
MRM

3 ðT M � T0Þ þ DL
1w

� �T

N
RM

4 ðT M � T0Þ þ 2wT
MRM

5 be DL
1w

� �
M
� k DR

1T
� �

0

� �
� 2kT0 DR

1T
� �

0
� 2k DR

1T
� �T

PR DR
1T

� �
þ 2s0

1T0ðT0 � T MÞ þ 2s0
2 DR

1T
� �

0
ðT0 � T MÞ

þ 2s0
3T0 k DR

1T
� �

0
� beðDL

1T ÞM
� �

: ð51Þ

As in the continuous case we have the hyperbolic part with the corresponding penalty term

�wT
MAwM þ 2wT

MRM
1 wM ¼ wT

M �Aþ 2RM
1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

MH

0B@
1CAwM; ð52Þ

which we want to bound by making MH negative semi-definite. Note that A is symmetric by assumption. By choosing

RM
1 ¼

0 rH
1 0

0 rH
2 0

0 rH
3 0

264
375; ð53Þ

we can explicitly compute the eigenvalues of MH and see that with

rH
1 ¼

b
2
; rH

2 6 0; rH
3 ¼

c
2
; ð54Þ

we have MH 6 0. Note that RM
1 acts on u only.

The parabolic part is split into parts containing u and T separately. For the interface condition on u at x = 0 we get by
expanding (51)

2aeuMðDL
1uÞM þ 2wT

MRM
2 wM � 2aeðDL

1uÞT PLðDL
1uÞ: ð55Þ

We choose

RM
2 ¼

0 0 0
0 rM

2 0
0 0 0

264
375 ð56Þ

and rewrite (55) as
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2aeuMðDL
1uÞM þ 2rM

2 u2
M � 2aekDL

1uk2
PL
: ð57Þ

This expression is bounded by choosing

rM
2 6
�ae
4pL

M

; ð58Þ

where pL
M is defined analogously to pR

N in (43).
The remaining terms are used for coupling the two equations. Let the penalty matrices have the form

RM
3 ¼

0 0 0
0 0 0
0 0 rM

3

264
375; RM

4 ¼
0 0 0
0 0 0
0 0 rM

4

264
375; RM

5 ¼
0 0 0
0 0 0
0 0 rM

5

264
375 ð59Þ

and expand the remaining terms. This gives us the expression

2beT M DL
1T

� �
M
� 2be DL

1T
� �T

PL DL
1T

� �
þ 2rM

3 T MðT M � T0Þ þ 2rM
4 DL

1T
� �

M
ðT M � T0Þ

þ 2rM
5 T M be DL

1T
� �

M
� k DR

1T
� �

0

� �
� 2kT0 DR

1T
� �

0
� 2k DR

1T
� �T

PR DR
1T

� �
þ 2s0

1T0ðT0 � T MÞ

þ 2s0
2 DR

1T
� �

0
ðT0 � T MÞ þ 2s0

3T0 k DR
1T

� �
0
� be DL

1T
� �

M

� �
; ð60Þ

which we need to bound by choosing appropriate penalty coefficients. Expression (60) can be written in matrix form as

vT
I MIv I � 2be DL

1T
��� ���2

PL

� 2k DR
1T

��� ���2

PR

; ð61Þ

where v I ¼ ½T M; ðDL
1T ÞM ; T0; ðDR

1TÞ0�
T and

MI ¼

2rM
3 beþ aerM

5 þ rM
4 � rM

3 þ s0
1

� 	
� bkrM

5 þ s0
2

� 	
beþ aerM

5 þ rM
4 0 � rM

4 þ aerM
3

� 	
0

� rM
3 þ s0

1

� 	
� rM

4 þ aerM
3

� 	
2s0

1 �kþ bks0
3 þ s0

2

� bkrM
5 þ s0

2

� 	
0 �kþ bks0

3 þ s0
2 0

26664
37775: ð62Þ

In order for the coupling terms to be bounded we need MI 6 0. The columns which have zero on the diagonal must be can-
celed. This gives a system of equations with one parameter family of solutions

s 2 R; rM
4 ¼ �beð1þ sÞ; rM

5 ¼ s; s0
2 ¼ �ks; s0

3 ¼ 1þ s: ð63Þ

Using relations (63), MI reduces to

MI ¼

2rM
3 0 � rM

3 þ s0
1

� 	
0

0 0 0 0
� rM

3 þ s0
1

� 	
0 2s0

1 0
0 0 0 0

26664
37775 ð64Þ

and by choosing

rM
3 ¼ s0

1 6 0; ð65Þ

we have MI 6 0 and all coupling terms are bounded. The parameter s will be of particular interest in later sections since it
determines the type of the coupling.

Using all the above we can thus conclude.

Proposition 3.1. The schemes (29) and (30) coupled at x = 0 are stable using the SAT boundary and interface treatment with
penalty coefficients given by (35), (40), (43), (54), (58), (63) and (65).

Remark 3.3. As in the continuous case we have assumed the boundary data to be identically zero. If we would have obtained
an energy estimate with non-zero data the coupled schemes would have been strongly stable [16].

4. Order of convergence

The order of convergence is studied by the method of manufactured solutions. The time step (Dt = 10�5) for all compu-
tations is chosen such that the scheme with 4th-order operators is well below the stability limit with 256 grid points in each
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subdomain, and we integrate in time until t = 0.1 using the classical 4th-order Runge–Kutta method. This ensures that the
time integration errors are negligible compared to the spatial discretization error. We use the functions

qðx; tÞ ¼ cosð2px� tÞ þ sinð2px� tÞ; uðx; tÞ ¼ xþ cosð2px� tÞ;

T ðx; tÞ ¼ 1
e

sinð2pxÞe�jt; Tðx; tÞ ¼ 1
k

sinð2pxÞe�jt ; j ¼ 0:1; ð66Þ

which inserted into (1) and (2) gives a modified system of equations with additional forcing functions

wt þ Awx ¼ �Bwxx þ F;
Tt ¼ kTxxþ G; ð67Þ

where F = [F1,F2,F3]T and

F1 ¼ ð1� 2pðaþ bÞÞ sinð2px� tÞ þ ð�1þ 2paÞ cosð2px� tÞ þ b;

F2 ¼ ð1� 2pðaþ bÞÞ sinð2px� tÞ þ 2pðbþ 2p�aÞ cosð2px� tÞ þ 2pc
�

cosð2pxÞe�jt þ a; ð68Þ

F3 ¼ �2pc sinð2px� tÞ þ �j
�
þ 4p2b

� �
sinð2pxÞe�jt þ 2pa

�
cosð2pxÞe�jt þ c;

G ¼ �j
k
þ 4p2

� �
sinð2pxÞe�jt:

The functions (66) are analytic solutions to the modified system (67) and they satisfy the interface conditions in a non-trivial
way. Using (66) we create exact initial- and time dependent boundary data where needed. The penalty parameters have been
chosen with equality sign where there are inequalities, r = �1/2c and s = �1/2. The rate of convergence is obtained as

qi
j ¼ log10

ui
j�1 � v i

j�1

��� ���
ui

j � v i
j

��� ���
0B@

1CA,log10
hj

hj�1

� �
ð69Þ

where qi
j denotes the convergence rate for either of the variables i ¼ q;u; T ; T at mesh refinement level j. ui

j is the exact ana-
lytic solution for either of the variables i at mesh refinement level j and v i

j is the discrete solution. The ratio hj/hj�1 is the ratio
between the number of grid points at each refinement level. The coefficients in (1) and (2) have been chosen as

a ¼ 0:5; b ¼ 1ffiffifficp ; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

s
; c ¼ 1:4; a ¼ b ¼ 1; e ¼ 0:1; k ¼ 1 ð70Þ

and the results are seen in Table 1.
The rates of convergence in Table 1 agree with the theoretically expected results [3,6]. The convergence in this case can be

improved by using a second derivative difference operator on compact form (if the solution of the coupled problem is proven

Table 1
Order of convergence.

M = N 2nd-order 3rd-order 4th-order

q q q
32 1.5397 3.3169 3.9166
64 1.8835 3.3032 4.1544
128 1.9808 3.1561 4.1998
256 1.9934 3.0453 4.1291

u u u
32 2.0177 3.3919 5.7397
64 2.0123 3.2439 4.0481
128 2.0018 3.1309 3.5984
256 2.0024 3.0619 3.8251

T T T
32 1.9774 2.8456 4.3129
64 1.9868 2.9676 4.7098
128 1.9920 2.9973 4.8654
256 1.9959 3.0023 4.9148

T T T
32 1.9260 3.0821 4.2883
64 1.9529 3.0257 4.5497
128 1.9751 3.0152 4.3572
256 1.9873 3.0088 4.0936
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to be pointwise bounded and the penalty coefficients are chosen correctly) [17]. This case is not considered in this paper
since we are aiming for the compressible Navier–Stokes equations where the diffusive terms have variable coefficients.
For this type of problem the theory for the compact formulation is not yet satisfactory and work remains to be done.

5. Spectral analysis and convergence to steady-state

When doing flow computations one is often interested in reaching the steady-state solution fast. From (29) and (30) we
can see that we can write the fully coupled scheme as

dv
dt
¼ Hv þ F ð71Þ

where the entire spatial discretization has been collected in the matrix H and F contains the boundary data. There are mainly
two ways of enhancing convergence to steady-state. One is to make a spatial discretization which has negative real parts of
the eigenvalues with as large magnitude as possible. That will optimize the convergence to steady-state for the ODE system
(71) [18–20]. The second is to advance in time with as large time step as possible. For an explicit time integration method,
the time step is limited by the eigenvalue with largest modulus.

The scheme and penalty parameters are independent of the order of accuracy of the difference operators and hence we
can study the spectrum of H for different orders. The first thing to be noticed is that there are two undetermined parameters r
and s coming from the left boundary (40) and the interface (63). Theoretically any choice of these parameters lead to a stable
scheme. With a too large magnitude they will make the problem stiff and a smaller time step is needed. Within a decent
range it is interesting to see how the spectrum of H changes as a function of these parameters.
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s

−5

0

5
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r

4th order. N = M = 16, epsilon = 0.10, k = 1.00

s

Fig. 3. Minimum real part of the eigenvalues of the spatial discretization as a function of the boundary and interface parameters r and s for M = N = 16 grid
points. Note that the surfaces become flatter with higher orders due to the improved convergence.
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In Fig. 3 the minimum real part of the spectrum of H is plotted as a function of r and s for M = N = 16. Since the scheme is
stable all real parts are negative.1

As the mesh is refined the dependence of the boundary and interface parameter disappears and the minimum real part of
the eigenvalues converge to the same value for all choices and all orders of accuracy, see Fig. 4.

To see the convergence of the spectrum we compute the minimum real part of the eigenvalues of the spatial discretiza-
tion for an increasing number of grid points. The boundary and interface parameter have been chosen as r = �0.4 and s = �0.5
for all orders and number of grid points. The choice r = �0.4 makes the penalty coefficients at the left boundary to be of
approximately the same magnitude. All choices of r with a magnitude of order one lead to approximately the same results.
The results are shown in Table 2 and Fig. 5 where we can see that the minimum real part of the spectrum of the discretization
converges for all orders as they should.

The parameter s in (63) is of particular interest. In the figures and tables below we have chosen rM
3 ¼ s0

1 ¼ 0 and hence the
coupling depends only on s. By choosing s = 0, Dirichlet conditions for continuity of temperature are given to the fluid do-
main and Neumann conditions for continuity of heat flux to the solid domain. By choosing s = �1 we get the reversed order.
By choosing s such that no terms are canceled in (44) and (45) we get a mixed type of interface conditions.

As can be seen from Fig. 3 there are variations depending on the choice of r and s for a coarse mesh. Since we are inter-
ested in the properties of the discretization depending on the coupling, we fix r = �0.4 and compute the minimum real part
of the spectrum as a function of s. The result can be seen in Table 3.
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Fig. 4. Minimum real part of the eigenvalues of the spatial discretization as a function of the boundary and interface parameters r and s for M = N = 128 grid
points.

1 Minimum will refer to the minimum modulus of the real part of the spectrum. It is the eigenvalue with negative real part closest to zero which will be of
our interest.

J. Lindström, J. Nordström / Journal of Computational Physics 229 (2010) 5440–5456 5451



Interface procedures for the heat equation have been considered before by e.g. Giles [21], Roe et al. [22] and recently by
Henshaw and Chand [23]. Giles demonstrates a method where giving Dirichlet conditions for continuity of temperature to
the fluid domain and Neumann conditions for continuity of heat flux to the solid domain is necessary for preserving stability,
but that the time step restriction for certain discretizations and diffusion coefficients is more severe than in each of the sub-
domains. Roe et al. utilizes a different discretization and is able to circumvent this restriction by deriving a set of interface
equations from the interface conditions that improve the stability characteristics and also preserve the accuracy of the
scheme. Henshaw and Chand considers many different interface procedures and prove both stability and second order accu-
racy independent of the diffusive properties in contrast to the results in [21]. They also state that more attractive conver-
gence results might be obtained by considering a mixed type of interface conditions.

As can be seen from Table 3 the choice s = 0 maximizes the real part of the spectrum and hence improves the convergence.
It is also clear that the difference between the results for s = 0 and s = �1 are small. We investigated the intermediate values

Table 2
Minimum real part of the spectrum of the spatial discretization.

M = N Minimum real part of the spectrum

2nd-order 3rd-order 4th-order

16 �0.95933 �0.97811 �0.98496
32 �0.97933 �0.98540 �0.98666
64 �0.98510 �0.98681 �0.98701
128 �0.98658 �0.98703 �0.98706
256 �0.98694 �0.98706 �0.98706

5 5.5 6 6.5 7 7.5 8 8.5 9
−0.99

−0.985

−0.98

−0.975

−0.97

−0.965

−0.96

−0.955

−0.95

log2(M + N)

Fig. 5. Convergence of the minimum real part of the discrete spectrum for 2nd- (circle), 3rd- (square) and 4th-order (star) spatial discretization.

Table 3
The value of s which give minimal real part of the spectrum is shown in the upper part. The lower part includes a comparison with the case s = �1.

M = N 2nd-order 3rd-order 4th-order

s min RðkÞ s min RðkÞ s min RðkÞ

16 0.0 �0.97367 0.0 �0.97837 �0.1 �0.98502
32 0.0 �0.98310 0.0 �0.98542 0.0 �0.98667
64 0.0 �0.98600 0.0 �0.98681 0.0 �0.98701
128 0.0 �0.98679 0.0 �0.98703 0.0 �0.98706

16 �1.0 �0.97117 �1.0 �0.97806 �1.0 �0.98495
32 �1.0 �0.98259 �1.0 �0.98540 �1.0 �0.98666
64 �1.0 �0.98589 �1.0 �0.98681 �1.0 �0.98701
128 �1.0 �0.98676 �1.0 �0.98703 �1.0 �0.98706
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as well and not much difference in min RðkÞ was found. From this point of view, the choice s = 0 is preferable. However we
shall see that when regarding the time step, it is not.
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Fig. 6. Maximum absolute value of the eigenvalues of the spatial discretization as a function of the boundary and interface parameters r and s for M = N = 16
grid points.

Table 4
The values of s which gives minimum largest modulo of the spectrum is shown in the upper part. The lower parts includes a comparison with the cases s = 0 and
s = �1.

M = N 2nd-order 3rd-order 4th-order

s max jkj s max jkj s max jkj

16 0.27 264.37212 0.26 499.93406 �0.47 835.66403
32 0.28 1048.74365 0.26 1956.96051 �0.47 3326.02711
64 0.28 4131.04022 0.26 7730.02818 �0.47 13290.63251
128 0.28 16385.84328 0.26 30875.85671 �0.47 53149.05486

16 0.0 506.90795 0.0 947.57621 0.0 1464.10848
32 0.0 2024.77672 0.0 3788.48085 0.0 5848.25739
64 0.0 8096.41699 0.0 15152.37150 0.0 23385.03672
128 0.0 32383.30564 0.0 60608.47526 0.0 93532.47649

16 �1.0 736.69526 �1.0 1427.61237 �1.0 1889.15048
32 �1.0 2941.57122 �1.0 5703.70657 �1.0 7549.01304
64 �1.0 11756.87139 �1.0 22802.26105 �1.0 30181.19951
128 �1.0 47009.65698 �1.0 91184.83169 �1.0 120695.41482
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Regarding the issue of stiffness and the time step we can perform the same procedure as above but instead compute the
maximum modulus of the spectrum as a function of r and s. The results for M = N = 16 grid points are shown in Fig. 6.

Clearly the stiffless is strongly influenced by s related to the interface coupling s but not by r relating to the left boundary
condition. As before we fix r = �0.4 and compute the maximum modulus of the spectrum as a function of s. The result is seen
in Table 4 together with a comparison with the extremal cases s = 0 and s = �1. As can be seen in Table 4 the stiffness can be
reduced by choosing a mixed type of interface condition, and hence bigger time steps can be used. Compared to the extremal
values s = 0 and s = �1 the optimal choices of s allows one to take almost twice as big time step and maintain stability for an
explicit time integration method. This result is discussed in [23] for the heat equation and we can now verify it for this more
general problem.

When performing computations of (1) and (2) on separate domains given standard boundary conditions, it was seen that
the time step restriction for the coupled problem is the same as that in the worst of the subdomain problems when the opti-
mal value of s was used. However, when a non-optimal value of s is used, the time step restriction for the coupled problems
will be more severe than in that of the worst subdomain problems.

6. Two applications

An example of a solution, where the coefficients are given by (70) is given in Fig. 7. We start with zero initial data and at
time t = 0 we let q = 0,u = 0.5 and T ¼ 1 at the left boundary while T = 0 at the right boundary and u = 0 at the interface. The
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Fig. 7. q (solid), u (circle), T (triangle), T (star). A sequence of solutions for different times using M = N = 32 grid points and 3rd-order operators. The last
figure shows the steady-state solution.
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values at the left boundary are transformed into data for the characteristic boundary conditions. We can see how the influ-
ences from the left boundary travel across the domain and reaches the interface. No external data is created for T , T, T x or Tx

but the weak interface conditions (19) and (21) together with the fully coupled formulation (46) make sure that the temper-
ature is continuous across the interface and that the heat fluxes are equal up to the order of the scheme.

To obtain a correct solution, it is not necessary to initialize with correct data. By using the functions a(66) we can initiate
the computation with zero data and investigate whether or not the computed solution converges to the analytic solution
with time. Fig. 8 clearly shows that it indeed does.

7. Summary and conclusions

An incompletely parabolic system of equations is coupled with the heat equation in one space dimension. The energy
method is used to derive well-posed boundary and interface conditions. The equations are discretized using finite differences
on Summation-by-Parts form where the boundary and interface conditions are weakly imposed using the Simultaneous
Approximation Term. The penalty matrices and coefficients are determined such that we can prove that the coupled scheme
is stable.

The interface conditions are derived such that we can study different interface conditions as a function of one parameter.
By looking at the spectrum of the spatial discretization as a function of the interface parameter, it can be seen that there are
only minor differences between the minimum real part of the spectrum for different coupling techniques. However when
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Fig. 8. Computed (star), analytic (solid). A sequence of computed vs. analytic solutions with wrong initial data for different times using M = N = 32 grid
points and 3rd-order operators.
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giving a mixed type of interface condition the stiffness is greatly reduced and an almost twice as big time step can be used
while maintaining stability for an explicit time integration method.

The rate of convergence is verified by the method of manufactured solutions and the result is consistent with the theory
within the SBP framework. The derived numerical schemes are independent of the order of accuracy and higher-order accu-
racy is easily obtained by using difference operators of higher-orders. Two examples where the system is solved using 3rd-
order operators are shown and it can be seen that the correct interface conditions are obtained.
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In this paper we study the heat and advection equation in single and multiple domains.
The equations are discretized using a second order accurate finite difference method on
Summation-By-Parts form with weak boundary and interface conditions. We derive analytic
expressions for the spectrum of the continuous problem and for their corresponding
discretization matrices.
It is shown how the spectrum of the single domain operator is contained in the
multi domain operator spectrum when artificial interfaces are introduced. The interface
treatments are posed as a function of one parameter, and the impact on the spectrum and
discretization error is investigated as a function of this parameter. Finally we briefly discuss
the generalization to higher order accurate schemes.

© 2012 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

When performing large scale computations in scientific computations involving partial differential equations (PDEs),
there is often a need to divide the computational domain into smaller subdomains. This is done either to allow more
flexible geometry handing for structured methods or to obtain sufficient resolution by distributing the computations in the
subdomains on parallel computers. Independently of which PDE (Navier–Stokes, Euler, Maxwell, Schrödinger, wave, . . . ) that
is being solved, one would like to construct the interfaces between the subdomains in such a way that certain properties of
the discretization is preserved, or even improved, for example accuracy, stability, conservation, convergence and stiffness.

Stable and accurate interface treatments are required in many applications, for example fluid–structure interaction [17],
conjugate heat transfer [12,9], computational fluid dynamics [18,10] and computational quantum dynamics [15] to mention
a few. From the mathematical point of view, an interface is purely artificial and has no influence on the solution. However
when introducing interfaces in a computational domain, the numerical scheme is modified and one has to make sure that
these modifications does not destroy the solution.

The focus in this paper is a finite difference method on Summation-By-Parts form together with the Simultaneous Ap-
proximation Term (SAT) for imposing the boundary and interface conditions weakly. The equations we consider are the heat
equation and advection equation in one space dimension.

The SBP and SAT method has been used for many applications in fluid dynamics since it has the benefit of being provable
energy stable when the correct boundary and interface conditions are imposed for the PDE [19,21,24,1,2].

* Corresponding author. Tel.: +46 18 471 6253; faxes: +46 18 523049, +46 18 511925.
E-mail address: jens.berg@it.uu.se (J. Berg).

0168-9274/$36.00 © 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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Here we investigate the details of the diffusion and advection operators by considering the one-dimensional heat and
advection equation on single and multiple domains. The boundary and interface conditions are imposed weakly using the
SAT technique and the equations are discretized using a second order accurate SBP operator. There are SBP operators accu-
rate of order 2, 3, 4 and 5 derived in for example [14,20] and we stress that the stability analysis given in this paper holds
for any order of accuracy. The second order operators was chosen since it allows us to derive analytical results regarding
certain spectral properties of the operators.

The analysis is performed using the Laplace transform method [11,8,7]. Since the SBP and SAT discretization is a method
of lines, time is kept continuous and only space is discretized. Hence the Laplace transform turns the numerical scheme into
a system of ordinary differential equations (ODE) in transformed space. This ODE is an eigenvalue problem and the solution
determines the spectral properties of the spatial discretization.

2. Single domain spectral analysis of the heat equation

In order to compare the effects on the spectrum when introducing an artificial interface we shall begin by decomposing
the heat equation on a single domain both continuously and discretized. This allows us to isolate expressions stemming
from the boundaries only and separate them from the interface part.

2.1. Continuous case

Consider the heat equation on −1 � x � 1,

ut = uxx,

u(x,0) = f (x),

u(−1, t) = g1(t),

u(1, t) = g2(t) (1)

where the notation uξ denotes the partial derivative of u with respect to the variable ξ where ξ is either the space or time
variable x or t respectively. To analyze (1) we introduce the Laplace transform

û = Lu =
∞∫

0

e−st u dt (2)

which is defined for locally integrable functions on [0,∞) where the real part of s has to be sufficiently large [11,8]. The
basic property that we are going to use is that it transforms differentiation with respect to the time variable to multiplication
with the complex number s. Hence a time-dependent PDE in Laplace transformed space is an ordinary differential equation
(ODE) which we can solve. Finding analytically the inverse transformation is in general a very difficult problem but that is
not our interest here.

We shall use the Laplace transform to determine the spectrum of (1). Assume that g1 = g2 = 0 and take the Laplace
transform of (1). The initial condition is omitted since it does not enter in the spectral analysis. We get an ODE in trans-
formed space,

sû = ûxx,

û(−1, s) = 0,

û(1, s) = 0, (3)

which is an eigenvalue problem for the second derivative operator. By the ansatz û = ekx we can determine that the general
solution to (3) is

û = c1e
√

sx + c2e−√
sx. (4)

By applying the boundary conditions we obtain

c1e−√
s + c2e

√
s = 0, (5)

c1e
√

s + c2e−√
s = 0 (6)

which we write in matrix form as[
e−√

s e
√

s

e
√

s e−√
s

]
︸ ︷︷ ︸

E(s)

[
c1

c2

]
=

[
0

0

]
. (7)
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Eq. (7) will have a non-trivial solution when the coefficient matrix E(s) is singular. We hence seek the values of s such that
the determinant is zero. We have

det
(

E(s)
) = −2 sinh(2

√
s ) (8)

which is zero for

s = −π2n2

4
, n ∈N. (9)

This infinite sequence of values is thus the spectrum of (1). Note that s = 0 is not considered a solution since then we have
a double root and û = c1 + c2x. From the boundary conditions we get that û ≡ 0 and hence u ≡ 0, which is trivial.

2.2. Discrete case

To discretize (1) we use a second order accurate finite difference operator on SBP form,

uxx ≈ D2 v (10)

where v = [v0, v1, . . . , v N ]T is the discrete grid function and the mesh is uniform with N + 1 grid points. The exact form of
the operator D2 is, see [14,2],

D2 = P−1(−A + B D) = 1

�x2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0

1 −2 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 1 −2 1

0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where

P = �x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 0 · · · 0

0 1 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 1 0

0 · · · 0 0 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, A = 1

�x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

−1 2 −1 · · · 0

...
. . .

. . .
. . .

...

0 · · · −1 2 −1

0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 · · · 0

0 0 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 0 0

0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, D = 1

�x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 · · · 0 0

− 1
2 0 1

2 · · · 0

...
. . .

. . .
. . .

...

0 0 − 1
2 0 1

2

0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Note that (11) has zeros on the top and bottom row and is hence inconsistent at the boundaries. This does however not
affect the global accuracy because of the SAT implementation of the weak boundary conditions [14,6,23].

The entire scheme for (1) can be written as

vt = D2 v + σ1 P−1 DT e0(v0 − g1) + σ2 P−1 DT eN(v N − g2) (13)

where P is the positive symmetric matrix in (12) which defines a discrete norm by ‖w‖2 = w T P w . The vectors e0,N are
zero vectors except for the first and last position respectively, which is one. The two parameters σ1,2 will be determined
such that the scheme is stable in the P -norm [20,13].

Note that we only discretize in space and keep time continuous. The discrete norm is hence a function of time and the
stability of the scheme will depend upon whether or not we can derive a bounded estimate for the time rate of change of
the discrete norm.
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2.2.1. Stability
We use the energy method to determine the coefficients σ1,2 such that the scheme is stable. The stability of the scheme

ensures that all eigenvalues of the complete difference operator, including the boundary conditions, have non-positive real
parts.

By multiplying (13) by vT P and adding the transpose to itself we obtain

‖v‖2
t = 2(σ1 − 1)v0(D v)0 + 2(σ2 + 1)v N(D v)N − vT (

A + AT )
v. (14)

It is clear that the scheme is stable if we choose

σ1 = 1, σ2 = −1 (15)

since A is symmetric and positive semi-definite which can be seen from (12). Hence A + AT � 0 and the last term in (14)
is dissipative.

2.2.2. Complete eigenspectrum
Consider (13) again with homogeneous boundary conditions. Since we have kept time continuous we can take the

Laplace transform of the entire scheme and after rearranging we get(
sI − D2 − σ1 P−1 DT E0 − σ2 P−1 DT EN

)︸ ︷︷ ︸
M

v̂ = 0 (16)

where I is the N + 1-dimensional identity operator and E0,N are zero matrices except for the (0,0) and (N, N) positions
respectively which is one. To determine the complete eigenspectrum of the discrete operator M we start by considering the
difference scheme for an internal point. The internal scheme is the standard central finite difference scheme and hence

∂

∂t
vi = vi−1 − 2vi + vi+1

�x2
. (17)

By taking the Laplace transform of (17) we obtain a recurrence relation

sv̂ i = v̂ i−1 − 2v̂ i + v̂ i+1

�x2
(18)

for which we can obtain the general solution by the ansatz v̂ i = σκ i . The ansatz yields the second order equation

κ2 − (s̃ + 2)κ + 1 = 0 (19)

with the two solutions

κ+,− = s̃ + 2

2
±

√(
s̃ + 2

2

)2

− 1 (20)

where s̃ = s�x2. Hence the general solution to (18) is

v̂ i = c1κ
i+ + c2κ

i− (21)

where i is a grid point index on the left-hand side and the corresponding power on the right-hand side.
To obtain the eigenspectrum of M we consider the boundary points. The scheme is modified at grid points x0, x1, xN−1

and xN and the corresponding equations are after substituting (15)

(s̃ + 2)v̂0 = 0,

−2v̂0 + (s̃ + 2)v̂1 − v̂2 = 0,

−v̂ N−2 + (s̃ + 2)v̂ N−1 − 2v̂ N = 0,

(s̃ + 2)v̂ N = 0. (22)

If we assume that the ansatz (21) is valid at grid points xi , i = 1, . . . , N − 1 we get by substituting (21) into (22) the square
matrix equation⎡

⎢⎢⎢⎣
s̃ + 2 0 0 0

−2 ((s̃ + 2) − κ+)κ+ ((s̃ + 2) − κ−)κ− 0

0 ((s̃ + 2)κ+ − 1)κN−2+ ((s̃ + 2)κ− − 1)κN−2− −2

0 0 0 s̃ + 2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
E(s,κ)

⎡
⎢⎢⎢⎣

v̂0

c1

c2

v̂ N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦ . (23)
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Eq. (23) will have a non-trivial solution for the values of s̃ which makes E(s, κ) singular. Thus we seek the values of s̃ for
which det(E(s, κ)) = 0. These values of s̃ constitute the spectrum of M [8]. The determinant of E(s, κ) is

det
(

E(s, κ)
) = (s̃ + 2)2(κN− − κN+

)
(24)

and we can see that the spectrum contains the points for which

s̃ = −2, κN+ = κN− . (25)

In the second case we have a binomial equation for the complex number s̃. To solve it we write κ+ = aeiθ and κ− = beiφ in
polar form where a,b = |κ+,−| and φ,ψ = arg(κ+,−). After identifying a,b and φ,ψ we can determine that

s̃ = 2

(
(−1)k cos

(
πk

N

)
− 1

)
, k = 1, . . . , N − 1. (26)

This solution method of binomial equations in complex variables can be found in any standard textbook in complex analysis.
Thus we have found N +1 values of s̃ which gives non-trivial solutions to (23) and hence they constitute the entire spectrum
of M .

Remark 2.1. One has to be careful with double roots. From (20) and (24) a possible solution would be when(
s̃ + 2

2

)2

− 1 = 0 (27)

or equivalently s̃ = −4 or s̃ = 0. These are however false roots. A proof is given in Appendix A. Interesting is though that all
eigenvalues of M are contained between s̃ = −4 and s̃ = 0.

2.2.3. Convergence of eigenvalues
To see how the eigenvalues of the discretization matrix converge to the eigenvalues of the continuous PDE, we let (9) be

denoted by μn . We rescale (26) with �x2 and denote it λ̃k . Since �x = 2
N we can rewrite λ̃k as

λn = N2

2

(
cos

(
πn

N

)
− 1

)
, n = 1, . . . , N − 1 (28)

which generates the same sequence as (26), but it is monotonically decreasing. This allows us to compare μn and λn
elementwise.

By assuming that n < N we can Taylor expand (28) around zero and simplify to get

λn = μn + O

(
n4

N2

)
. (29)

We can see that for n 	 √
N , the eigenvalues are well approximated while for larger values of n, they will start to di-

verge. This is the typical situation. When the resolution is increased, more eigenvalues will be converged but even more
eigenvalues that are not converging will be created.

Remark 2.2. Note that since N ∼ 1/�x, Eq. (29) ensures asymptotically second order convergence of all eigenvalues.

3. Multi domain spectral analysis of the heat equation

In this section we shall use the knowledge obtained in the previous section to determine spectral properties when
an artificial interface has been introduced in the domain. Our goal is to determine how the introduction of an interface
influences the spectrum of both the continuous and discrete equations. Moreover we want to design the interface treatment
in such a way that the resulting difference operator is similar to, or maybe even better than, the single domain operator.

3.1. The continuous case

Consider now two heat equations coupled over an interface at x = 0 with homogeneous boundary conditions

ut = uxx, −1 � x � 0,

vt = vxx, 0 � x � 1,

u(−1, t) = 0,

v(1, t) = 0,
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u(0, t) − v(0, t) = 0,

ux(0, t) − vx(0, t) = 0. (30)

We take the Laplace transform again as before and obtain the general solutions for û and v̂ as

û = c1e
√

sx + c2e−√
sx,

v̂ = c3e
√

sx + c4e−√
sx. (31)

By applying the boundary and interface conditions we get the matrix equation⎡
⎢⎢⎢⎢⎣

e−√
s e

√
s 0 0

1 1 −1 −1

1 −1 −1 1

0 0 e
√

s e−√
s

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E(s)

⎡
⎢⎢⎢⎣

c1

c2

c3

c4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦ (32)

with a non-trivial solution when det(E(s)) = 0. A direct computation of the determinant shows that det(E(s)) = 4 sinh(2
√

s)
and hence the spectrum remains unchanged by the introduction of an interface. This is of course all in order since the
interface is purely artificial. However when we discretize (30) we modify the scheme at the interface and we can expect
that this modification will influence the eigenvalues of the complete difference operator.

3.2. The discrete case

In order to proceed we assume that there are equally many grid points in each subdomain and that the grid spacing is
the same. This means that we can apply the same operators in both domains which will simplify the notation and algebra.

With a slight abuse of notation we now let u and v denote the discrete grid functions and both having N +1 components.
Thus there are in total 2N + 2 grid points in the domain since the interface point occurs twice, and the resolution is twice
as high as in the single domain case.

By using the SBP and SAT technique we can discretize (30) as

ut = D2u + σ1 P−1 DT E0u + σ2 P−1 DT eN(uN − v0) + σ3 P−1eN
(
(Du)N − (D v)0

)
,

vt = D2 v + τ1 P−1 DT EN v + τ2 P−1 DT e0(v0 − uN) + τ3 P−1e0
(
(D v)0 − (Du)N

)
. (33)

The unknown penalty parameters σ1,2,3 and τ1,2,3 has again to be determined for stability.

3.2.1. Stability
To determine the unknown parameters σ1,2,3 and τ1,2,3 we multiply the first equation in (33) with uT P and the second

with v T P . We add the transposes of the resulting expressions to themselves to get

‖u‖2
t = −2u0(Du)0 + 2uN(Du)N − uT (

A + AT )
u

+ 2σ1(Du)0u0 + 2σ2(Du)N(uN − v0) + 2σ3uM
(
(Du)N − (D v)0

)
,

‖v‖2
t = −2v0(D v)0 + 2v N(D v)N − vT (

A + AT )
v

+ 2τ1(D v)N v N + 2τ2(D v)0(v0 − uN) + 2τ3 v0
(
(D v)0 − (Du)N

)
. (34)

By adding both expressions in (34) we can write the result as

‖u‖2
t + ‖v‖2

t = 2(σ1 − 1)u0(Du)0 + 2(τ1 + 1)v N(D v)N

+ qT Hq − uT (
A + AT )

u − vT (
A + AT )

v (35)

where q = [uN , (Du)N , v0, (D v)0]T and

H =

⎡
⎢⎢⎢⎣

0 1 + σ2 + σ3 0 −(τ2 + τ3)

1 + σ2 + σ3 0 −(τ2 + τ3) 0

0 −(σ2 + τ3) 0 −1 + τ2 + τ3

−(σ3 + τ2) 0 −1 + τ2 + τ3 0

⎤
⎥⎥⎥⎦ . (36)

In order to bound (35) we have to choose

σ1 = 1, τ1 = −1 (37)
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as in the single domain case, and we have to choose the rest of the penalty parameters such that H � 0. This is easily
accomplished by noting that the diagonal of H consists of zeros only, and hence by the Gershgorin theorem we need to put
all remaining entires to zero to ensure the semi-definiteness of H . This gives us a one-parameter family of solutions

r ∈R, σ2 = −(1 + r), σ3 = r, τ2 = −r, τ3 = 1 + r. (38)

Thus all penalty parameters have been determined and the scheme is stable.
Worth noting is that the parameter r determines how the equations are coupled. For r = 0 two of the penalty parameters

in (38) disappear and renders the scheme one-sided coupled in the sense that the left domain receives a solution value from
the right domain and gives the value of its gradient to the right domain. For r = −1 the situation is reversed and for other
values of r, the scheme is fully coupled. Note that the scheme is stable for all choices of r. We shall investigate the influence
of the interface parameter in later sections. More details can also be found in [12].

3.2.2. Eigenspectrum
The scheme (33) with a second order accurate difference operator makes eight grid points (two at each boundary and

four at the interface) stray from a standard central finite difference scheme. This is a significant modification and we
can expect that there will be a global impact depending on these modifications. A direct way of investigating this is by
considering the change on the spectrum due to the modifications.

We take the Laplace transform of (33) and consider the difference equations at the modified boundary and interface
points. We get after substituting (37) and (38) into (33) that

(s̃ + 2)û0 = 0,

−2û0 + (s̃ + 2)û1 − û2 = 0,

−ûN−2 + (s̃ + 2)ûN−1 − (2 + r)ûN + (1 + r)v̂0 = 0,

2rûN−1 + (s̃ + 2)ûN − 2(1 + 2r)v̂0 + 2r v̂1 = 0,

−2(1 + r)ûN−1 + 2(1 + 2r)ûN + (s̃ + 2)v̂0 − 2(1 + r)v̂1 = 0,

−rûN − (1 − r)v̂0 + (s̃ + 2)v̂1 − v̂2 = 0,

−v̂ N−2 + (s̃ + 2)v̂ N−1 − 2v̂ N = 0,

(s̃ + 2)v̂ N = 0. (39)

From the internal schemes we have similarly as before that

ûi = c1κ
i+ + c2κ

i−,

v̂ j = c3κ
j
+ + c4κ

j
− (40)

where κ+,− are the same as in (20) and i, j = 1, . . . , N − 1. By substituting (40) into (39) we get the matrix equation
E(r, s, κ)w = 0 for the unknowns

w = [û0, c1, c2, ûN , v̂0, c3, c4, v̂ N ]T (41)

where

E(r, s, κ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃ + 2 0 0 0 0 0 0 0
−2 1 1 0 0 0 0 0
0 e3,2 e3,3 e3,4 e3,5 e3,6 e3,7 0
0 e4,2 e4,3 e4,4 e4,5 e4,6 e4,7 0
0 e5,2 e5,3 e5,4 e5,5 e5,6 e5,7 0
0 e6,2 e6,3 e6,4 e6,5 e6,6 e6,7 0
0 0 0 0 0 κN+ κN− −2
0 0 0 0 0 0 0 s̃ + 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

with coefficients ei, j given by
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Fig. 1. Eigenvalues of the single domain operator with 9 grid points and the multi domain operator with 9 + 9 grid points scaled with �x2. The single
domain operator spectrum is always contained in the multi domain operator spectrum independent of the interface parameter r. There is a triple root at
s̃ = −2.

e3,2 = κN+ , e3,3 = κN− , e3,4 = −(2 + r),

e3,5 = 1 + r, e3,6 = 0, e3,7 = 0,

e4,2 = 2rκN−1+ , e4,3 = 2rκN−1− , e4,4 = s̃ + 2,

e4,5 = −2(1 + 2r), e4,6 = 2rκ+, e4,7 = 2rκ−,

e5,2 = −2(1 + r)κN−1+ , e5,3 = −2(1 + r)κN−1− , e5,4 = 2(1 + 2r),

e5,5 = s̃ + 2, e5,6 = −2(1 + r)κ+, e5,7 = −2(1 + r)κ−,

e6,2 = 0, e6,3 = 0, e6,4 = −r,

e6,5 = −(1 − r), e6,6 = 1, e6,7 = 1. (43)

As before we obtain the spectrum by computing all values of s̃ such that det(E(r, s, κ)) = 0. It is easy to see by expanding
the determinant by the first and last row that

det
(

E(r, s, κ)
) = −(s̃ + 2)2 det

(
Ẽ(r, s, κ)

)
(44)

where Ẽ(r, s, κ) is the inner 6 × 6 matrix. The determinant of Ẽ(r, s, κ) is somewhat more complicated but by expanding it
further and factorizing we get

det
(

E(r, s, κ)
) = (s̃ + 2)

(
κN− − κN+

)
f (r, s, κ). (45)

We can see that the two first factors in (45) are exactly (24). Thus the spectrum from the single domain operator is
contained in the multi domain operator spectrum. This is visualized in Fig. 1. The last factor f (r, s, κ) is given explicitly by

f (r, s, κ) = (
16r2 + 16r + s̃2 + 4s̃ + 8

)(
κN− − κN+

)
+ 2

(
8r3 + 12r2 + 2rs̃ + 8r + s̃ + 2

)(
κN+κ− − κ+κN−

)
+ 2

(
2r2 s̃ − 4r2 + 4rs̃ − 4r + s̃ − 2

)(
κN−1− − κN−1−

)
. (46)

A closed form for the zeros of (46) have not been found. However, we can numerically compute the zeros.

3.3. Influence of the type of coupling

The type of coupling depends on the interface parameter r in (38) and by varying it, the spectral properties are modified.
The interface parameter can be considered as a weight between Dirichlet and Neumann conditions. When r = 0 or r = −1,
some of the terms in (38) are canceled and renders the scheme one-sided coupled in the sense that one domain gives its
value to the other domain and receives the value of the gradient. Since the extremal values are r = −1,0 one might expect
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that something interesting happens when r = − 1
2 , that is when the two equations are coupled symmetrically. The case

r = − 1
2 will be denoted as the symmetric coupling and all other cases as unsymmetric coupling.

By considering the equations that are modified at the interface,

∂

∂t
uN−1 = uN−2 − 2uN−1 + (2 + r)uN − (1 + r)v0

�x2
,

∂

∂t
uN = −2ruN−1 − 2uN + 2(1 + 2r)v0 − 2rv1

�x2
,

∂

∂t
v0 = 2(1 + r)uN−1 − 2(1 + 2r)uN − 2v0 + 2(1 + r)v1

�x2
,

∂

∂t
v1 = ruN + (1 − r)v0 − 2v1 + v2

�x2
, (47)

we can easily see how the difference scheme is modified due to the choice of r.
By taking an exact solution w(x, t) to (30) we can by Taylor expanding (47) determine the accuracy. To simplify the

notation we drop the indices and expand all equations around x j = x∗ . We get

∂

∂t
w(x∗, t) = wxx(x∗, t) + O

(
�x2),

∂

∂t
w(x∗, t) = −2rwxx(x∗, t) + O

(
�x2),

∂

∂t
w(x∗, t) = 2(1 + r)wxx(x∗, t) + O

(
�x2),

∂

∂t
w(x∗, t) = wxx(x∗, t) + O

(
�x2) (48)

for the corresponding equations in (47). We can now easily see that we obtain the second order accurate second deriva-
tive only for r = − 1

2 . Even though some of the above equations correspond to inconsistent approximations of the second
derivative, the global accuracy of the operator remain unchanged [14,13,23].

3.3.1. Stiffness and convergence to steady-state
To see how the stiffness is affected by the interface treatment we plot the largest absolute value of the eigenvalues of the

discretization matrix as a function of r in Fig. 2. We can see that with increasing magnitude of r, the discretization become
more stiff as expected. More unexpected is that the stiffness is slightly reduced below that of the uncoupled equations by
choosing an unsymmetric coupling. This is contrary to the result in [12]. However in that paper a wide operator was used
which have a different set of eigenvalues.

It is beneficial for the rate of convergence to steady-state with a discretization which have its real parts of the spectrum
bounded away from zero as far as possible [22,4,16,3]. In Fig. 3 we show the real part of the spectrum closest to zero as a
function of r.

We have used 33 grid points for the single domain in both Fig. 2 and Fig. 3, hence the coupled domains have 17 + 17
grid points in total. The computation of the rightmost lying eigenvalue in Fig. 3 is resolved and the variation with r is small.
For a coarse mesh the convergence to steady-state can be slightly improved by having an unsymmetric coupling. This is
again contrary to the result in [12].

3.3.2. Error and convergence analysis
We will use the method of manufactured solutions to study the error as a function of the interface parameter r. Any

function v ∈ C2 is a solution to

ut = uxx + F (x, t), −1 � x � 1,

u(x,0) = v(x,0),

u(−1, t) = v(−1, t),

u(1, t) = v(1, t) (49)

where the forcing function F (x, t) has been chosen appropriately. In this particular case we choose

v(x, t) = sin(2πx − t) + sin(t)

4
(50)

which satisfies (49) with homogeneous boundary conditions and

F (x, t) = cos(t) − cos(2πx − t) + π2 sin(2πx − t)

4
. (51)
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Fig. 2. max(abs(λ)) as a function of r. The single domain operator is using 33 grid points and the multi domain operator is using 17 + 17 grid points.

Fig. 3. max(R(λ)) as a function of r. The single domain operator is using 33 grid points and the multi domain operator is using 17 + 17 grid points.

The spatial discretization and stability conditions are the same as before and we use the classical 4th-order Runge–Kutta
time integration scheme to solve a system of the form

∂ψ

∂t
= Mψ + F . (52)

All spatial discretization, including boundary and interface conditions, is included in M and F is the above forcing function
in discrete vector form. Thus we have an analytical solution which we can use to study the errors. In [10] it is stated that
the errors can be reduced depending on the interface coupling for a hyperbolic problem and we will investigate if a similar
effect exist for a parabolic problem.
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Table 1
Error and convergence results using N grid points in each subdomain.

N r = −1 r = 0 r = −1/2

l∞ l2 q2 l∞ l2 q2 l∞ l2 q2

8 0.1932 0.1301 0.1938 0.1302 0.1457 0.1270
16 0.0504 0.0331 1.9742 0.0505 0.0331 1.9745 0.0377 0.0318 1.9979
32 0.0128 0.0083 1.9902 0.0128 0.0083 1.9903 0.0096 0.0079 2.0022
64 0.0032 0.0021 1.9953 0.0032 0.0021 1.9953 0.0024 0.0020 2.0013

128 0.0008 0.0005 1.9978 0.0008 0.0005 1.9978 0.0006 0.0005 2.0008
256 0.0002 0.0001 1.9989 0.0002 0.0001 1.9989 0.0002 0.0001 2.0004

In Table 1 we summarize the result. The solution is taken at time t = π
2 . We show the errors in the l∞ and l2 norms for

different resolutions together with the rate of convergence q2 in the l2-norm for the interesting values of r. We can see that
the errors and order of convergence are only slightly better when using the symmetric coupling.

4. Single domain spectral analysis of the advection equation

We shall perform an analogous analysis for the advection equation to see if similar results hold for the advection opera-
tor.

4.1. Continuous case

Consider the advection equation in one domain,

ut + ux = 0, −1 � x � 1,

u(−1, t) = g(t),

u(x,0) = f (x). (53)

Eq. (53) is significantly different from (1) due to the directionality of the spatial operator. In this case there is one signal
traveling from left to right and hence only one boundary condition is needed at x = −1. To obtain the spectrum we take
the Laplace transform of (53) and proceed as before. We get

sû + ûx = 0 (54)

which has the characteristic equation

κ + s = 0 (55)

and thus the general solution of (54) is

û = ce−sx. (56)

If we apply the boundary condition with g = 0 we get c = 0 and thus û = 0. Hence there is no continuous spectrum of (53)
since there are no values of s such that ces = 0 for c �= 0.

4.2. Discrete case

We discretize (53) using the SBP and SAT technique on a uniform mesh of N + 1 grid points

ut + P−1 Q v = σ P−1(v0 − g)e0 (57)

where P and e0 are as before and

Q = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 · · · 0

−1 0 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 0 1

0 · · · 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, P−1 Q = 1

2�x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 2 0 0 · · · 0

−1 0 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 1 0 −1

0 · · · 0 0 −2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (58)

Note that Q + Q T = diag(−1,0, . . . ,0,1) which is used to select the boundary terms in the energy estimate. By applying
the energy method to (57) with g = 0 we get
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‖v‖2
t = (1 + 2σ)v2

0 − v2
N (59)

which is bounded for σ � − 1
2 and hence the scheme is stable.

To determine the spectrum we Laplace transform (57) (with g = 0) and rewrite as(
sI + P−1 Q − σ P−1 E0

)
v̂ = 0. (60)

From the internal scheme we have

sv̂ i + 1

2�x
(v̂ i+1 − v̂ i−1) = 0 (61)

or equivalently

v̂ i+1 + 2s̃ v̂ i − v̂ i−1 = 0 (62)

with s̃ = s�x. The characteristic equation is κ2 + 2s̃κ − 1 = 0 which has solutions

κ+,− = −s̃ ±
√

s̃2 + 1. (63)

Thus the general solution of (62) is

v̂ i = c1κ
i+ + c2κ

i−. (64)

The first and last equation in (60) are modified and we can use them to write a matrix equation for the unknowns c1,2. The
equations are

(s̃ − 1 − 2σ)v̂0 + v̂1 = 0,

−v N−1 + (s̃ + 1)v̂ N = 0 (65)

and by inserting the general solution (64) into (65) we get the matrix equation E(s, κ)c = 0 where

E(s, κ) =
[

s̃ − 1 − sσ + κ+ s̃ − 1 − sσ + κ−
(s̃ + 1)κN+ − κN−1+ (s̃ + 1)κN− − κN−1−

]
. (66)

The spectrum consists as before of the singular points of E(s, κ). A direct computation of the determinant of E(s, κ) gives
that

det
(

E(s, κ)
) = κN−

(√
s̃2 + 1 − 1 − 2σ

)(
1 +

√
s̃2 + 1

)
+ κN+

(√
s̃2 + 1 + 1 + 2σ

)(
1 −

√
s̃2 + 1

)
. (67)

A closed form expression for the zeros of (67) have not been found. We can however compute the eigenvalues numerically.
We will return to (67) when we consider the spectrum of the coupled problem.

5. Multi domain spectral analysis of the advection equation

We introduce again an artificial interface at x = 0 for the advection equation to study how the spectral properties of the
continuous and discrete operators are modified.

5.1. Continuous case

Consider now

ut + ux = 0, −1 � x � 0,

vt + vx = 0, 0 � x � 1,

u(−1, t) = g(t),

v(0, t) = u(0, t). (68)

The spectrum is again obtained by Laplace transforming (68) and applying the boundary and interface conditions. The
general solutions to the Laplace transformed equations are û = c1e−sx and v̂ = c2e−sx . The boundary and interface conditions
imply that c1 = 0 and c2 = c1, and hence there is no spectrum as expected.
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5.2. Discrete case

One form of the SBP and SAT discretization of (68) is

ut + P−1 Q u = σ P−1(u0 − g)e0,

vt + P−1 Q v = τ P−1(v0 − uN)e0 (69)

where u, v now denote the discrete grid functions. Both domains have equidistant grid spacing and equal number of grid
points to allow for the same difference operators in both domains.

5.2.1. Conservation and stability
When constructing an interface for equations with advection it is important that the scheme is not only stable, but also

conservative [18,1,2]. Let Φ(x) be a smooth testfunction and let φ = [Φ(x0), . . . ,Φ(xN )]T . We multiply both equations in
(69) with φT P respectively. By using the SBP property of Q and adding the two equations we can shift the differentiation
onto φ and get

φT P ut + φT P vt − φ0u0 + φN v N − (Q φ)T u − (Q φ)T v − σφ0(u0 − g) = φi(τ + 1)(v0 − uN) (70)

where we have used φ0 = Φ(−1), φN = Φ(1) and φi = Φ(0) to denote the boundary and interface points. Conservation
requires that the right-hand side of (70) is zero, and hence we need to put τ = −1 to cancel the remaining terms. With
this choice we thus have a conservative interface treatment.

To determine the stability condition we proceed with the energy method as before and multiply both equations in (69)
with uT P and v T P respectively. By assuming that g = 0 we get

‖u‖2
t + ‖v‖2

t = (1 + 2σ)u2
0 + (1 + τ )v2

0 − v2
N − (uN + τ v0)

2 (71)

and we can see that the scheme is stable if we chose σ � − 1
2 and τ � −1. Thus the interface treatment is both stable and

conservative with τ = −1.

5.2.2. Eigenspectrum
We Laplace transform (69) and get the general solution from the internal schemes as before,

ûi = c1κ
i+ + c2κ

i−,

v̂ i = c3κ
i+ + c4κ

i−, (72)

where κ+,− = −s̃ ± √
s̃2 + 1. The scheme at the boundaries and interfaces are different from the internal scheme and their

corresponding equations are

(s̃ − 1 − 2σ)û0 + û1 = 0,

(s̃ + 1)ûN − ûN−1 = 0,

2τ ûN + (s̃ − 1 − 2τ )v̂0 + v̂1 = 0,

(s̃ + 1)v̂ N − v̂ N−1 = 0. (73)

By inserting the general solutions into (73) we get again the matrix equation E(s, κ)c = 0 for the unknowns c = [c1, . . . , c4]T

where

E(s, κ) =

⎡
⎢⎢⎢⎢⎣

s̃ − 1 − 2σ + κ+ s̃ − 1 − 2σ + κ− 0 0

(s̃ + 1)κN+ − κN−1+ (s̃ + 1)κN− − κN−1− 0 0

2τκN+ 2τκN− s̃ − 1 − 2τ + κ+ s̃ − 1 − 2τ + κ−
0 0 (s̃ + 1)κN+ − κN−1+ (s̃ + 1)κN− − κN−1−

⎤
⎥⎥⎥⎥⎦ . (74)

The spectrum is obtained for the singular values of E(s, κ). By expanding the determinant of E(s, κ) and factorizing we get

det
(

E(s, κ)
) = f (σ , s)g(τ , s) (75)

where

f (σ , s) = κN−
(√

s̃2 + 1 − 1 − 2σ
)(

1 +
√

s̃2 + 1
) + κN+

(√
s̃2 + 1 + 1 + 2σ

)(
1 −

√
s̃2 + 1

)
(76)

is exactly (67). The second factor is
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Fig. 4. Spectrum of both the single and multi domain operator, scaled with �x, using 17 grid points for the single domain operator and 17 + 17 for the
multi domain operator.

g(τ , s) = (
s̃2 − 1 − 2τ s̃ − 2τ + s̃κ+ + κ+

)
κN−

− (
s̃2 − 1 − 2τ s̃ − 2τ + s̃κ− + κ−

)
κN+

− (s̃ − 1 − 2τ + κ+)κN−1− + (s̃ − 1 − 2τ + κ−)κN−1. (77)

We can see that the single domain operator spectrum is again contained in the multi domain operator spectrum, which
is visualized in Fig. 4(a) and Fig. 4(b) for σ = − 1

2 and σ = −1 respectively. In the second case, which is fully upwinded, we
can see that the spectrum is identical for the single and multi domain operators since all eigenvalues of the multi domain
operator are double eigenvalues.

5.3. Extending the interface treatment

In the previous section we discussed one of many different schemes for the advection equation coupled over an interface.
The scheme was based on the boundary and interface conditions for the continuous PDE. The interface condition v = u is of
course identical to u = v in the continuous sense, but this is not true in the discrete setting with weak interface conditions.
We can hence modify the interface treatment by adding one additional term corresponding to u = v in the discrete setting.

Consider the scheme (69) again but without the outer boundary term and with one additional term added,

ut + P−1 Q u = γ P−1(uN − v0)eN ,

vt + P−1 Q v = τ P−1(v0 − uN)e0. (78)

The stability and conservation criteria can be found in e.g. [5] so we just state the result here as a proposition,

Proposition 5.1. The interface scheme (78) is stable and conservative for

γ = 1 − θ

2
, τ = −1 + θ

2
, (79)

where θ � 0 is a free parameter.

The energy estimate of (78) is

‖u‖2
t + ‖v‖2

t = −θ
(
u2

N − v2
0

)
(80)

when ignoring the outer boundary terms. Note that θ = 1 gives (69) which is fully upwinded while θ = 0 gives minimal
dissipation. By Taylor expanding (78) it can easily be seen that the formal accuracy is independent of the choice of θ . We
did a convergence study and verified that the solution converges with second order accuracy independently of the choice of
parameters.
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Fig. 5. l∞-error of the single and multi domain operator as a function of θ using 33 and 17 + 17 grid points respectively.

Fig. 6. Stiffness and rate of convergence as a function of θ .

5.3.1. Errors, stiffness and convergence
In the case of advection there are two free parameters compared to the diffusion case where there is only one. One

parameter for the outer boundary −∞ � σ � − 1
2 and one parameter for the interface 0 � θ � ∞. Since we are interested

only in the interface treatment we let σ = −1 be fixed and consider the stiffness, rate of convergence and error as a function
of θ .

In [10] the quasi-one-dimensional Euler equations were used with an interface treatment corresponding to θ = 1 to study
the errors. Their convergence study showed that the errors were small and do not increase with the number of subdomains.
We continue with a more detailed investigation by posing the errors as functions of the interface treatment.

We use the manufactured solution u(x, t) = sin(2π(x − t)) to study the errors as a function of θ . Using this solution
we construct initial and boundary data to use in the error analysis. The maximum error is shown in Fig. 5. For θ � 1, the
maximum errors are indistinguishable to machine precision. Compared to the minimal dissipative case, the maximum error
is approximately 20 percent smaller.

The stiffness and rate of convergence are shown in Fig. 6 where 33 grid points are used for the single domain and
17 + 17 for the multi domain. We can see from Figs. 6(a) and 6(b) that it is possible to maintain and even improve the
stiffness and rate of convergence when θ = 1 which is the fully upwinded scheme.

From Fig. 6(b) we can see that the maximum real part of the spectrum is reduced by approximately a factor seven when
θ = 1, which is when the interface is fully upwinded. We can visualize this effect by performing a steady-state computation
and measure the errors in the steady-state solution.

We consider the initial data given by

f (x) = e−100(x−x0)2
(81)



J. Berg, J. Nordström / Applied Numerical Mathematics 62 (2012) 1620–1638 1635

Table 2
Error and convergence results for 1, 2, 4 and 8 domains.

# domains 1 2 4 8

2/�x l2 q2 l2 q2 l2 q2 l2 q2

32 1.32e−01 1.25e−01 1.09e−01 9.76e−02
64 3.90e−02 1.7556 3.80e−02 1.7194 3.58e−02 1.6015 3.26e−02 1.5819

128 2.77e−03 3.8131 2.76e−03 3.7850 2.66e−03 3.7493 1.06e−03 4.9386
256 6.65e−04 2.0596 6.64e−04 2.0558 5.75e−04 2.2107 4.55e−05 4.5470
512 1.66e−04 2.0055 1.65e−04 2.0041 1.26e−04 2.1852 5.12e−06 3.1510

1024 4.14e−05 2.0014 4.13e−05 2.0007 3.00e−05 2.0748 8.50e−07 2.5900
2048 1.03e−05 2.0003 1.03e−05 2.0000 7.37e−06 2.0237 1.58e−07 2.4291

Table 3
The time at which the l2-norm of the solution is less than 10−16 for 1, 2, 4 and 8 domains with upwinded
interfaces.

# domains 1 2 4 8

t 6021.6 912.0 146.5 28.8

Fig. 7. Spectra of the 1-, 2-, 4- and 8-domain operator scaled with �x for θ = 1. Note that the eigenvalues of the 8-domain operator are clustered.

where x0 = − 1
2 . The disturbance is transported out of the right boundary and the exact steady-state solution is identically

zero. At time t = 2 when the initial disturbance have left the computational domain we measure the errors and rate of
convergence for 1, 2, 4 and 8 domains with θ = 1. The number of grid points in each subdomain is chosen such that the
resolution is the same for all number of subdomains. The results are seen in Table 2. As we can see from Table 2, when
using 8 subdomains, the steady-state errors are significantly smaller compared to the single or two domain case. For high
resolutions the error is two orders of magnitude smaller and the rate of convergence is still higher.

In Table 3 it is shown how long it is needed to compute in time until the l2-norm of the solution is less than 10−16

which is considered to be the steady-state solution. We can see that there is a huge increase in gain to reach steady-state
when more upwinded interfaces are introduced. Note that the time to reach steady-state for one and two domains differ by
almost a factor seven which is what we can expect from Fig. 6(b).

The spectra of all cases is seen in Fig. 7. We can see that the real part of the eigenvalues are shifted further to the left
when more upwinded interfaces are added. Hence the accelerated convergence rate to steady-state [22]. Note that as more
upwinded interfaces are added, the multiplicity of the eigenvalues increase and hence there will be less distinct eigenvalues.

Remark 5.1. Independently of the number of interfaces we can pose the complete scheme as P̃ wt = Q̃ w + F where P̃
is the norm and all differentiation is collected in Q̃ . The minimally dissipative interface treatment with θ = 0 renders Q̃
completely skew-symmetric except at the boundary points.
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Fig. 8. Spectra of the 3rd- and 4th-order accurate diffusion operators with r = − 1
2 .

Fig. 9. Spectra of the 3rd- and 4th-order accurate advection operators with σ = −1.

6. Higher order accurate approximations

The previous analysis was performed on the second order accurate operators since it was possible to derive analytical
results. In this section we briefly show numerical results for the 3rd- and 4th-order accurate SBP operators. Details on the
operators can be found in [14,20].

The stability and conservation criteria is independent of the order of accuracy. The schemes and stability conditions for
the heat and advection equation are thus identical except that the difference operators have been replaced by 3rd- and
4th-order accurate operators.

The corresponding determinants of (42) and (74) for the higher order operators are not possible to compute and factor
analytically. We can however compute the spectrum numerically. In Fig. 8 (diffusion) and Fig. 9 (advection) we show the
analogues of Figs. 1 and 4(b) which shows that a similar factorization appears to exist even in the higher order cases. In
Fig. 8, only a part of the spectrum is shown but the trend is continued throughout the spectrum. In Fig. 9 all eigenvalues of
the multi domain operator are double eigenvalues. In both figures we have used 17 grid points for the single domain and
17 + 17 for the multi domain operators.
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7. Conclusions

7.1. Diffusion

In the single domain case, a closed form expression for all eigenvalues of the discretization matrix, including the bound-
ary conditions, was found. We showed how the eigenvalues of the discretization matrix converged to the eigenvalues of the
continuous equation. For the multiple domain case we showed how the spectrum of the single domain operator is contained
in the multi domain operator spectrum independent of the interface treatment. Numerical experiments indicate that this
inclusion generalizes to higher order accurate operators.

The stiffness and rate of convergence were not significantly effected by the choice of interface treatment. We used
a manufactured solution to study the errors. When the symmetric coupling was used, the maximum error of the multi
domain case reduced to the level of the single domain case. Compared to the unsymmetric coupling, the maximum errors
were reduced by almost 35 percent when the symmetric coupling was used.

7.2. Advection

For the advection equation we showed that the spectrum of the single domain operator is contained in the multi domain
operator spectrum independent of the interface treatment similarly to the diffusion case. A numerical computation of the
spectrum indicated that the result carries over to higher order accurate operators.

The stiffness showed only minor differences depending on the interface treatment. The rate of convergence to steady-
state was significantly improved when adding one upwinded interface. By adding more upwinded interfaces we could
dramatically decrease the error in the steady-state calculation.

We used an exact solution to study the errors as a function of the interface treatment. We showed that it is possible
to bring down the maximum errors to the level of the single domain case by using the upwinded coupling. The maximum
error was about 20 percent smaller when using a fully upwinded coupling compared to the minimal dissipative coupling.

Appendix A. Double roots

When determining the solutions to the recurrence relation from the Laplace transformed scheme in the interior, one has
to be careful with double roots of the characteristic equation. Due to the ansatz, false roots might be introduced and it is
necessary to confirm whether or not these roots belong to the spectrum.

The characteristic equation (19) has double roots for s̃ = −4 and s̃ = 0. The solutions are

κ = −1, κ = 1 (A.1)

respectively. The general solution to the recurrence relation is then

v̂ i = (c1 + c2i)κ i . (A.2)

We assume that the general solution (A.2) is valid for i = 1, . . . , N − 1 and insert into the modified boundary equations to
get the matrix equation E(s, κ)c = 0 for the unknowns c = [v̂0, c1, c2, v̂ N ]T where

E(s, κ) =

⎡
⎢⎢⎢⎣

s̃ + 2 0 0 0

−2 ((s̃ + 2) − κ)κ ((s̃ + 2) − 2κ)κ 0

0 ((s̃ + 2)κ − 1)κN−2 ((s̃ + 2)(N − 1)κ − (N − 2))κN−2 −2

0 0 0 s̃ + 2

⎤
⎥⎥⎥⎦ . (A.3)

By inserting s = −4 and κ = −1 into (A.3) we get det(E(s, κ)) = 4N(−1)N �= 0. By inserting s̃ = 0 and κ = 1 into (A.3) we
get det(E(s, κ)) = 4N �= 0. Hence neither s̃ = −4 nor s̃ = 0 is a part of the spectrum.
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a b s t r a c t

In this paper we prove stability of Robin solid wall boundary conditions for the compress-
ible Navier–Stokes equations. Applications include the no-slip boundary conditions with
prescribed temperature or temperature gradient and the first order slip-flow boundary
conditions. The formulation is uniform and the transitions between different boundary
conditions are done by a change of parameters. We give different sharp energy estimates
depending on the choice of parameters.

The discretization is done using finite differences on Summation-By-Parts form with
weak boundary conditions using the Simultaneous Approximation Term. We verify conver-
gence by the method of manufactured solutions and show computations of flows ranging
from no-slip to almost full slip.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

There has recently been a development of stable boundary [1,2] and interface [3] conditions of a specific form for the
compressible Navier–Stokes equations. This paper extends the result in [2] to more general solid wall boundary conditions
and includes sharp energy estimates. While [2] deals only with the no-slip boundary conditions, we will provide a uniform
formulation which includes the no-slip boundary conditions with prescribed temperature or temperature gradient and slip-
flow boundary conditions or any combination thereof.

The tools that we will use to obtain a uniform formulation together with proof of stability are finite difference approx-
imations on Summation-By-Parts (SBP) form together with the Simultaneous Approximation term. This method has the ben-
efit of being stable by construction for any linear well-posed Cauchy problem [4,5] and the robustness has been shown in a
wide range of applications [5–9].

The first derivative is approximated by ux � Dv = P�1Qv, where v is the discrete grid function, D is the differentiation
matrix, P = PT > 0 defines a norm by kvk2 = vTPv and Q has the SBP property Q + QT = B = [�1,0, . . . ,0,1]T, see [10,11] for details
about these operators.

There exist operators accurate of order 2, 4, 6 and 8 and the stability analysis does not depend on the order of accuracy of
the operators. We will pose our equations on conservative form and hence we do not need an operator approximating the
second derivative. Operators approximating the second derivative with constant coefficients are derived in [11] and have
recently been developed for variable coefficients problems in [12].
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The boundary conditions will be imposed weakly using the Simultaneous Approximation Term (SAT). The SAT term is
added to the right-hand-side of the discretized equations as a penalty term which forces the equation towards the boundary
conditions. Together the SBP and SAT technique provide a tool for creating stable approximations for well-posed initial-
boundary value problems. The relation between weak and strong boundary conditions in terms of accuracy is discussed
in [13].

2. The Navier–Stokes equations

2.1. Continuous case

We consider the two-dimensional Navier–Stokes equations on conservative form

qt þ Fx þ Gy ¼ 0; ð1Þ

where

F ¼ FI � eFV ; G ¼ GI � eGV : ð2Þ
The superscript I denotes the inviscid part of the fluxes and V the viscous part. The components of the solution vector are
q = [q,qu,qv,e]T which are the density, x- and y-directional momentum, respectively and energy. The components of the
fluxes are given by

FI ¼ ½qu; pþ qu2;quv ;uðpþ eÞ�T ;
GI ¼ ½qv ;quv ;pþ qv2; vðpþ eÞ�T ;
FV ¼ ½0; sxx; sxy;usxx þ vsxy � Q x�T ;
GV ¼ ½0; sxy; syy;usyx þ vsyy � Q y�T ;

ð3Þ

where p is the pressure, Pr the Prandtl number, c the ratio of specific heat and Q = �jT is the thermal conductivity times the
temperature according to Fourier’s law. The stress tensors are given by

sxx ¼ 2l @u
@x
þ k

@u
@x
þ @v
@y

� �
; syy ¼ 2l @v

@y
þ k

@u
@x
þ @v
@y

� �
; sxy ¼ syx ¼ l @u

@y
þ @v
@x

� �
; ð4Þ

where l and k are the dynamic and second viscosity, respectively.
All the equations above have been non-dimensionalized as

u ¼ u�

c�1
; v ¼ v�

c�1
; q ¼ q�

q�1
; T ¼ T�

T�1
; p ¼ p�

q�1 c�1
� �2 ; e ¼ e�

q�1 c�1
� �2 ; k ¼ k�

l�1
; l ¼ l�

l�1
; ð5Þ

where the ⁄-superscript denotes a dimensional variable and the 1-subscript the freestream value. In (2) we have e ¼ Ma
Re

where Ma is the Mach-number and Re ¼ q�1u�1L�1
l�

inf ty
is the Reynolds-number with L�1 being a characteristic length scale.

The equations as stated in (1) is a highly non-linear system of equations. The well-posedness and stability conditions that
will be derived in this paper will be based on a linear symmetric formulation.

We freeze the coefficients at some constant state �w ¼ �q; �u; �v ; �p½ �T and linearize as ~w ¼ �wþw0 where w0 = [q,u,v,p]T is a
perturbation around the constant state �w. This yields an equation with constant matrix coefficients. Next we transform to
primitive variables and use the parabolic symmetrizer derived in [14] to get the linear, constant coefficient and symmetric
system

wt þ Awx þ Bwy ¼ e ðC11wx þ C12wyÞx þ ðC21wx þ C22wyÞy
� �

; ð6Þ

where the symmetrized variables are

w ¼
�cffiffifficp �q

q;u;v ; 1
�c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc� 1Þ

p T

" #T

: ð7Þ

All matrix coefficients can be found in [14] but we restate them in Appendix A for convenience.
We will use the energy method to determine the well-posedness of (6). The energy norm in which we will derive our

estimates is defined by

kwk2 ¼
Z

X
wT wdX: ð8Þ
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By multiplying (6) with wT, integrating over X and using the Gauss–Green theorem for higher-dimensional integration by
parts we obtain

kwk2
t ¼ �

I
@X

wTðAw� 2eðC11wx þ C12wyÞ; Bw� 2eðC21wx þ C22wyÞÞ � nds� 2e
Z

X

wx

wy

	 
T C11 C12

C21 C22

	 

wx

wy

	 

dX; ð9Þ

where the last term in (9) can be seen to be dissipative by computing the eigenvalues of the matrix in the quadratic form
[1,2,4].

To simplify we let the domain of interest be the unit square 0 6 x, y 6 1 and we consider only the south boundary at y = 0.
Eq. (9) is then simplified to

kwk2
t ¼

Z 1

0
wTðBw� 2eðC21wx þ C22wyÞÞjy¼0dx� 2e

Z
X

wx

wy

	 
T C11 C12

C21 C22

	 

wx

wy

	 

dX: ð10Þ

The east, west and north boundaries are omitted and we consider the south boundary as a solid wall.
A solid wall requires 3 boundary conditions [2,4]. Since we do not want any penetration through the wall we require that

vðx;0; tÞ ¼ 0: ð11Þ

A Robin boundary condition does not apply to the v-velocity since it is not a well-posed boundary condition for the Euler
equations. When inserting (11) into (10) and considering only the south boundary at y = 0 we get

kwk2
t 6 �2e

Z 1

0

l
�q

uuy þ
cl

�q�c2cðc� 1ÞPr
TTy

� �
dx: ð12Þ

Note that the dissipative term has been omitted and the equality has been replaced by an inequality.
We are allowed to use 2 more boundary conditions. The boundary conditions we consider are the Robin conditions

au� buy ¼ g1; /T � wTy ¼ g2; ð13Þ

where any combination of a, b, / and w are allowed as long as no boundary condition is removed. This allows us to study all
physically relevant boundary conditions in one uniform formulation. In particular we can include the standard no-slip
boundary conditions with prescribed temperature or temperature gradient and the first order slip-flow boundary conditions.

Remark 2.1. Note that if u(x,0, t) – 0 then we need to use that v(x,0, t) = 0 imply vx(x,0, t) = 0 to obtain (12). As we shall see
later, the relation vx(x,0, t) = 0 must be explicitly included in the discrete case in order to obtain stability.

Depending on how we chose a, b, / and w in (13) we obtain different energy estimates. Assume that g1,2 = 0. If we restrict
ourselves to the case where b, w – 0 and insert (13) into (12) we obtain the energy estimate

kwk2
t 6 �2e

Z 1

0

l
�q

a
b

u2 þ cl
�q�c2cðc� 1ÞPr

/
w

T2
� �

dx: ð14Þ

We can see that the energy is bounded if

ab P 0; /w P 0: ð15Þ

We can now let a, / ? 0 and obtain the Neumann boundary conditions which have the energy estimate jjwjj2t 6 0. By
restricting ourselves to the case where a, / – 0 we get the energy estimate

kwk2
t 6 �2e

Z 1

0

l
�q

b
a

u2
y þ

cl
�q�c2cðc� 1ÞPr

w
/

T2
y

� �
dx; ð16Þ

which gives an energy estimate if (15) hold. If we let b, w ? 0 we recover the standard no-slip boundary conditions which
have the energy estimate kwk2

t 6 0. Compared to the Robin boundary conditions (13), the no-slip boundary conditions are
less damping than if we keep a, b, / and w non-zero.

2.2. Discrete case

To extend the SBP and SAT technique to systems in higher dimensions it is convenient to introduce the Kronecker prod-
uct, which is defined for arbitrary matrices A 2 Rm�n and B 2 Rp�q by

A� B ¼
a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

2664
3775: ð17Þ

As a special case of a tensor product, the Kronecker product is bilinear and associative, and one can prove the mixed product
property (A � B)(C � D) = (AC � BD) if the usual matrix products are defined. For inversion and transposing we have

ðA� BÞ�1;T ¼ ðA�1;T � B�1;TÞ; ð18Þ
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if the usual inverse exist. The mixed product property is particularly useful since it allows the operators to operate in each
coordinate direction independently of each other.

Let the domain 0 6 x, y 6 1 be discretized by M + 1 and N + 1 equidistant grid points respectively. We define the following
operators:

Dx ¼ P�1
x Q x; Dy ¼ P�1

y Q y; Q x;y þ Q T
x;y ¼ Bx;y ¼ diagð�1;0; . . . ;0;1Þ; ð19Þ

where Px,y is symmetric and positive definite. In this paper a diagonal Px,y is used but there are more general forms available
[10,11]. The details for the second order case are found in Appendix B.

The extension to the two-dimensional domain is done using the Kronecker product. The following matrices will be used:

Dx ¼ Dx � Iy � I4
� �

Dy ¼ Ix � Dy � I4
� �

Px ¼ Px � Iy � I4
� �

;

Py ¼ Ix � Py � I4
� �

P ¼ Px � Py � I4
� �

Bx ¼ Bx � Iy � I4
� �

;

By ¼ Iy � By � I4
� �

C11 ¼ Ix � Iy � C11
� �

C12 ¼ Ix � Iy � C12
� �

;

C21 ¼ Ix � Iy � C21
� �

C22 ¼ Ix � Iy � C22
� �

E0 ¼ Ix � E0 � I4ð Þ;

ð20Þ

where E0 = diag(1,0, . . . ,0). The solution vector is aligned as w = [w0, . . . ,wM�N]T = [q0, (qu)0, (qv)0,e0, . . . ,qM�N,
(qu)M�N, (qv)M�N,eM�N]T.

With the definitions given in (20) we can discretize (1) as

wt þ DxFþ DyG ¼ 0; ð21Þ

where w, F and G are the discrete grid function and fluxes. In order to analyze (21) we need to use the linear, symmetric
formulation (6). After linearizing, freezing the coefficients and transforming to symmetric variables, we apply the energy
method to (21) by multiplying with wT P and using the SBP properties of the operators. For a thorough derivation, see
[1,4]. The result is

kwk2
t þwT BxPy FI

s � 2eFV
s

� �
þwT ByPx GI

s � 2eGV
s

� �
þ 2e

Dxw

Dyw

" #T
P 0
0 P

" #
C11 C12

C21 C22

" #
Dxw

Dyw

" #
¼ 0; ð22Þ

where the norm is defined by kwk2 ¼ wT Pw and

FI
s ¼ Aw; FV

s ¼ C11wx þ C12wy;

GI
s ¼ Bw; GV

s ¼ C21wx þ C22wy

ð23Þ

with A ¼ ðIx � Iy � AÞ and B ¼ ðIx � Iy � BÞ. The last term in (22) is dissipative and we need to construct a SAT which bounds
the indefinite boundary terms.

To simplify we consider only the terms related to the south boundary at y = 0. Eq. (22) becomes

kwk2
t �wT PxE0 GI

s � 2eGV
s

� �
þ 2e

Dxw

Dyw

" #T
P 0
0 P

" #
C11 C12

C21 C22

" #
Dxw

Dyw

" #
¼ 0: ð24Þ

Denote the last term in (24) by DI and expand the fluxes according to the definitions in (23). Eq. (24) then simplifies to

kwk2
t �wT PxE0Bwþ 2ewT PxE0ðC21wx þ C22wyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BT

þDI ¼ 0: ð25Þ

Based on (25) we will construct a SAT which we add to the right-hand-side of (21) that will bound the indefinite terms and
implement the correct boundary conditions.

Remember that the boundary conditions being imposed are

au� buy ¼ g1; /T � wTy ¼ g2; v ¼ g3; ð26Þ

where g3 will be set to zero at a solid wall. In order to obtain stability we also need to include the discrete version of

vx ¼
@g3

@x
; ð27Þ

which does not automatically follow from (26) as it does in the continuous case.
Due to the different forms of the boundary conditions we split the SAT into 5 different terms. One term for the inviscid

part and one additional term for each condition in (26) and (27). The SAT we will use is

S ¼ P�1
y E0Rðw� gIÞ þ er2P�1

y E0ðaH2w� bDyH2w� g1Þ þ er3P�1
y E0 H3w� g3

� �
þ eP�1

y E0H Dxw� @g3

@x

� �
þ er4P�1

y E0 /H4w� wDyH4w� g2

� �
; ð28Þ
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where Hi ¼ Ix � Iy � Hi
� �

and Hi are 4 � 4 matrices that have the only non-zero element 1 at the (i, i) position on the diagonal.
We have R ¼ Ix � Iy � R

� �
where R is an undetermined 4 � 4 matrix that will be determined for stability. H ¼ Ix � Iy �H

� �
where H is a 4 � 4 penalty matrix that acts on v only and hence has the structure

H ¼

0 0 h1 0
0 0 h2 0
0 0 h3 0
0 0 h4 0

26664
37775: ð29Þ

Both R and H will be determined for stability.
The first row in (28) is used to bound the inviscid part and the three last rows are scaled with e and enforces each of the

boundary conditions in (26) and (27). This construction will ensure that the solution converges to that of the Euler equations
as e ? 0. The Robin boundary conditions does not apply to the Euler equations. Hence as e ? 0, the viscous terms mush van-
ish and leave v = 0 as the only boundary condition for the Euler equations at a solid wall.

By considering zero boundary data and carrying (28) through the derivations in the energy estimate it will appear on the
right-hand-side of (24) as

2wT PS ¼ 2wT PxE0Rwþ 2er2wT PxE0 aH2w� bDyH2w
� �

þ 2er3wT PxE0H3wþ 2ePxE0DxHw

þ 2er4wT PxE0 /H4w� wDyH4w
� �

: ð30Þ

By moving all terms to the right hand side we get

kwk2
t ¼ BTþ SAT� DI ð31Þ

and we have to choose the coefficients in (28) such that kwk2
t 6 0. In order to proceed we split the BT and SAT into inviscid

and viscous parts respectively.
By considering only the inviscid terms we have

kwk2
t ¼ wT PxE0Bwþ 2wT PxE0Rw ð32Þ
¼ wT PxE0ðBþ 2RÞw ð33Þ

and we have to choose R such that Bþ 2R 6 0. Since the Kronecker product preserves positive semi-definiteness it is suffi-
cient to determine the 4 � 4 matrix R such that

Bþ 2R 6 0: ð34Þ

This is easily accomplished by diagonalizing B = XKXT and rewriting (34) as

Kþ þK� þ 2Rc 6 0; ð35Þ

where K+,� holds the positive and non-positive eigenvalues of B respectively and Rc = XTRX. We have Kþ ¼ diagð0;0; �c;0Þ and
hence we construct Rc = diag(0,0,r,0) with r 6 � �c

2. By transforming back we get

R ¼ XRcXT ¼ r
2c

1 0
ffiffifficp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðc� 1Þ
p

0 0 0 0ffiffifficp 0 c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc� 1Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc� 1

p
Þ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc� 1Þ

p
c� 1

266664
377775: ð36Þ

With R given by (36) the inviscid boundary terms are bounded and implements the wall normal velocity boundary condition
for the Euler equations.

Remark 2.2. The transformation from conservative to primitive to symmetric to characteristic variables and back is used
only for the purpose of analysis. In a code the transformation from conservative to characteristic variables and back can be
done directly by following the transformations given in [15].

By considering only the viscous terms we have

kwk2
t ¼ �2ewT PxE0 DxC21wþ DyC22w

� �
þ 2er2wT PxE0 aH2w� bDyH2w

� �
þ 2er3wT PxE0 H3w

� �
þ 2ePxE0DxHw

þ 2er4wT PxE0 /H4w� wDyH4w
� �

� DI; ð37Þ

which can be written as a quadratic form

kwk2
t ¼ �eWT P0M0W � DI; ð38Þ
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where

W ¼
w

Dxw

Dyw

264
375; P0 ¼

PxE0 0 0
0 PxE0 0
0 0 PxE0

264
375; M0 ¼

�m1 �m2 �m3

�mT
2 0 0

�m3 0 0

264
375; ð39Þ

where �m3 and M0 are symmetric and

�m1 ¼ �2ðIx � Iy � r2aH2 þ r3H3 þ r4/H4Þ;
�m2 ¼ ðIx � Iy � C21 �HÞ;
�m3 ¼ ðIx � Iy � C22 þ r2bH2 þ r4wH4Þ:

ð40Þ

In order to stabilize the viscous terms we need to choose our coefficients r2,3,4 and H such that M0 P 0. Note that only the
positive semi-definiteness of M0 is required since P0 is positive semi-definite and commutes with M0. Hence if M0 is positive
semi-definite, so is the product P0M0.

Unfortunately though, there is no choice of r2,3,4 and H such that �m1 ¼ �m2 ¼ �m3 ¼ 0 which would give M0 ¼ 0. Hence in
the current form we will always end up with an indefinite M0.

To remedy this fact we can use a part of the dissipation term DI in (38),

DI ¼ 2e
Dxw

Dyw

" #T
P 0
0 P

" #
C11 C12

C21 C22

" #
Dxw

Dyw

" #
: ð41Þ

The matrix P can be rewritten as

P ¼ Px � Py � I4
� �

¼ Px � ePy þ rE0 � I4

� �
¼ Px � ePy � I4

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}eP

þrPxE0; ð42Þ

where r is small enough such that Py(1,1) � r P 0 [16,17]. If we choose r such that strict inequality holds, the remainder eP is
still a full norm. Note that r is proportional to Dy. The dissipation term can thus be rewritten as

DI ¼ 2e
Dxw

Dyw

" #T eP 0
0 eP

" #
C11 C12

C21 C22

" #
Dxw

Dyw

" #
þ 2er

Dxw

Dyw

" #T
PxE0 0

0 PxE0

" #
C11 C12

C21 C22

" #
Dxw

Dyw

" #
: ð43Þ

The second term in (43) can be used to fill in the empty 2 � 2 bottom block in M0 to obtain

M ¼
�m1 �m2 �m3

�mT
2 2rC11 2rC12

�m3 2rC21 2rC22

264
375: ð44Þ

To determine positive semi-definiteness of M it is sufficient to only consider the reduced matrix

M ¼
�2ðr2aH2 þ r3H3 þ r4/H4Þ C21 �H C22 þ r2bH2 þ r4wH4

C21 �HT 2rC11 2rC12

C22 þ r2bH2 þ r4wH4 2rC21 2rC22

264
375; ð45Þ

where we have removed the Kronecker products. This can be done since the Kronecker product is permutation similar, i.e.
there exist a permutation matrix Y such that for arbitrary square matrices A and B we have A � B = YT(B � A)Y. Hence we can
rewrite (38) as

kwk2
t ¼ �eðYWÞTðM � P0ÞYW �fDI; ð46Þ

where P0 = Px � E0 is positive semi-definite.
In order to proceed we chose

H ¼

0 0 0 0
0 0 kþl

2�q 0

0 0 0 0
0 0 0 0

26664
37775: ð47Þ

The matrix M in (45) is of size 12 � 12 but with the 1st, 5th and 9th row and column being zero. We can hence remove these
rows and columns and condense (45) into the 9 � 9 matrix

eM ¼ �2 r2aeH2 þ r3
eH3 þ r4/eH4

� � eC21 � ~H eC22 þ r2beH2 þ r4weH4eC21 � ~HT 2reC 11 2reC12eC22 þ r2aeH2 þ r4weH4 2reC 21 2reC22

2664
3775: ð48Þ
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By defining the matriceseA ¼ r2aeH2 þ r3
eH3 þ r4/eH4;eB ¼ eC22 þ r2beH2 þ r4weH4;

eC ¼ eC11
eC12eC21
eC22

" #
;

eJ ¼ eC21 � ~H eBh i
;

ð49Þ

we can rewrite (48) as

eM ¼ �2eA eJeJT 2reC
" #

; ð50Þ

which can be rotated into block-diagonal form. The rotation matrix is defined by

eS ¼ I3 � 1
2r
eJ eC�1

06�3 I6

" #
; ð51Þ

where 0p�q is a zero matrix of size indicated by the subscript. Note that eC�1 is well-defined since we have removed the zero
rows and columns. Using (51) we can rotate (50) by

eS eMeST ¼
�2eA � 1

2r
eJ eC�1eJT 03�6

06�3 2reC
" #

ð52Þ

and it is clear that a sufficient condition for positive semi-definiteness is that the Schur complement of 2reC in eM satisfies

Q ¼ �2eA � 1
2r
eJ eC�1eJT P 0: ð53Þ

Eq. (53) leads to the main result of this paper which is

Theorem 2.3. The scheme for the compressible Navier–Stokes equations

wt þ DxFþ DyG ¼ S ð54Þ

with Robin boundary conditions given in (26) and (27), where S is given by (28), can be made stable for all choices of a, b, / and w
using (36) and (47) and appropriate choices of r2,3,4.

Proof. The inviscid part that implements the wall normal velocity boundary condition for the Euler equations is bounded
using (36). Using (47), the matrix Q in (53) is a 3 � 3 diagonal matrix

Q ¼
k1ðr2Þ 0 0

0 k2ðr3Þ 0
0 0 k3ðr4Þ

264
375; ð55Þ

where the diagonal entries are given by

k1ðr2Þ ¼ �2r2a�
2lðlþ r2b�qÞ2

rðkþ 3lÞðl� kÞ�q ;

k2ðr3Þ ¼ �2r3 �
1
2

kþ 2l
r�q

;

k3ðr4Þ ¼ �2r4/�
1
2
ðclþ r4wPr�qÞ2

rclPr�q
:

ð56Þ

For any choice of a, b, / and w such that no boundary condition is removed and (15) holds, it is possible to determine r2,3,4

such that k1,2,3 P 0. The actual values of r2,3,4 are determined once the choices of a, b, / and w has been made. h

The standard no-slip boundary conditions with prescribed temperature

u ¼ 0; v ¼ 0; T ¼ Tw; ð57Þ

where Tw is the wall temperature follows as a corollary.
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Corollary 2.4. The standard no-slip boundary conditions with prescribed temperature given by

u ¼ 0; v ¼ 0; T ¼ Tw ð58Þ

are stable using (36) and (47) and

r2 6 �
l3

rðkþ 3lÞðl� kÞ�q ;

r3 6 �
1
4

kþ 2l
r�q

;

r4 6 �
1
4r

cl
Pr�q

:

ð59Þ

Proof. The no-slip boundary conditions with prescribed temperature, which are thoroughly discussed in [2], are obtained by
putting

a ¼ 1; b ¼ 0; / ¼ 1; w ¼ 0; ð60Þ

in which case (56) reduces to

k1ðr2Þ ¼ �2r2 �
2l3

rðkþ 3lÞðk� lÞ�q ;

k2ðr3Þ ¼ �2r3 �
1
2

kþ 2l
r�q

;

k3ðr4Þ ¼ �2r4 �
1
2

cl
rPr�q

:

ð61Þ

By demanding

ki P 0; i ¼ 1;2;3; ð62Þ

we obtain (59). h

Note that the estimates (59) are sharp since there are no approximations or embeddings involved in the derivation of (53)
as in contrast to the result in [2]. The results in [2] are obtained in this setting by having

H ¼ 04�4 ð63Þ

and taking

r1;2;3 ¼ r 6 � 1
4r

kmax; ð64Þ

where kmax is the maximum eigenvalue of eJeC�1eJT . Since the system becomes stiffer with increasing magnitude of the coef-
ficients it is desirable with sharp estimates to minimize the magnitudes. If we compare (59) and (64) we get

r2

r
¼ 4l2Pr

cðkþ 3lÞðl� kÞ ;

r3

r
¼ kþ 2lð ÞPr

cl
;

r4

r
¼ 1:

ð65Þ

With some reasonable numerical values, q = 1, c = 1.4, Pr = 0.72, l = 1 and k ¼ � 2
3 l, the ratios become

r2

r
� 0:53;

r3

r
� 0:69;

r4

r
¼ 1; ð66Þ

which is an improvement for the velocity components.
The proof of stability using (63) and (64) does not extend to the case where b – 0 in which case H – 04�4 is required.
For the adiabatic solid wall boundary conditions we have

Corollary 2.5. The adiabatic boundary conditions

u ¼ 0; v ¼ 0; Ty ¼ 0; ð67Þ

are stable using (36) and (47) and
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r2 6 �
l3

rðkþ 3lÞðl� kÞ�q ;

r3 6 �
1
4

kþ 2l
r�q

;

r4 ¼ �
cl
Pr�q

:

ð68Þ

Proof. The adiabatic boundary conditions are obtained by having

a ¼ 1; b ¼ 0; / ¼ 0; w ¼ 1; ð69Þ

in which case (56) reduces to

k1ðr2Þ ¼ �2r2 �
2l3

rðkþ 3lÞðk� lÞ�q ;

k2ðr3Þ ¼ �2r3 �
1
2

kþ 2l
r�q

;

k3ðr4Þ ¼ �
1
2
ðclþ r4Pr�qÞ2

rclPr�q
:

ð70Þ

By demanding

ki P 0; i ¼ 1;2;3; ð71Þ

we obtain (68). h

Remember that r is proportional to Dy. As the mesh is refined, the penalty coefficients will increase in magnitude and
make the discretization stiffer. If b, w – 0 we can cancel the 1/r dependence in r2,4 by choosing

r2 ¼ �
1
b

l
�q
; r4 ¼ �

1
w

cl
Pr�q

; ð72Þ

in which case (56) reduces to

k1 ¼
2l
�q

a
b
;

k2ðr3Þ ¼ �2r3 �
1
2

kþ 2l
r�q

;

k3 ¼
2cl
Pr�q

/
w
:

ð73Þ

It is easy to see from (73) that the continuous well-posedness conditions (15) are required in order for k1,3 P 0. The 1/r
dependence in r3 is not possible to remove unless a different form of the SAT is used.

Remark 2.6. For the north boundary at y = 1, the conditions in Theorem 2.3 and its corollaries apply without modifications.
However, the Robin boundary conditions (26) are replaced by

auþ buy ¼ g1; /T þ wTy ¼ g2; v ¼ g3: ð74Þ

3. Numerical results

The stability theory developed in the previous section does not depend on the order of accuracy of the numerical scheme.
In order to verify that the scheme attains its design order we will use the method of manufactured solutions.

Any sufficiently smooth function H(x,y, t) is a solution to the modified Navier–Stokes equations

qt þ Fx þ Gy ¼ Rðx; y; tÞ; ð75Þ

where the forcing function R(x,y, t) has to be appropriately chosen depending on H(x,y, t). By the principle of Duhamel [18],
the inhomogeneous Eq. (75) is well-posed if the homogeneous Eq. (1) is [18]. The boundary conditions remain unchanged
and we can use the manufactured solution H(x,y, t) to create the initial and boundary data. Thus we have an analytic solution
to (75) which can be used to test the order of accuracy of the computational scheme.
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In this particular case we specify

qðx; y; tÞ ¼ e�mðsinðnpx�tÞÞ2�mðcosðnpy�tÞÞ2 ;

uðx; y; tÞ ¼ cosðnpðxþ yÞ � tÞ;
vðx; y; tÞ ¼ sinðnpðxþ yÞ � tÞ;

pðx; y; tÞ ¼ e�mðsinðnpðx�yÞ�tÞÞ2 ;

ð76Þ

where m and n can be used to tune the amplitude and frequency of the solution. In this case we have chosen m = n = 0.1. Using
(76) we specify H(x,y, t) as

Hðx; y; tÞ ¼

q
qu

qv
e

26664
37775; e ¼ p

c� 1
þ 1

2
qðu2 þ v2Þ; ð77Þ

where c = 1.4.
The scheme for (75) is

wt þ DxFþ DyG ¼ Rðx; y; tÞ þ S ð78Þ
and in order to obtain a higher order accurate scheme, the difference operators Dx;y are simply replaced with operators of the
desired order of accuracy. The penalty coefficients in Theorem 2.3 remain unchanged. The forcing function R(x,y, t) is too te-
dious to write in text but can be computed using a symbolic software such as Maple�.

The scheme (78) was implemented using SBP operators of order 2, 4 and 6 which gives a global accuracy of 2, 3 and 4
[10,19]. The result can be seen in Table 1. The order of accuracy is independent of the choices of a, b, / and w and in Table 1
the no-slip with prescribed temperature, using a = 1, b = 0, / = 1 and w = 0, is seen.

4. Applications

An application of the Robin boundary condition is the slip-flow boundary conditions used for moderate Knudsen numbers
(Kn) in micro fluid flows. The slip-flow boundary conditions extends the use of the Navier–Stokes equations to the slip-flow
regime where 10�3

6 Kn 6 10�1 [20].
Computations in the slip-flow regime corresponds to having a = 1, / = 1, w = 0 and b = Kn which gives a first order slip-

flow boundary condition. Stability is shown in

Corollary 4.1. The first order slip-flow boundary conditions

u ¼ ðKnÞuy; v ¼ 0; T ¼ Tw ð79Þ
are stable using (36), (47) and

r2 ¼ �
l
ðKnÞ�q ;

r3 6 �
1
4

kþ 2l
r�q

;

r4 6 �
1
4r

cl
Pr�q

:

ð80Þ

Table 1
Order of accuracy.

# Grid points 32 � 32 64 � 64 128 � 128 256 � 256

2nd-order
q 1.5034 1.7651 1.9666 1.9752
qu 1.8596 2.0101 2.0594 2.0402
qv 1.8540 2.0216 2.0643 2.0163
e 1.4702 1.8064 2.0253 1.9725

4th-order
q 2.1722 2.3449 2.7873 2.7933
qu 2.5558 2.6331 2.7796 2.6916
qv 2.5409 2.5925 2.8033 2.7474
e 2.1944 2.4076 2.7627 2.7141

6th-order
q 3.4865 3.6814 3.8377 3.8038
qu 3.7509 3.7349 3.9500 3.9811
qv 3.6202 3.8639 4.0055 4.0174
e 3.4023 4.0812 4.1063 3.9139
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Proof. The slip-flow boundary conditions are obtained by

a ¼ 1; b ¼ Kn; / ¼ 1; w ¼ 0; ð81Þ

in which case (56) reduces to

k1ðr2Þ ¼ �2r2 �
2lðlþ r2ðKnÞ�qÞ2

rðkþ 3lÞðk� lÞ�q ;

k2ðr3Þ ¼ �2r3 �
1
2

kþ 2l
r�q

;

k3ðr4Þ ¼ �2r4 �
1
2

cl
rPr�q

:

ð82Þ

By demanding

ki P 0; i ¼ 1;2;3; ð83Þ

we obtain (80). h
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Fig. 1. b = 0.0, corresponding to no-slip.
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Fig. 2. b = 0.01, corresponding to moderate slip.
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Figs. 1–4 shows the flow field from no-slip (b = 0) to almost full slip (b = 1). In the computations we have used the domain
0 6 x 6 5, 0 6 y 6 1 with 512 � 128 grid points. The Mach number is 0.5 and the Reynolds number is 100. All scales are nor-
malized with respect to the no-slip case.

The inflow and outflow boundary conditions are implemented as described in [1] which means that there is a severe mis-
match between the boundary conditions and the boundary data at the corners. However because of the weak boundary
treatment the computations remain stable.

5. Summary and conclusions

We have proved stability for Robin solid wall boundary conditions for the compressible Navier–Stokes equations using a
finite difference method on Summation-By-Parts (SBP) form with weak boundary conditions using the Simultaneous
Approximation Term (SAT).

The formulation of the SAT allows for easy change between common boundary conditions such as the no-slip with pre-
scribed temperature or temperature gradient and slip-flow or any combination thereof.

The energy estimates were derived without using approximations or embeddings which yields sharp estimates in con-
trast to previous results.
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Fig. 3. b = 0.1, corresponding to large slip.
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Fig. 4. b = 1.0, corresponding to almost full slip.
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The accuracy of the numerical scheme was tested using a manufactured solution. The computational scheme was verified
to attain 2nd-, 3rd- and 4th-order of accuracy which are the design orders of the SBP scheme.

We did computations of flows in a rectangular domain when the solid wall boundary conditions were changed from no-
slip to substantial slip by a simple variation of one parameter.
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Appendix A. Matrix coefficients

The matrix coefficients in (6) are given by

A ¼

�u �cffiffi
c
p 0 0

�cffiffi
c
p �u 0 �c

ffiffiffiffiffiffi
c�1
c

q
0 0 �u 0

0 �c
ffiffiffiffiffiffi
c�1
c

q
0 �u

2666664

3777775; B ¼

�v 0 �cffiffi
c
p 0

0 �v 0 0
�cffiffi
c
p 0 �v �c

ffiffiffiffiffiffi
c�1
c

q
0 0 �c

ffiffiffiffiffiffi
c�1
c

q
�v

26666664

37777775;

C11 ¼

0 0 0 0
0 kþ2l

�q 0 0

0 0 l
�q 0

0 0 0 cl
Pr�q

266664
377775; C22 ¼

0 0 0 0
0 l

�q 0 0

0 0 kþ2l
�q 0

0 0 0 cl
Pr�q

2666664

3777775;

C12 ¼ C21 ¼

0 0 0 0
0 0 kþl

2�q 0

0 kþl
2�q 0 0

0 0 0 0

266664
377775:

ðA:1Þ

Appendix B. SBP operators

In the second order case the SBP operators are explicitly given by

Dn ¼ P�1
n Q n; ðB:1Þ

where n is either x or y and

Pn ¼ 1
Dn

1
2 0 0 . . . 0

0 1 0 . . . 0

..

. ..
. . .

. ..
. ..

.

0 . . . 0 1 0

0 . . . 0 0 1
2

266666664

377777775; Q n ¼ 1
2

�1 1 0 0 . . . 0 0

�1 0 1 0 . . . 0 0

0 �1 0 1 0 . . . 0

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0 . . . 0 �1 0 1 0

0 . . . 0 0 �1 0 1

0 . . . 0 0 0 �1 1

266666666666664

377777777777775
;

Dn ¼ 1
2Dn

�2 2 0 0 . . . 0 0

�1 0 1 0 . . . 0 0

0 �1 0 1 0 . . . 0

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0 . . . 0 �1 0 1 0

0 . . . 0 0 �1 0 1

0 . . . 0 0 0 �2 2

266666666666664

377777777777775
:

ðB:2Þ

For SBP operators of higher order accuracy we refer the reader to [10,11].
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1. Introduction

Heat transfer is an important factor in many fluid dynamics applications. Flows
are often confined within some material with heat transfer properties. Whenever
there is a temperature difference between the fluid and the confining solid, heat will
be transferred and change the flow properties in a non-trivial way. This interaction
and heat exchange is referred to as the conjugate heat transfer problem [1, 2, 3, 4].
Examples of application areas include cooling of turbine blades and nuclear reactors,
atmospheric reentry of spacecrafts and gas propulsion micro thrusters for precise
satellite navigation.

Conjugate heat transfer problems have been computed using a variety of methods.
For stationary problems, methods include the finite volume method [5], the finite
element method [6, 7] and the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) [8]. For unsteady problems, overlapping grids [3] and finite difference
methods [1] have been used. The interface conditions have been imposed either
strongly, weakly or by a mixture of both.

There are many ways in which conjugate heat transfer problems can be analyzed
and computed. Giles [1] considered the simplified case of two coupled heat equations
and performed a stability analysis which put restrictions on how to chose the interface
conditions. Henshaw and Chand [3] performed numerical simulations of incompress-
ible, temperature dependent fluids with the Boussinesq approximation coupled with
the heat equation. The stability analysis was restricted to the case of two coupled
heat equations. Stability and second order accuracy for the coupled model problem
was proven, together with a numerical accuracy study of the full coupled problem
showing second order accuracy, as expected. In [7] a steady, compressible fluid with
heat transfer properties is considered and it is stated that accuracy is a key element
in computational heat transfer. The authors develop an adaptive strategy with error
estimators, showing at most second order accuracy.

When reviewing the literature on conjugate heat transfer problems, one can con-
clude that for incompressible problems, the heat transfer part is either modeled by
the heat equation, or by using the incompressible Navier-Stokes equations also in
the solid region. The latter strategy is possible since the energy equation in the in-
compressible Navier-Stokes equations decouples from the continuity- and momentum
equations. In the compressible flow case, the situation is different and more compli-
cated. Two major differences exist. Firstly, the energy equation does not decouple
from the continuity- and momentum equations. Secondly, for compressible fluids,
steady problems are mostly considered since the stability of the coupling becomes
an issue.

2



The numerical methodology presented in this paper is based on a finite differ-
ence on Summation-By-Parts (SBP) form with the Simultaneous Approximation
Term (SAT) for imposing the boundary and interface conditions weakly. The SBP-
SAT method has been used for a variety of problems and has proven to be robust
[9, 10, 11, 12, 13, 14, 15]. The SBP finite difference operators were originally con-
structed by Kreiss and Schearer [16] with the purpose of constructing an energy
stable finite difference method [17]. Together with the weak imposition of boundary
[18] and interface [19] conditions, the SBP-SAT provides a method for constructing
energy stable schemes for well-posed initial-boundary value problems [20]. There
are SBP operators based on diagonal norms for the first [21] and second [22, 23]
derivative accurate of order 2, 3, 4 and 5, and the stability analysis we will present
is independent of the order of accuracy.

From an implementational point of view, coupling the compressible Navier-Stokes
equations to the heat equation is complicated as different solvers are required in the
fluid and solid domains. With two different solvers, two different codes, are required
and data has to be transferred between them by using possibly a third code [24].

A less complicated method would be to only use the Navier-Stokes equations
everywhere and modify an already existing multi-block coupling [12] such that heat
is transferred between the fluid and solid domains. In the blocks marked as solids,
it is possible to construct initial and boundary conditions such that the velocities
and density gradients are small. The difference between the energy component of
the compressible Navier-Stokes equations and the heat equation should then also be
small.

We will show how to scale and choose the coefficients of the energy part of the
Navier-Stokes equations, such that it is as similar to the heat equation as possible.
Numerical simulations of heat transfer in solids are performed to show the similari-
ties, and differences, of the temperature distributions obtained by the Navier-Stokes
equations and the heat equation. We will not overwrite, or strongly force, the veloc-
ities in the Navier-Stokes equations to zero in each time integration stage since that
would ruin the stability of the numerical method that we use. Instead, the velocities
will be enforced weakly at the boundaries and interfaces only.

In the previous literature, a mathematical investigation of the interface conditions
in terms of well-posedness of the continuous equations, stability of the resulting
numerical scheme and high order accuracy has not been performed to our knowledge.
We shall in this paper hence focus on the mathematical treatment of the fluid-solid
interface rather than computing physically relevant scenarios.

3



2. The compressible Navier-Stokes equations

The two-dimensional compressible Navier-Stokes equations in dimensional, con-
servative form are

qt + Fx +Gy = 0 (1)

where the conserved variables, q = [ρ, ρu, ρv, e]T , are the density, x- and y-directional
momentum and energy, respectively. The energy is given by

e = cV ρT +
1

2
ρ(u2 + v2), (2)

where cV is the specific heat capacity under constant volume and T is the tempera-
ture. Furthermore, we have F = F I − F V and G = GI −GV , where the superscript
I denotes the inviscid part of the flux and V the viscous part. The components of
the flux vectors are given by

F I = [ρu, p+ ρu2, ρuv, u(p+ e)]T ,

GI = [ρv, ρuv, p+ ρv2, v(p+ e)]T ,

F V = [0, τxx, τxy, uτxx + vτxy + κTx]
T ,

GV = [0, τxy, τyy, uτyx + vτyy + κTy]
T ,

(3)

where we have the pressure p and the thermal conductivity coefficient κ. The stress
tensor is given by

τxx = 2µ
∂u

∂x
+λ

(
∂u

∂x
+
∂v

∂y

)
, τyy = 2µ

∂v

∂y
+λ

(
∂u

∂x
+
∂v

∂y

)
, τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

(4)
where µ and λ are the dynamic and second viscosity, respectively. To close the
system we need to include an equation of state, for example the ideal gas law

p = ρRT. (5)

Here R = cP − cV is the specific gas constant and cP the specific heat capacity under
constant pressure. Both cP and cV are considered constants in this paper.

Since the aim is to model heat transfer in a solid using the Navier-Stokes equa-
tions, we study the equations with vanishing velocities. If we let u = v = 0, all the
convective terms and viscous stresses are zero and by using (2) and (5), equation (1)
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reduces to

ρt = 0

px = 0

py = 0

Tt =
1

cV ρ

(
(κTx)x + (κTy)y

)
.

(6)

The last equation is similar, but not identical, to the variable coefficient heat equa-
tion.

For ease of comparison with the heat equation we transform to non-dimensional
form as follows (note the slight abuse of notation since we let the dimensional and
non-dimensional variables have the same notation. Hereafter, all quantities are non-
dimensional):

u =
u∗

c∗∞
, v =

v∗

c∗∞
, ρ =

ρ∗

ρ∗∞
, T =

T ∗

T ∗∞
, (7)

p =
p∗

ρ∗∞(c∗∞)2
, e =

e∗

ρ∗∞(c∗∞)2
, λ =

λ∗

µ∗∞
, µ =

µ∗

µ∗∞
, (8)

cP =
c∗P
c∗P∞

, cV =
c∗V
c∗P∞

, R =
R∗

c∗P∞
, κ =

κ∗

κ∗∞
, (9)

x =
x∗

L∗∞
, y =

y∗

L∗∞
, t =

c∗∞
L∗∞

t∗, (10)

where the ∗-superscript denotes a dimensional variable and the ∞-subscript the
reference value. L∗∞ is a characteristic length scale and c∗∞ is the reference speed of
sound. The equation of state (5) becomes in non-dimensional form

γp = ρT. (11)

and the energy equation can be written as

e =
p

γ − 1
+

1

2
ρ(u2 + v2). (12)

By using (7)-(10), the last equation in (6) becomes

Tt =
1

Pec

1

cV ρ

(
(κTx)x + (κTy)y

)
(13)
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where

Pec =
c∗∞L

∗
∞

α∗∞
, α∗∞ =

κ∗∞
ρ∗∞c

∗
P∞

(14)

are the Péclet number based on the reference speed of sound and the thermal diffu-
sivity, respectively.

3. Similarity conditions

Since the fluid is compressible, the density in (6) is non-constant and the energy
component in the Navier-Stokes equations will differ from the constant coefficient
heat equation. We can however quantify in which way the equations differ and which
terms that have to be minimized in order for the two equations to be as similar as
possible. The heat equation, non-dimensionalized using (7)-(10), can be written as

T̃t =
1

Pec

1

csρs

((
κsT̃x

)
x

+
(
κsT̃y

)
y

)
(15)

where Pec is defined in (14) and cs, ρs, κs are the specific heat capacity, density
and thermal conductivity of the solid, respectively. In this case, all coefficients are
constant but rewritten in a form which resembles (13).

In order to compare (13) and (15), we define β = PecρcV , βs = Pecρscs and
rewrite (13) and (15) as

βTt = (κTx)x + (κTy)y , (16)

βT̃t =
β

βs

((
κsT̃x

)
x

+
(
κsT̃y

)
y

)
. (17)

Note that βs is constant for the solid. Furthermore, since β > 0 and (6) yields
∂β
∂t

= 0, we can estimate the difference T − T̃ in the β-norm defined by

||T − T̃ ||2β =

∫
Ω

(
T − T̃

)2

βdΩ (18)

where Ω is the computational domain. By subtracting (17) from (16), multiplying
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with T − T̃ and integrating over Ω we obtain

1

2

d

dt
||T − T̃ ||2β = −

∫
Ω

(
κ∇T · ∇T +

κs
βs
β∇T̃ · ∇T̃

)

+

∮
∂Ω

(
T − T̃

)(
κ∇T − κs

βs
β∇T̃

)
· nds

+

∫
Ω

κs
βs

(
T − T̃

)
∇β · ∇T̃ dΩ +

∫
Ω

(
κ+

κs
βs
β

)
∇T · ∇T̃ dΩ.

(19)

In order to obtain as similar temperature distributions from the heat equation and
Navier-Stokes equation as possible, the right-hand-side of (19) has to be less than or
equal to zero. Note that we specify the same boundary data for T and T̃ , in which
case the boundary integral is zero. By further assuming that ∇β = 0 we can rewrite
(19) as the quadratic form

d

dt
||T − T̃ ||2β = −

∫
Ω

[
∇T
∇T̃

]T  2κ −
(
κ+

κs
βs
β

)
−
(
κ+

κs
βs
β

)
2
κs
βs
β

[ ∇T∇T̃
]
. (20)

By computing the eigenvalues of the matrix in (20) and requiring that they be non-
negative, we can conclude that we need κ− κs

βs
β = 0. Thus, if the relations

κ

β
− κs
βs

= 0, ∇β = 0 (21)

hold, then
d

dt
||T − T̃ ||2β ≤ 0 (22)

and the Navier-Stokes equations and the heat equation produces the exact same
solution for the temperature if given identical initial data.

Remark 1. The heat equation and energy component in the Navier-Stokes equations
produces exactly the same results only if the relations in (21) hold. In a numerical
simulation, the initial, and boundary, data are chosen such that (21) holds exactly to
begin with. Because of the weak imposition of the boundary and interface conditions,
the relations will no longer hold as time passes. Small variations in the velocities
at the boundaries and interfaces will produce small variations in the density which
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propagate into the domain. These deviations are however very small and the effects
are studied in later sections.

4. SBP-SAT discretization

In the basic formulation, the first derivative is approximated by an operator on
SBP form

ux ≈ Dv = P−1Qv, (23)

where v is the discrete grid function approximating u. The matrix P is symmetric,
positive definite and defines a discrete norm by ||v||2 = vTPv. In this paper, we
consider diagonal norms only. The matrix Q is almost skew-symmetric and satisfies
the SBP property Q+QT = diag[−1, 0, . . . , 0, 1]. There are SBP operators based on
diagonal norms with 2nd, 3rd, 4th and 5th order accuracy, and the stability analysis
does not depend on the order of the operators [21, 25]. The second derivative is
approximated either using the first derivative twice, i.e.

uxx ≈ D2v = (P−1Q)2v. (24)

or a compact formulation with minimal bandwidth [22, 23]. In the conservative
formulation of the Navier-Stokes equations, the second derivative operator is not
used.

In order to extend the operators to higher dimensions, it is convenient to intro-
duce the Kronecker product. For arbitrary matrices A ∈ Rm×n and B ∈ Rp×q, the
Kronecker product is defined as

A⊗B =

 a1,1B . . . a1,mB
...

. . .
...

an,1B . . . am,nB

 . (25)

The Kronecker product is bilinear, associative and obeys the mixed product property

(A⊗B)(C ⊗D) = (AC ⊗BD) (26)

if the usual matrix products are defined. For inversion and transposing we have

(A⊗B)−1,T = A−1,T ⊗B−1,T (27)

if the usual matrix inverse is defined. The Kronecker product is not commutative in

8



general, but for square matrices A and B there is a permutation matrix R such that

A⊗B = RT (B ⊗ A)R. (28)

Let Px,y, Qx,y and Dx,y denote the difference operators in the coordinate direction
indicated by the subscript. The extension to multiple dimensions is done by using
the Kronecker product as follows:

P̄x = Px ⊗ Iy, Q̄x = Qx ⊗ Iy,

P̄y = Ix ⊗ Py, Q̄y = Ix ⊗Qy,

D̄x = Dx ⊗ Iy, D̄y = Ix ⊗Dy.

(29)

Due to the mixed product property (26), the operators commute in different co-
ordinate directions and hence differentiation can be performed in each coordinate
direction independently. The norm is defined by

||u||2 = uT P̄ u (30)

where P̄ = P̄xP̄y = Px ⊗ Py.

5. Temperature coupling of the Navier-Stokes equations

The compressible Navier-Stokes equations in two space dimensions requires three
boundary conditions at a solid wall [20]. Since we are aiming for modelling heat
transfer in a solid using (1), both the tangential and normal velocities are zero. The
third condition is used to couple the temperature in the fluid and solid domain.

We consider the Navier-Stokes equations in the two domains Ω1 = [0, 1] × [0, 1]
and Ω2 = [0, 1] × [−1, 0] with an interface at y = 0. Denote the solution in Ω1 by
q = [ρ, ρu, ρv, e] and in Ω2 by q̃ = [ρ̃, ρ̃ũ, ρ̃ṽ, ẽ].

The interface will be considered as a solid wall and hence we impose no-slip
interface conditions for the velocities

u = 0, v = 0,
ũ = 0, ṽ = 0.

(31)

More general interface conditions can be imposed by considering Robin conditions
as described in [26].

To couple the temperature of the two equations we will use continuity of temper-
ature and heat fluxes,

T = T̃ , κ1Ty = κ2T̃y. (32)

9



For the purpose of analysis, we consider the linearized, frozen coefficient and sym-
metric Navier-Stokes equations

wt + (A1w)x + (A2w)y = ε
(

(A11wx + A12wy)y + (A21wx + A22wy)y

)
,

w̃t + (B1w̃)x + (B2w̃)y = ε
(

(B11w̃x +B12w̃y)y + (B21w̃x +B22w̃y)y

)
,

(33)

where ε = Ma
Re

, Re is the Reynolds number and Ma is the Mach number. The
coefficient matrices can be found in [20, 27]. The symmetrized variables are

w =

[
c̄
√
γρ̄
ρ, u, v,

1

c̄
√
γ(γ − 1)

T

]T
, (34)

where an overbar denotes the constant state which we have linearized around. More
details can be found in [28, 20, 27]. This procedure is motivated by the principle of
linearization and localization [29]. Note that the linerarization around u = v = 0,
and hence ū = v̄ = 0, is exact at the interface due to the interface conditions. The
well-posedness of (33) with the conditions (31) and (32) are shown in

Proposition 1. The coupled compressible Navier-Stokes equations are well-posed
using the interface conditions (31) and (32).

Proof. The energy estimates of w and w̃ will be derived in the L2-equivalent norms

||w||2H1
=

∫
Ω1

wTH1wdΩ, ||w̃||2H2
=

∫
Ω2

w̃TH2w̃dΩ (35)

where
H1,2 = diag[1, 1, 1, δ1,2], δ1,2 > 0 (36)

are to be determined. We apply the energy method and consider only the terms at
the interface y = 0. We get by using the conditions (31) that

d

dt

(
||w||2H1

+ ||w̃||2H2

)
≤ −2ε

1∫
0

(
δ1µ̄1

ρ̄1c̄2
1(γ1 − 1)Pr1

TTy −
δ2µ̄2

ρ̄2c̄2
2(γ2 − 1)Pr2

T̃ T̃y

)
dx,

(37)
where the bar denotes the state around which we have linearized and the subscript
1 or 2 refer to values from the corresponding subdomain Ω1 or Ω2. By requiring
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continuity of temperature (T = T̃ ) equation (37) reduces to

d

dt

(
||w||2H1

+ ||w̃||2H2

)
≤ −2ε

1∫
0

T

(
δ1κ̄1

ρ̄1c̄2
1(γ1 − 1)cP1

Ty −
δ2κ̄2

ρ̄2c̄2
2(γ2 − 1)cP2

T̃y

)
dx.

(38)
In order to obtain an energy estimate by using continuity of the heat fluxes, we need
to choose the weights

δ1 = ρ̄1c̄
2
1(γ1 − 1)cP1 , δ2 = ρ̄2c̄

2
2(γ2 − 1)cP2 (39)

since then

d

dt

(
||w||2H1

+ ||w̃||2H2

)
≤ −2ε

1∫
0

T
(
κ̄1Ty − κ̄2T̃y

)
dx = 0. (40)

Hence the interface conditions (32) gives an energy estimate and no unbounded
energy growth can occur.

Remark 2. The physical interface conditions (32) requires an estimate in a different
norm than the standard L2-norm. The norm defined by the (positive) weights in
(39) is, however, only a scaling of the L2-norm and they are hence equivalent. From
a mathematical point of view, any interface condition which give positive weights
will result in a well-posed coupling.

5.1. The discrete problem and stability

In [12], a stable and conservative multi-block coupling of the Navier-Stokes equa-
tions was developed. The coupling was done by considering continuity of all quanti-
ties and of the fluxes with the purpose of being able to handle different coordinate
transforms in different blocks. In our case, the velocities are uncoupled and the equa-
tions are coupled only by continuity of temperature and heat fluxes. This enable us
to compute conjugate heat problems by modifying the interface conditions for the
multi-block coupling.

We consider again the formulation (33) and discretize using SBP-SAT for impos-
ing the interface conditions (31) and (32) weakly. We let for simplicity the subdo-
mains be discretized by equally many uniformly distributed gridpoints which allow
us to use the same difference operators in both subdomains. We stress that the sub-
domains can have different discretizations [12, 30], this assumption merely simplifies
the notation and avoids the use of too many subscripts.
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We discretize (33) using the SBP-SAT technique as

wt + D̂xF + D̂yG = S,
w̃t + D̂xF̃ + D̂yG̃ = S̃,

(41)

where the discrete fluxes are given by

F = Â1w − ε
(
Â11D̂xw + Â12D̂yw

)
,

G = Â2w − ε
(
Â21D̂xw + Â22D̂yw

)
,

F̃ = B̂1w̃ − ε
(
B̂11D̂xw̃ + B̂12D̂yw̃

)
,

G̃ = B̂2w̃ − ε
(
B̂21D̂xw̃ + B̂22D̃yw̃

)
.

(42)

The hat notation denotes that the matrix has been extended to the entire system as

D̂x = Dx ⊗ Iy ⊗ I4, D̂y = Ix ⊗Dy ⊗ I4,

Âξ = Ix ⊗ Iy ⊗ Aξ, B̂ξ = Ix ⊗ Iy ⊗Bξ,
(43)

where ξ is a generic index ranging over the indicies which occur in (42).
The SATs imposing the interface conditions (31) and (32) can be written as

S = P̂−1
y Êx,yN Σ̂1

(
w − gI

)
+ εσ2P̂

−1
y Êx,yN

(
Ĥ2w − g1

)
+ εσ3P̂

−1
y Êx,yN

(
Ĥ3w − g2

)
+ εP̂−1

y Êx,yN Θ̂1

(
Ĥ3D̂xw −

∂g2

∂x

)
+ εσ4P̂

−1
y Êx,yN

(
ÎT1 w − ÎT2 w̃

)
+ εσ5P̂

−1
y D̂T

y Êx,yN

(
ÎT1 w − ÎT2 w̃

)
+ εσ6P̂

−1
y Êx,yN

(
κ̄1Î

T
1 D̂yw − κ̄2Î

T
2 D̂yw̃

)
(44)
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and

S̃ = P̂−1
y Êx,y0Σ̂2

(
w̃ − g̃I

)
+ εσ̃2P̂

−1
y Êx,y0

(
Ĥ2w̃ − g̃1

)
+ εσ̃3P̂

−1
y Êx,y0

(
Ĥ3w̃ − g̃2

)
+ εP̂−1

y Êx,y0Θ̂2

(
Ĥ3D̂xw̃ −

∂g̃2

∂x

)
+ εσ̃4P̂

−1
y Êx,y0

(
ÎT2 w̃ − ÎT1 w

)
+ εσ̃5P̂

−1
y D̂T

y Êx,y0

(
ÎT2 w̃ − ÎT1 w

)
+ εσ̃6P̂

−1
y Êx,y0

(
κ̄2Î

T
2 D̂yw̃ − κ̄1Î

T
1 D̂yw

)
.

(45)

Here P̂ = P̄⊗I4, Êx,y0 = Ēx,y0⊗I4, Ĥj = Ix⊗Iy⊗Hj and Hj is a 4×4 matrix with the
only non-zero element 1 at the (j, j)th position on the diagonal and the operators
Î1,2 selects the interface elements. The penalty matrices Σ̂1,2 = Ix ⊗ Iy ⊗ Σ1,2,

Θ̂1,2 = Ix⊗Iy⊗Θ1,2, and the penalty coefficients σ2,...,6 and σ̃2,...,6 has to be determined
such that the scheme is stable.

Remark 3. The terms which involve Θ̂1,2 originate from the fact that the boundary
condition v = 0 implies that vx = 0, which is used to obtain an energy estimate
in the continuous case. The terms hence represent the artificial boundary condition
vx = 0 which is needed to obtain an energy estimate in the discrete case.

Remember that in the energy estimates for the continuous coupling, a non-
standard L2-equivalent norm was used. The same modification to the norms has
to be done in the discrete case. Thus, the discrete energy estimates will be derived
in the norms

||w||2
Ĵ1

= wT P̂ Ĵ1w, ||w̃||2Ĵ2 = w̃T P̂ Ĵ2w̃, (46)

where,
Ĵ1 = Ix ⊗ Iy ⊗H1, Ĵ2 = Ix ⊗ Iy ⊗H2, (47)

and the matrices H1,2 are defined in (36) with the weights given in (39). Note that

P̂ Ĵ1,2 = Ĵ1,2P̂ .
By applying the energy method to (41) and adding up we get

d

dt
||w||2

Ĵ1
+
d

dt
||w̃||2

Ĵ2
+DI = IT (48)
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where the dissipation term, DI, is given by

DI = 2ε

[
D̂xw

D̂yw

]T [
P̂ Ĵ1 0

0 P̂ Ĵ1

] [
Â11 Â12

Â21 Â22

] [
D̂xw

D̂yw

]
+ 2ε

[
D̂xw̃

D̂yw̃

]T [
P̂ Ĵ2 0

0 P̂ Ĵ2

] [
B̂11 B̂12

B̂21 B̂22

] [
D̂xw̃

D̂yw̃

]
.

(49)

The interface terms can be split into three parts as IT = IT1 + IT2 + IT3 where IT1

are the inviscid terms, IT2 the velocity terms and IT3 the coupling terms related to
the temperature.

In [26] it is shown how to choose Σ1,2, Θ1,2, σ2,3 and σ̃2,3, with small modifications,
such that the inviscid and velocity terms are bounded. Here we focus on the coupling
terms. With appropriate choices of Σ1,2, Θ1,2, σ2,3 and σ̃2,3 as described in [26] we
get

d

dt
||w||2H1

+
d

dt
||w̃||2H2

+DI ≤ IT3, (50)

where IT3 can be written as the quadratic form

IT3 = −ε(Rξ)T (Px ⊗M)Rξ. (51)

To obtain (51), we have used the permutation similarity property of the Kronecker
product, R is a permutation matrix and ξ = [Ti, T̃i, (DyT)i, (DyT̃)i]

T where the
subscript i denotes the values at the interface. Note that we do not need the specific
form of R, it is sufficient to know that such a matrix exists. Furthermore, we have

Px = diag[δ1Px, δ2Px, δ1Px, δ2Px], (52)

with δ1,2 from (39), and

M =


−2σ4 σ4 + σ̃4 κ̄1γ1 − σ5 − κ̄1σ6 κ̄2σ6 + σ̃5

σ4 + σ̃4 −2σ̃4 σ5 + κ̄1σ̃6 −κ̄2γ1 − σ̃5 − κ̄2σ̃6

κ̄1γ1 − σ5 − κ̄1σ6 σ5 + κ̄1σ̃6 0 0
κ̄2σ6 + σ̃5 −κ̄2γ1 − σ̃5 − κ̄2σ̃6 0 0

 .
(53)

Since Px is positive definite and the Kronecker product preserves positive definite-
ness, the necessary requirement for (50) to be bounded is that the penalty coefficients
are chosen such that M ≥ 0. The penalty coefficients are given in
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Theorem 1. The coupling terms IT3 in (50) are bounded using

σ̃4 = σ4 ≤ 0, σ5 = −κ̄1r, σ6 = γ + r, σ̃5 = −κ̄2(γ1 + r), σ̃6 = r, r ∈ R (54)

and hence the scheme (41) is stable.

Proof. With the choices of penalty coefficients given in Proposition 1, the matrix M
in (53) reduces to

M = 2σ4


−1 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

 (55)

with eigenvalues λ1,2,3 = 0 and λ4 = −4σ4. Hence if σ4 ≤ 0 we have M ≥ 0.

6. Numerical results

To verify the numerical scheme we use what is often called the method of man-
ufactured solutions [4, 31]. We chose the solution and use that to compute a right-
hand-side forcing function, initial- and boundary data. According to the principle of
Duhamel [32], the number or form of the boundary conditions does not change due
to the addition of the forcing function. We can hence test the convergence of the
scheme towards this analytical solution. The interface conditions (32) are of course
not satisfied in general by this solution and we need to modify them by adding a
right-hand-side.

We use the manufactured solution

ρ(x, y, t) = 1 + η sin(θπ(x− y)− t)2

u(x, y, t) = η cos(θπ(x+ y)− t)
v(x, y, t) = η sin(θπ(x− y)− t)
p(x, y, t) = 1 + η cos(θπ(x+ y)− t)2,

(56)

with different values of η, θ in the fluid and solid domains, to generate the solution.
The energy and temperature can be computed using (11) and (12). Since the stability
of the scheme is independent of the order of accuracy, the difference operators is the
only thing which have to be changed in order to achieve higher, or lower, accuracy.
The rate of convergence, Q, is computed as

Q(j) =
1

log
(
Ni+1

Ni

) log

(
E

(j)
i

E
(j)
i+1

)
(57)
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for each of the conserved varables q(j), j = 1, 2, 3, 4. We have used the same number
of grid points, N , in both coordinate directions for both the fluid and solid domain.
Nk denotes the number of gridpoints at refinement level k and E

(j)
k is the L2-error

between the computed and exact solution for each conserved variable. The time
integration is done with the classical 4th-order Runge-Kutta method until time t =
0.1 using 1000 time steps.

In Table 1 we list the convergence results for the conserved variables for both
the fluid and solid domains. As we can see from Table 1 we can achieve 5th-order
accuracy by simply replacing the difference operators. No other modifications to the
scheme is necessary.

Table 1: Convergence results for the conjugate heat transfer problem

2nd-order 3rd-order
N 32/64 64/96 96/128 32/64 64/96 96/128
ρ 1.8367 1.8931 2.0133 2.6222 3.0699 3.4795
ρu 2.0824 2.0803 2.1187 2.9846 3.0748 3.1927
ρv 2.0503 2.0549 2.0922 3.4222 3.7512 3.4199
e 1.8174 1.9065 1.9963 2.4639 2.7749 3.0523
ρ̃ 1.8933 1.8533 1.9628 2.5761 2.9791 3.5767
ρ̃ũ 2.0544 2.0803 2.0992 3.1094 3.0374 3.2732
ρ̃ṽ 1.9411 2.0190 2.0894 3.3928 3.7465 3.3628
ẽ 1.9483 1.9151 1.9409 2.9451 2.8399 3.2560

4th-order 5th-order
N 32/64 64/96 96/128 32/64 64/96 96/128
ρ 3.9662 4.1381 4.1138 4.4824 5.2584 5.5131
ρu 4.4531 4.3640 4.2799 4.6819 4.7521 4.6733
ρv 4.3175 4.0918 4.0284 4.9824 4.9257 4.7839
e 3.9757 4.1723 4.0957 4.3760 4.6227 4.7207
ρ̃ 3.9935 4.3902 4.5538 4.4421 5.1497 5.5388
ρ̃ũ 4.2072 4.3159 4.4366 4.9665 4.9739 4.9512
ρ̃ṽ 4.3672 4.3331 4.3212 5.1007 5.1370 4.9087
ẽ 3.9025 4.3178 4.4091 4.8746 4.8573 4.9518

6.1. Comparison of the different approaches to the conjugate heat transfer problem

When the heat transfer in the solid is governed by the compressible Navier-Stokes
equations, one does not solve the same conjugate heat transfer problem as when the
heat transfer is governed by the heat equation. This is because the relations in (21)
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holds only approximately as time passes. The exchange of heat between the fluid and
solid domains will affect the temperature and hence also the density, because of the
equation of state, and introduce small density variations in the solid domain. We can
numerically solve the conjugate heat transfer problem in both ways and determine
the difference between the two methods. Note that we do not overwrite, or enforce,
the velocities to zero inside the solid domain. The velocities are weakly enforced to
zero at the boundaries and interfaces only.

Let NS-NS denote the case when the heat transfer is governed by the compressible
Navier-Stokes equations and NS-HT the case where the heat transfer is governed by
the heat equation. The well-posedness and stability of NS-HT coupling is proven in
the appendix. The initial and boundary data are chosen such that NS-NS and NS-
HT have identical solutions initially, and we study the differences of the two methods
over time.

To quantify the difference between the two methods, NS-NS and NS-HT, we
compute two representative cases. The computational domain is Ω = Ω1 ∪Ω2 where
Ω1 = [0, 1]×[0, 1] and Ω2 = [0, 1]×[−1, 0]. All computations are done using 3rd-order
accurate SBP operators and the time integration is done using the classical 4th-order
Runge-Kutta method.

In the first case, the computations are initialized with zero velocities everywhere
and temperature T = 1 in both subdomains. In the x-direction we have chosen
periodic boundary conditions. At y = −1 we specify T = 1.5 and at y = 1 we have
T = 1. For the Navier-Stokes equations we have no-slip solid walls as described in
[26] for the velocities. These choices of boundary conditions renders the solution to
be homogeneous in the x-direction.

Under the assumption of identically zero velocities and periodicity in the x-
direction, the exact steady-state solution can be obtained as

T = − k

2(k + 1)
y +

3k + 2

2(k + 1)
,

T̃ = − 1

2(k + 1)
y +

3k + 2

2(k + 1)
,

(58)

where k = κ2/κ1 is the ratio of the steady-state thermal conductivities. We can
see from (58) that the only occurring material parameter is the ratio between the
thermal conductivity coefficients. Neither the density nor the thermal diffusivity
has any effect on the steady-state solution. The larger the ratio of the thermal
conductivities is, the stiffer the problem becomes. In the calculations below, we have
chosen the parameters such that k = 5.
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The temperature distribution at time t = 500, which is the steady-state solution,
is seen in Figure 1 when using 65 grid points in each coordinate direction and sub-
domain. In Figure 2 we show an intersection of the absolute difference along the line
−1 ≤ y ≤ 1 at x = 0.5 together with the time-evolution of the l∞- and l2-differences.
In Figure 2(b) we can see that the large initial discontinuity gives differences in the
beginning of the computation. As the velocities are damped over time, the difference
decreases rapidly towards zero.
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Figure 1: Temperatures at time t = 500 from NS-NS and NS-HT using 65 grid points in each
coordinate direction and subdomain
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Figure 2: Temperature intersection and time differences for NS-NS and NS-HT using 65 grid points
in each coordinate direction and subdomain

In Table 2 we list the results for different number of grid points.

Table 2: Difference between NS-NS and NS-HT at time t = 500
Difference

N l∞ l2 Interface
32 1.1514e-03 6.8992e-04 1.1514e-03
64 2.4612e-04 1.4491e-04 2.4612e-04
128 4.3440e-05 2.5329e-05 4.3440e-05

As we can see from Table 2, the differences are very small. Even for the coarsest
mesh, the relative maximum and interface differences are less than 0.1% while the
relative l2-difference is approximately 0.05%. Note that the differences are decreasing
with the resolution. The steady-state solutions will become identical as the mesh is
further refined.

Next, we consider an unsteady problem. The boundary data at the south bound-
ary is perturbed by the time-dependent perturbation

f(x, t) = 1 + 0.25 ∗ sin(t) ∗ sin(πx) (59)

and hence there will be no steady-state solution. In the x-direction in the solid
domain, we have changed from periodic boundary conditions to solid wall boundary
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conditions with prescribed temperature T = 1. This is a more realistic way to enclose
the solid domain, and it has the additional benefit of damping the induced velocities
in the Navier-Stokes equations.

The results can be seen in Figure (3). We plot the l∞- and l2-difference as a
function of time. As we can see, the difference does not approach zero but remains
bounded and small. The relative mean difference is less than 0.5% while the max-
imum difference is less than 1.5%. Thus, despite the rather large variation in the
boundary data, NS-NS and NS-HT produces very similar solutions.
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Figure 3: l∞- and l2-difference in time between NS-HS and NS-HT for an unsteady problem

In a CFD computation, the part of the domain which is solid is in general small
compared to the fluid domain, for example when computing the flow field around
an airfoil or aircraft. Despite the Navier-Stokes equations being significantly more
expensive to solve, the overall additional cost of solving the Navier-Stokes equations
also in the solid is in general limited.

6.2. A numerical example of conjugate heat transfer

As a final computational example, we consider the coupling of a flow over a slab
of material for which the ratio of the thermal conductivities is 100. The initial
temperature condition is T = 1 in the fluid domain and T̃ = 1.5 in the solid domain.
The boundary conditions are periodic in the x-direction. At the south boundary,
y = −1, in the solid domain we let T̃ = 1.5 and at the north boundary, y = 1, in
the fluid domain, there is a Mach 0.5 free-stream boundary condition with T = 1,
as described in [28]. Figure 4 shows a snapshot of the solution at time t = 2.5. The
velocity components in the solid domain are zero to machine precision and the heat
transfer in the solid is exclusively driven by diffusion.
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7. Conclusions

We have proven that a conjugate heat transfer coupling of the compressible
Navier-Stokes equations is well-posed when a modified norm is used. The equa-
tions were discretized using a finite difference method on summation-by-parts form
with boundary- and interface conditions imposed weakly by the simultaneous ap-
proximation term. It was shown that a modified discrete norm was needed in order
to prove energy stability of the scheme. The stability is independent of the order
of accuracy, and it was shown that we can achieve all orders of accuracy by simply
using higher order accurate SBP operators.

We showed that the difference when the heat transfer is governed by the heat
equation, compared to the compressible Navier-Stokes equations, is small. The
steady-state solutions differed by less than 0.005% as the mesh was refined while
a perturbed, unsteady solution differed by less than 0.5% on average.

There are many multi-block codes for the compressible Navier-Stokes equations
available. To implement conjugate heat transfer is significantly easier with the
method of modifying the interface conditions, rather than coupling to a different
physics solver for the heat transfer part. While the Navier-Stokes equations are
more expensive to solve, usually only a small part of the computational domain is
solid and the heat transfer is computed at a low additional cost.
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Appendix A. Coupling of the compressible Navier-Stokes equations with
the heat equation

In [4], a model problem for conjugate heat transfer was considered. The equations
were one-dimensional, linear and symmetric. In this appendix we extend the work to
the two-dimensional compressible, non-linear Navier-Stokes equations coupled with
the heat equation in two space dimensions. The well-posedness of the coupling is
shown in

Proposition 2. The compressible Navier-Stokes equations coupled with the heat
equation, is well-posed with the interface conditions

T = T̃ , κTy = κsT̃y (A.1)

for the temperature, and the no-slip1 conditions

u = 0, v = 0 (A.2)

for the velocities.

Proof. Consider the heat equation (15) and the Navier-Stokes equations in the con-
stant, linear, symmetric formulation. The estimates of w and T̃ will be derived in
the L2-equivalent norms

||w||2J1 =

∫
Ω1

wTJ1wdΩ1, ||T̃ ||2ν2 =

∫
Ω2

T̃ 2ν2dΩ2 (A.3)

where J1 = diag[1, 1, 1, ν1] and ν1,2 > 0 are to be determined.
Remember that the symmetrized variables for the Navier-Stokes equations are

w =

[
c̄
√
γρ̄
ρ, u, v,

1

c̄
√
γ(γ − 1)

T

]T
. (A.4)

1See [26] for more general conditions.
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and note that there is a scaling coefficient in the temperature component. To simplify
the analysis, we rescale (15) by multiplying the equation with 1

c̄
√
γ(γ−1

. To apply the

energy method, we rewrite the speed of sound based Péclet number Pec in (14) as

Pec =
Pr ·Re
Ma

=
Pr

ε
(A.5)

where Pr is the Prandtl number. Then (15) becomes

T̃t

c̄
√
γ(γ − 1)

=
εκs

Prc̄
√
γ(γ − 1)ρscs

(
T̃xx + T̃yy

)
. (A.6)

By applying the energy method to each equation and adding the results we obtain

d

dt

(
||w||2J1 +

1

c̄2γ(γ − 1)
||T̃ ||2ν2

)
≤ −2ε

c̄2γ(γ − 1)Pr

1∫
0

(
ν1γµ

ρ̄
TTy −

ν2κs
ρscs

T̃ T̃y

)
dx.

(A.7)
If we choose

ν1 =
κ̄ρ̄

γµ
, ν2 = ρscs (A.8)

and apply the interface conditions (A.1) we get

d

dt

(
||w||2J1 +

1

c̄2γ(γ − 1)
||T̃ ||2ν2

)
≤ −2ε

c̄2γ(γ − 1)Pr

1∫
0

T
(
κ̄Ty − κsT̃y

)
dx = 0 (A.9)

and hence the conditions (A.1) does not contribute to unbounded energy growth.

Note again that the application of the physical interface conditions (A.1) requires
the use of a non-standard norm in the energy estimates. All quantities involved in
the weights ν1,2 are, however, always positive and they will hence always define a
norm.

The discretization of the coupled system is analogous to that which is presented in
[4], and extended to multiple dimensions as described before. We hence only present
the numerical scheme and the choice of interface penalty coefficients such that the
scheme is stable.

An SBP-SAT discretization of the Navier-Stokes equations coupled with the heat
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equation is given by, when only considering the interface terms,

wt +
(
D̄x ⊗ I4

)
F +

(
D̄y ⊗ I4

)
G = S,

T̃t −
(
D̄2
xT̃ + D̄2

yT̃
)

= S̃.
(A.10)

The penalty terms are given by

S =
(
P̄−1
y Ēx,yN ⊗ Σ̄1

) (
w − gI

)
+ εσ2

(
P̄−1
y Ēx,yN ⊗ I4

) (
H̄2w − g1

)
+ εσ3

(
P̄−1
y Ēx,yN ⊗ I4

) (
H̄3w − g2

)
+ ε

(
P̄−1
y Ēx,yN ⊗ I4

)
Θ̄1

(
H̄3

(
D̄x ⊗ I4

)
w − ∂g2

∂x

)
+ ε

(
P̄−1
y Ēx,yN ⊗ Σ4

) (
ĪT1 w − ĪT2 (T̃⊗ e4)

)
+ ε

(
P̄−1
y D̄T

y Ēx,yN ⊗ Σ5

) (
ĪT1 w − ĪT2 (T̃⊗ e4)

)
+ ε

(
P̄−1
y Ēx,yN ⊗ Σ6

) (
κ̄ĪT1

(
D̄y ⊗ I4

)
w − κsĪT2 (D̄yT̃⊗ e4)

)
,

(A.11)

where Σ4,5,6 = diag[0, 0, 0, σ4,5,6] and the term involving Θ̄1 is explained in Remark 3.
The SAT for the heat equation is given by

S̃ = ετ4P̄
−1
y Ēx,yN

(
T̃−T

)
+ ετ5P̄

−1
y D̄T

y Ēx,yN

(
T̃−T

)
+ ετ6P̄

−1
y Ēx,yN

(
κsD̄yT̃− κ̄D̄yT

) (A.12)

and the choices of penalty parameters such that the coupled scheme is stable is given
in

Theorem 2. The scheme (A.10) for coupling the Navier-Stokes equations with the
heat equation is stable with the SATs given by (A.11), (A.12) where the penalty
coefficients for the coupling terms are given by

r ∈ R,

σ4 = τ4 ≤ 0, σ5 = −κsr, σ6 =
−1 + rPr

Pr
, τ5 = − κ̄ (−1 + rPr)

Pr
, τ6 = r.

(A.13)
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Proof. We apply the energy method, using the modified discrete norms,

||w||2J1 = wT (P̄ ⊗ J1)w, ||T̃||2ν2 = ν2T̃
T P̄T, (A.14)

where J1 = diag[1, 1, 1, ν1] and ν1,2 are given in (A.8). Using appropriate penalty
terms for the inviscid part and the velocity components of the Navier-Stokes equation,
see [33, 26], we obtain the energy estimate

d

dt
||w||2J1 +

d

dt
||T̃||2ν2 ≤ 0 (A.15)

when using the penalty coefficients given in (A.13).
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[5] Michael Schäfer and Ilka Teschauer. Numerical simulation of coupled fluid-
solid problems. Computer Methods in Applied Mechanics and Engineering,
190(28):3645–3667, 2001.

[6] Niphon Wansophark, Atipong Malatip, and Pramote Dechaumphai. Stream-
line upwind finite element method for conjugate heat transfer problems. Acta
Mechanica Sinica, 21:436–443, 2005.
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[20] Jan Nordström and Magnus Svärd. Well-posed boundary conditions for the
Navier-Stokes equations. SIAM Journal on Numerical Analysis, 43(3):1231–
1255, 2005.

[21] Bo Strand. Summation by parts for finite difference approximations for d/dx.
Journal of Computational Physics, 110(1):47–67, 1994.

[22] Ken Mattsson and Jan Nordström. Summation by parts operators for finite dif-
ference approximations of second derivatives. Journal of Computational Physics,
199(2):503–540, 2004.

[23] Ken Mattsson. Summation by parts operators for finite difference approxi-
mations of second-derivatives with variable coefficients. Journal of Scientific
Computing, pages 1–33, 2011.
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a b s t r a c t

Finite difference operators satisfying the summation-by-parts (SBP) rules can be used to
obtain high order accurate, energy stable schemes for time-dependent partial differential
equations, when the boundary conditions are imposed weakly by the simultaneous
approximation term (SAT).

In general, an SBP-SAT discretization is accurate of order p + 1 with an internal accuracy
of 2p and a boundary accuracy of p. Despite this, it is shown in this paper that any linear
functional computed from the time-dependent solution, will be accurate of order 2p when
the boundary terms are imposed in a stable and dual consistent way.

The method does not involve the solution of the dual equations, and superconvergent
functionals are obtained at no extra computational cost. Four representative model prob-
lems are analyzed in terms of convergence and errors, and it is shown in a systematic
way how to derive schemes which gives superconvergent functional outputs.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

When numerically computing solutions to equations in computational fluid dynamics (CFD), accurate solutions to the
equations themselves might not be the primary target. Typically, functionals computed from the solution, such as the lift
and drag coefficients, are of equal or even larger interest.

Already in the late 1990s, Giles et al. realized the importance of duality to enhance the computation of functionals in CFD
applications [1–6]. Since then, duality and adjoint equations have been vastly studied in the context of finite element meth-
ods (FEM) [2] and more recently using discontinuous Galerkin (DG) methods [7–10], finite volume methods (FVM) [11] and
spectral difference methods [12].

One can separate three distinct uses of the adjoint equations; adaptive mesh refinement [13], error analysis [14] and opti-
mal design problems [15,16]. The success of duality based approaches to, in particular, adaptive mesh refinement and error
estimation, has made the study of duality somewhat restricted to unstructured methods such as FEM, DG and FVM.

Recently, however, it was shown by Hicken and Zingg [17,18] that the adjoint equations can be used for finite difference
(FD) methods to raise the order of accuracy of linear functionals computed from the FD solution. The technique was based on
using FD operators on summation-by-parts (SBP) form [19,20] together with the simultaneous approximation term (SAT) for
imposing boundary conditions weakly [21]. It was shown that when discretizing the equations in a dual consistent [9,17]
way, the order of accuracy of the output functional was higher than the FD solution itself. This superconvergent behaviour
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was seen already in [3] for FEM and in [7] for DG, but it had not been previously proven for finite difference schemes. Some
work on solution superconvergence for FD-based methods, using mimetic operators, can be seen in i.e. [22].

So far, most applications of the adjoint equations deal with steady-state problems, including the recent results presented
in [17]. The reason is that the adjoint equation has limited use for realistic (non-linear) time-dependent problems since it
runs backwards in time [23]. Hence to actually solve the adjoint time-dependent equation, the full time history of the primal
equation has to be stored [24]. For large scale problems, this quickly becomes unfeasible [25,26]. Some work has been done
in the time-dependent setting [25,23], in particular for adaptive error control [24,11,27] and optimization [26,12].

What is to be presented in this paper is the extension of [17] to unsteady problems for computing superconvergent time-
dependent linear functionals. By superconvergence, we mean that the order of convergence of the output functional is higher
than the design order of accuracy of the scheme. We will address two problems which usually occurs when attempting to
use duality for time-dependent functional computations;

� The discrete adjoint equations does not approximate the continuous adjoint equations, i.e. the scheme is dual inconsistent
� If the scheme is dual consistent, it is unstable

The SBP discretization together with the SAT technique is highly suitable for addressing the above issues since the scheme
allows for a multitude of parameters which can be chosen such that the scheme is both dual consistent and stable. These two
features will result in a superconvergent time-dependent functional output.

2. SBP-SAT discretizations

Summation-by-parts finite difference operators were originally constructed by Kreiss and Scherer [28] in the 70’s as a
means for constructing energy stable [29] finite difference approximations. The operators are constructed such that they
are automatically stable for linearly well-posed Cauchy problems. Together with the SAT procedure introduced by Carpenter
et al. [21], the SBP-SAT technique provides a method of constructing energy stable and high order accurate finite difference
schemes for any linearly well-posed initial-boundary value problem. Since then, the technique has been widely used and
proven robust for a variety of problem. See for example [30–37] and references therein.

The SBP operators can be defined as follows.

Definition 1. A matrix D is called a first derivative SBP operator if D can be written as

D ¼ P�1Q ; ð1Þ

where P defines a norm by jjujj2 ¼ uT Pu and Q satisfies

Q þ Q T ¼ diag½�1;0; . . . ;0;1�: ð2Þ
In this paper, only diagonal matrices P will be used. In that case, D consist of a 2p-order accurate central difference

approximation in the interior while at the boundaries, the accuracy reduces to a p-order one-sided difference. The global
accuracy can then be shown to be p + 1 [32].

By using non-diagonal matrices P as norms in the SBP definition, it is possible to raise both the boundary and global order
of accuracy. For a block-diagonal P, the boundary stencil can be chosen to be 2p� 1 order accurate which increases the global
accuracy to 2p [19,32,38,39]. There are, however, drawbacks with a non-diagonal matrix P. In many cases, the equations are
non-linear or have variable coefficients and energy stability can only be proven if P commutes with diagonal matrices. Unless
P is carefully constructed to fit each problem under consideration, a diagonal P is the only alternative.

For many realistic problems, the boundary of the domain is non-smooth and the domain has to be split into blocks, where
a curvilinear coordinate transformation is applied in each block. If the matrix P is not diagonal, energy stability cannot be
shown in general since P is required to commute with the (diagonal) Jacobian matrix of the coordinate transformation
[35,40–42].

When computing linear functionals, however, we can recover the loss compared to the accuracy from a non-diagonal P,
while keeping the simplicity and flexibility of a diagonal P. It is hence always possible to prove energy stability, and keeping
the full order of accuracy.

Currently there exist diagonal norm SBP operators for the first derivative accurate of order 2, 3, 4 and 5. The second deriv-
ative can be approximated using either the first derivative twice which results in a wide finite difference stencil, or a com-
pact operator as described in [20,43]. In this paper, we will rewrite the equations in a form which does not require the
application of a second derivative operator.

A first order hyperbolic PDE, for example the advection equation on 0 6 x 6 1,

ut þ aux ¼ 0;
uð0; tÞ ¼ d1ðtÞ;
uðx;0Þ ¼ d2ðxÞ;

ð3Þ

with a > 0, can be approximated on an equidistant grid with N þ 1 gridpoints as
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d
dt

uh þ aDuh ¼ 0; ð4Þ

where uh is the discrete gridfunction approximating u. However, since the continuous PDE (3) needs to be supplied with a
boundary condition at the inflow boundary, the scheme (4) has to be modified. The imposition of the boundary condition is
done weakly using SAT as

d
dt

uh þ aDuh ¼ rP�1ðeT
0uh � d1Þe0; ð5Þ

where e0 ¼ ½1;0; . . . ;0� and d1 ¼ d1ðtÞ is the time-dependent boundary data. The coefficient r is a parameter which has to be
determined such that the scheme is stable in the P-norm.

2.1. The energy method

To prove well-posedness of the continuous Eq. (3) and stability of the numerical scheme (5), the energy metod in contin-
uous and discrete form is used. We multiply (3) with u and integrate by parts over the spatial domain to obtain (when
assuming d1 ¼ 0)

jjujj2t ¼ �au2ð1; tÞ: ð6Þ

It is clear that the growth rate of energy is bounded and hence we say that (3) is well-posed.1

In the discrete case we multiply (5) with uT
hP and use the SBP properties of the operator to obtain

jjuhjj2t ¼ ðaþ 2rÞu2
hðx0Þ � au2

hðxNÞ: ð7Þ

It is clear that an energy estimate is obtained for

r 6 � a
2

ð8Þ

and for r ¼ � a
2 we have exactly (6).

We can see that the parameter r is allowed to vary in a semi-infinite range for which the scheme is stable. Any additional
requirement we place on the scheme, for example dual consistency, has to be within a subset of values allowed by the energy
estimate. This flexibility together with the ability to mimic integration by parts is what makes the SBP-SAT method suitable
for treating adjoint problems.

Remark 2.1. Note that the assumption d1 ¼ 0 merely simplifies the analysis. Boundary and initial data can be included, in
which case the problem is called strongly well-posed. If the boundary and initial data is included in the discrete case, and an
energy estimate is obtained, the problem is called strongly stable [45].

3. Adjoint problems and dual consistency

There are various ways of obtaining the adjoint equations. Most common is to consider a PDE subject to a set of control
parameters and a functional output of interest, and in various ways taking derivatives of the functional with respect to the
control parameters [1,27]. The adjoint equation can then be seen as a sensitivity equation for the primal PDE, and is some-
times referred to as the sensitivity equation. In this work we will adopt the notation in [17] and derive the adjoint equation
by posing the SBP-SAT method in a variational framework similar to the one used in FEM.

The order of convergence is measured in space, not in time. To obtain a superconvergent time-dependent linear functional
output, it is sufficient to consider the steady equations and discretize them in a dual consistent way which does not violate
any stability conditions for the unsteady equations.

We shall use the following notations regarding the inner products. The continuous inner product is defined as

ðf ; gÞ ¼
Z

X
fgdX ð9Þ

and the corresponding discrete inner product is defined as

ðfh; ghÞh ¼ f T
h Pgh; ð10Þ

where fh, gh are projections of f, g onto a grid, and P is the matrix (and integration operator) used to define a norm in the
definition of the SBP operator. The subscript h will be omitted for known functions if the meaning is clear from the context.

Before we begin, we need to define what is meant by the continuous dual problem, discrete dual problem and dual con-
sistency. Let L be a linear differential operator and consider the (steady) equation

1 Existence of solutions is not formally considered in this context. Existence is motivated by the fact that a minimal number of boundary conditions is used to
obtain an energy estimate [44].
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Lu� f ¼ 0; 8x 2 X; ð11Þ

subject to homogeneous boundary conditions. Let

JðuÞ ¼ ðg;uÞ ð12Þ

be a linear functional output of interest. We obtain the adjoint equation by seeking / in some appropriate function space,
such that

JðuÞ ¼ ð/; f Þ: ð13Þ

A formal computation gives

JðuÞ ¼ ðg;uÞ � ð/; Lu� f Þ ¼ ð/; f Þ � ðL�/� g;uÞ ð14Þ

and hence the adjoint equation is given by

L�/� g ¼ 0; ð15Þ

where L� is the formal adjoint of L. Note that L� is abstractly defined, and finding an exact expression for the dual operator is
in general a non-trivial task. In the case of linear differential operators, the adjoint operator is obtained by integration by
parts.

Remark 3.1. In this paper, we consider homogeneous boundary and initial conditions. This is only for the purpose of
analysis. The dual problem depends only on the form of the boundary conditions, but not on the particular boundary or
initial data. In computations, the boundary and initial data can be non-zero.

The boundary conditions for the adjoint equation are obtained by considering the boundary terms resulting from the inte-
gration by parts procedure. After applying the homogeneous boundary conditions for the primal PDE, the dual boundary con-
ditions are defined as the minimal set of homogeneous conditions such that all boundary terms vanish.

Definition 2. The continuous dual problem is given by

L�/ ¼ g ð16Þ

subject to the dual boundary conditions.
The same reasoning can be applied in the discrete setting. Let

Lhuh � f ¼ 0 ð17Þ

be a discretization of (11), including the homogeneous boundary conditions. Then

JhðuhÞ ¼ ðg;uhÞh ð18Þ

is an approximation of (12). We obtain the discrete dual problem by seeking /h such that

JhðuhÞ ¼ ð/h; f Þh: ð19Þ

The same formal computation as before gives

JhðuhÞ ¼ ðg;uhÞh � ð/h; Lhuh � f Þh ¼ ð/h; f Þh � ðP
�1LT

hP/h � g;uhÞh ð20Þ

and we have

Definition 3. The discrete dual problem is given by

P�1LT
hP/h � g ¼ 0: ð21Þ

Remark 3.2. In an SBP-SAT setting, the difference operator Lh can be written as

Lh ¼ P�1eLh ð22Þ

and the discrete dual problem reduces to

P�1eLT
h/h ¼ g: ð23Þ

Finally, by using (16) and (21) we make the definition of dual consistency.

Definition 4. A discretization is called dual consistent if (21) is a consistent approximation of (16).

So far, we have been concerned with steady problems only. Since we are interested in unsteady problems, we need to
define what is meant by dual consistency in this context. Consider an unsteady problem
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ut þ Lu� f ¼ 0; t > 0; 8x 2 X; ð24Þ

subject to homogeneous boundary and initial conditions. By seeking / such thatZ T

0
JðuÞdt ¼

Z T

0
ð/; f Þdt ð25Þ

we obtainZ T

0
JðuÞdt ¼

Z T

0
JðuÞdt �

Z T

0
ð/;ut þ Lu� f ÞdtZ T

0
ð/t � L�/þ g;uÞdt þ

Z T

0
ð/; f Þdt:

ð26Þ

The time-dependent dual problem thus becomes

�/t þ L�/ ¼ g ð27Þ

subject to the dual boundary conditions. A homogeneous initial condition for the dual problem is placed at time t ¼ T which
removes the boundary term from the partial time integration.

The discrete procedure can be formulated analogously. Let

d
dt

uh þ Lhuh � f ¼ 0 ð28Þ

be a semi-discretization of (24), including the boundary conditions. We then have the following definition regarding dual
consistency of time-dependent problems,

Definition 5. The semi-discretization (28) is called spatially dual consistent if the corresponding steady problem is dual
consistent.

Note that a stable and consistent discretization of the primal PDE does not imply spatial dual consistency.
To prove the main result of this paper, we need Corollary 1 from [46], which states that P is a 2p-order accurate quadra-

ture. For our purpose, we can restate the result as.

Lemma 3.1. Let P be the norm-matrix of an SBP discretization with 2p-order internal accuracy. Then for u 2 C2p we have

JhðuÞ ¼ JðuÞ þ Oðh2pÞ: ð29Þ
Using Lemma 3.1 we can prove the main result of this paper which is.

Theorem 3.2. Let

d
dt

uh þ Lhuh ¼ f ð30Þ

be a stable and spatial dual consistent SBP-SAT discretization of the continuous problem

ut þ Lu ¼ f : ð31Þ

Then the linear functional

JhðuhÞ ¼ gT Puh ð32Þ

is a 2p-order accurate approximation of

JðuÞ ¼
Z

X
gT udX: ð33Þ

Proof. By using the results in [46] together with the definition of the discrete dual problem, we can add and subtract terms
to relate the the continuous functional to the discrete as

JðuÞ ¼ JhðuÞ þ Oðh2pÞ ¼ gT Puh þ gT Pðu� uhÞ þ Oðh2pÞ ¼ gT Puh þ gT Pðu� uhÞ � /T
hPðLhuh � f Þ þ Oðh2pÞ

¼ JhðuhÞ þ gT Pðu� uhÞ � /T
hPLhðu� uhÞ � /T Pf þ /T

hPLhuþ Oðh2pÞ

¼ JhðuhÞ � ðu� uhÞT PðP�1LT
hP/h � gÞ þ /T PðLhu� f Þ þ Oðh2pÞ ¼ JhðuhÞ þ /T PðLhu� f Þ þ Oðh2pÞ; ð34Þ

where the last error term is of order h2p [46]. We can hence conclude that

JðuÞ ¼ JhðuhÞ þ Oðh2pÞ: � ð35Þ
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4. Derivation of stable and spatially dual consistent schemes

Based on Theorem 3.2, we will derive stable and spatially dual consistent schemes for four time-depedent model prob-
lems in a systematic way. The equations we consider are the advection equation, the heat equation, the viscous Burgers’
equation and an incompletely parabolic system of equations. We will see that a stable and spatial dual consistent discreti-
zation produces superconvergent time-dependent linear functionals.

4.1. The advection equation

Consider (3) again together with a linear functional output of interest. We let the boundary condition be homogeneous,
add a forcing function and ignore the initial condition,

ut þ aux ¼ f ;

uð0; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð36Þ

Note that JðuÞ is a time-dependent functional. The adjoint equation is obtained by letting ut ¼ 0 and finding / such that
JðuÞ ¼ ð/; f Þ. We get

JðuÞ ¼ JðuÞ �
Z 1

0
/ðaux � f Þdx ¼ �a/ð1; tÞuð1; tÞ �

Z 1

0
ðg þ a/xÞudxþ ðv ; f Þ ð37Þ

and hence the steady adjoint problem is given by

� a/x ¼ g;

/ð1; tÞ ¼ 0:
ð38Þ

Note that the sign has changed and the adjoint boundary condition is located at the opposite boundary compared to the pri-
mal problem.

Eq. (36) is discretized as before,

d
dt

uh þ aP�1Quh ¼ f þ rP�1ðeT
0uh � 0Þe0; ð39Þ

where 0 is the boundary data. We know from the preceding energy estimate (7) that the scheme is stable if r 6 � a
2. The addi-

tion of the forcing function does not change the number or form of the boundary conditions and can be assumed to be zero in
an energy estimate according to the principle of Duhamel [45]. To determine spatial dual consistency, we let d

dt uh ¼ 0 and
rewrite (39) as

Lhuh ¼ Pf ; ð40Þ

where

Lh ¼ aQ � rE0 ð41Þ

and E0 ¼ eT
0e0 ¼ diag½1; 0; . . . ;0�. According to the definition of dual consistency,

LT
h/h ¼ Pg ð42Þ

has to be a consistent approximation of the adjoint Eq. (38). By using the SBP property of Q, we expand (42) as

�aP�1Q/h ¼ g � aP�1EN/h þ ðrþ aÞP�1E0/h ð43Þ

which is a consistent approximation of (38) only if

r ¼ �a: ð44Þ

For any other value of r, the numerical scheme would impose a boundary condition at x ¼ 0 which does not exist in the ad-
joint equation. We can also see that r ¼ �a does not violate the stability condition given by the energy estimate. Thus the
scheme is both stable and spatially dual consistent.

Remark 4.1. Note that the parameter r is allowed to vary in a semi-infinite range from the stability requirements, while
spatial dual consistency requires a unique value.

4.2. The heat equation

The heat equation on 0 6 x 6 1 with homogeneous Dirichlet boundary conditions is given by
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ut ¼ auxx þ f ;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð45Þ

The initial condition is omitted since the derivation of the dual problem depends only on the equation and the form of the
boundary conditions. In the computations, however, an initial condition has to be supplied. In order to derive a stable and
spatially dual consistent scheme, (45) has to be rewritten as a first order system in the same way as in the local discontin-
uous Galerkin (LDG) method [47]. It has been shown that the LDG method has interesting superconvergent features not only
for functionals, but also for the solution itself [7,30,48]. We hence adapt the LDG formulation and rewrite (45) as

ut ¼
ffiffiffi
a
p

vx þ f ;

v ¼
ffiffiffi
a
p

ux;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð46Þ

To obtain the dual problem, we let ut ¼ 0 and write (46) as

Awþ Bwx ¼ F; ð47Þ

where w ¼ ½u;v �T , F ¼ ½f ;0�T and

A ¼
0 0
0 1

� �
; B ¼ 0 �

ffiffiffi
a
p

�
ffiffiffi
a
p

0

" #
: ð48Þ

Let now G ¼ ½g;0�T , h ¼ ½/;w�T and find h such that

JðwÞ ¼ ðh; FÞ: ð49Þ

Note that

JðwÞ ¼ ðG;wÞ ¼ ðg;uÞ ð50Þ

and we are still computing the functional of interest from the primal problem. This gives us the adjoint problem by
computing

JðwÞ ¼ JðwÞ �
Z 1

0
hTðAwþ Bwx � FÞdx ¼

Z 1

0
wTðG� Ahþ BhxÞdx� hT Bw

� �1

0 þ ðh; FÞ: ð51Þ

The adjoint equation is thus given by

Ah� Bhx ¼ G ð52Þ

and the adjoint boundary conditions are the minimal number of conditions such that hT Bw
� �1

0 ¼ 0. After applying the homo-
geneous boundary conditions for the primal problem, we get the adjoint problem on component formffiffiffi

a
p

wx ¼ g;

wþ
ffiffiffi
a
p

/x ¼ 0;
/ð0; tÞ ¼ 0;
/ð1; tÞ ¼ 0:

ð53Þ

The primal PDE on LDG form (46) is discretized as

d
dt

uh ¼
ffiffiffi
a
p

P�1Qvh þ f þ rLP�1ðeT
0uh � 0Þe0 þ rRP�1ðeT

Nuh � 0ÞeN;

vh ¼
ffiffiffi
a
p

P�1Quh þ sLP�1ðeT
0uh � 0Þe0 þ sRP�1ðeT

Nuh � 0ÞeN :

ð54Þ

By multiplying the first equation by uT
hP, the second by vT

hP and adding the results we get

1
2

d
dt
jjuhjj2 þ jjvhjj2 ¼ ðsL �

ffiffiffi
a
p
ÞuT

hE0vh þ ðsR þ
ffiffiffi
a
p
ÞuT

hENvh þ rLuT
hE0uh þ rRuT

hENuh ð55Þ

and the scheme is clearly stable if

sL ¼
ffiffiffi
a
p

; sR ¼ �
ffiffiffi
a
p

; rL 6 0; rR 6 0: ð56Þ

To determine spatial dual consistency we again let ut ¼ 0 and rewrite (54), using (56), as
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Lhwh ¼ eF ; ð57Þ

where wh ¼ ½uh;vh�T , eF ¼ ½Pf ;0�T and

Lh ¼
�rLE0 � rREN �

ffiffiffi
a
p

Q
�

ffiffiffi
a
p

Q �
ffiffiffi
a
p

E0 þ
ffiffiffi
a
p

EN P

" #
: ð58Þ

The discrete dual problem is given by

LT
hhh ¼ eG; ð59Þ

where hh ¼ ½/h;wh�
T , eG ¼ ½Pg;0�T , and it has to be a consistent approximation of (53) without violating the stability conditions

(56). By using the SBP properties of the operators we expand (59) and write it in component form asffiffiffi
a
p

P�1Qwh ¼ g þ rLP�1E0/h þ rRP�1EN/h

wh þ
ffiffiffi
a
p

P�1Q/h ¼ �
ffiffiffi
a
p

P�1E0/h þ
ffiffiffi
a
p

P�1EN/h

ð60Þ

which exactly approximates (53), including the dual boundary conditions. Note that there are no restrictions on rL;R for dual
consistency.

Remark 4.2. Note that the stability requirements are sufficient for spatial dual consistency, in contrast to the pure advection
case.

Remark 4.3. The LDG form can be transformed back to second order form, see also [30], in which case the scheme becomes

d
dt

uh ¼ aðP�1QÞ2uh þ f þ ðrLI þ aP�1QÞP�1ðeT
0uh � 0Þe0 þ ðrRI � aP�1QÞP�1ðeT

Nuh � 0ÞeN; ð61Þ

where I is the identity matrix of size N þ 1. Note that we get back the wide second derivative operator, possibly suggesting
that dual consistency requires a second derivative operator which can be factorized into the product of two first derivative
operators.

4.3. The viscous Burgers’ equation

The viscous Burgers’ equation, together with a linear functional of interest, with homogeneous Dirichlet boundary con-
ditions on 0 6 x 6 1 is given on conservative form by

ut þ
u2

2

� �
x

¼ euxx þ f ;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ:

ð62Þ

Since (62) is a non-linear equation, the present theory cannot directly be applied. The viscous Burger’s equation have regular
solutions due to the viscosity term, and the behavior of the solution is not far from that of a linear problem. In the absence of
a general method for non-linear analysis, a linear analysis is used. In the presence of shocks, for more complicated equations,
it is not clear what meaning a linear analysis have.

We linearize (62) around a constant state u ¼ a to obtain the linear equation,

ut þ aux ¼ euxx þ f ;

uð0; tÞ ¼ 0;
uð1; tÞ ¼ 0;
JðuÞ ¼ ðg;uÞ;

ð63Þ

which is usually referred to as the advection–diffusion equation.
Since (62) contains second derivatives, we introduce the auxiliary variable v ¼

ffiffiffi
e
p

ux and rewrite the steady (linear) prob-
lem as

Awþ Bwx ¼ F; ð64Þ

where w ¼ ½u;v �T , F ¼ ½f ;0�T and

A ¼
0 0
0 1

� �
; B ¼ a �

ffiffiffi
e
p

�
ffiffiffi
e
p

0

" #
: ð65Þ
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To find the adjoint equation, we define G ¼ ½g;0�T and seek h ¼ ½/;w�T such that

JðwÞ ¼ ðh; FÞ ð66Þ

as before. Integration by parts leads to

JðwÞ ¼ JðwÞ �
Z 1

0
hTðAwþ Bwx � FÞdx ¼

Z 1

0
wTðG� Ahþ BhxÞdx� hT Bw

� �1

0 þ ðh; FÞ ð67Þ

and hence the adjoint equation is given on component form as

� a/x þ
ffiffiffi
e
p

wx ¼ g;

/þ
ffiffiffi
e
p

/x ¼ 0;

/ð0; tÞ ¼ 0;

/ð1; tÞ ¼ 0:

ð68Þ

The stability analysis will also be performed on the linearized equations. The time-dependent equation on LDG form is dis-
cretized as

d
dt

uh þ aP�1Quh ¼
ffiffiffi
e
p

P�1Qvh þ rLP�1ðeT
0uh � 0Þe0 þ rRP�1ðeT

Nuh � 0ÞeN þ f ;

vh ¼
ffiffiffi
e
p

P�1Quh þ sLP�1ðeT
0uh � 0Þe0 þ sRP�1ðeT

Nuh � 0ÞeN

ð69Þ

and the coefficients rL;R and sL;R has to be determined such that the scheme is stable. By multiplying the first equation in (69)
by uT

hP and the second by vT
hP, we obtain by adding the results

d
dt
jjuhjj2 þ 2jjvhjj2 ¼ ð2rL þ aÞuT

hE0uh þ ð2rR � aÞuT
hENuh þ 2ðsL �

ffiffiffi
e
p
ÞvT

hE0uh þ 2ðsR þ
ffiffiffi
e
p
ÞvT

hENuh: ð70Þ

We can see that (70) is stable if we chose

rL 6 �
a
2
; rR 6

a
2
; sL ¼

ffiffiffi
e
p

; sR ¼ �
ffiffiffi
e
p

: ð71Þ

To determine if the scheme is spatially dual consistent, we let ut ¼ 0 and rewrite (69), using (71), as

Lhwh ¼ eF ; ð72Þ

where wh ¼ ½uh;vh�T ; eF ¼ ½Pf ;0�T and

Lh ¼
aQ þ rLE0 þ rREN �

ffiffiffi
e
p

�
ffiffiffi
e
p

Q �
ffiffiffi
e
p

E0 þ
ffiffiffi
e
p

EN P

" #
: ð73Þ

The discrete dual problem is then given by

LT
hhh ¼ eG; ð74Þ

where hh ¼ ½/h;wh�
T and eG ¼ ½Pg; 0�T , which has to be a consistent approximation of (68) without violating the stability con-

ditions (71). By expanding (74), we can write it in component form as

� aP�1Q/h þ
ffiffiffi
e
p

P�1Qwh ¼ �ðrL � aÞP�1E0/h � ðrR þ aÞP�1EN/h þ g

wh þ
ffiffiffi
e
p

P�1Q/h ¼ �
ffiffiffi
e
p

P�1E0/h þ
ffiffiffi
e
p

P�1EN/h

ð75Þ

which can be seen to be a consistent approximation of (74) without violating any of the stability conditions in (71). Hence
the scheme (69) is both a stable and spatially dual consistent approximation of the linearized equation.

When performing the computations, however, we use the nonlinear LDG formulation

d
dt

uh þ P�1Q
u2

h

2

� �
¼

ffiffiffi
e
p

P�1Qvh þ rLP�1ðeT
0uh � 0Þe0 þ rRP�1ðeT

Nuh � 0ÞeN þ f ;

vh ¼
ffiffiffi
e
p

P�1Quh þ sLP�1ðeT
0uh � 0Þe0 þ sRP�1ðeT

Nuh � 0ÞeN ;

ð76Þ

where every occurence of the mean flow coefficient, a, in the SAT is replaced by u to obtain a nonlinear SAT. This procedure is
motivated by the linearization and localization principle, see [49] for details.

Remark 4.4. Note again that stability is sufficient for spatial dual consistency and no extra conditions have to be placed on
the SAT coefficients. The coefficients rL;R are still allowed to vary in a semi-infinite range.
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4.4. An incompletely parabolic system

In this section we consider the incompletely parabolic system

Ut þ AUx ¼ BUxx þ F;

JðUÞ ¼ ðG;UÞ;
ð77Þ

where U ¼ ½p;u�; F ¼ ½f1; f2�T ;G ¼ ½g1; g2�
T and

A ¼
�u �c
�c �u

� �
; B ¼

0 0
0 e

� �
: ð78Þ

Eq. (77) can be thought of as the symmetrized [50] Navier–Stokes equations linearized around the mean velocity �u > 0 and
speed of sound �c. We shall assume a linearization around a subsonic flow field, that is �u < �c. In this case, (77) requires two
boundary conditions at the inflow boundary and one at the outflow. For the purpose of analysis, we will use the homoge-
neous Dirichlet conditions

uð0; tÞ ¼ 0; pð0; tÞ ¼ 0; uð1; tÞ ¼ 0: ð79Þ

To obtain the adjoint equations, we let ut ¼ pt ¼ 0 and rewrite (77) in LDG form as

Awþ Bwx ¼ F; ð80Þ

where w ¼ ½p;u; v�T ; F ¼ ½f1; f2; 0�T ; v ¼
ffiffiffi
e
p

ux and

A ¼
0 0 0
0 0 0
0 0 1

264
375; B ¼

�u �c 0
�c �u �

ffiffiffi
e
p

0 �
ffiffiffi
e
p

0

264
375: ð81Þ

The adjoint equations are now found by seeking h ¼ ½/;w; m�T such that

JðwÞ ¼ ðh; FÞ: ð82Þ

Integration by parts gives

JðwÞ ¼ JðwÞ �
Z 1

0
hTðAwþ Bwx � FÞdx ¼

Z 1

0
wTðG� Ahþ BhxÞdx� hT Bw

� �1

0 þ ðh; FÞ; ð83Þ

where G ¼ ½g1; g2;0�
T . The adjoint problem is hence given on component form as

� �u/x � �cwx ¼ g1;

� �c/x � �uwx þ
ffiffiffi
e
p

mx ¼ g2;

mþ
ffiffiffi
e
p

wx ¼ 0;
wð0; tÞ ¼ 0;
/ð1; tÞ ¼ 0;
wð1; tÞ ¼ 0:

ð84Þ

Note that the dual problem has one boundary condition at x ¼ 0 and two at x ¼ 1, in contrast to the primal problem for
which the situation is reversed.

The time-dependent problem (80) is discretized as

d
dt

ph þ �uP�1Qph þ �cP�1Quh ¼ r1P�1ðeT
0ph � 0Þe0 þ r2P�1ðeT

0uh � 0Þe0 þ r3P�1ðeT
Nuh � 0ÞeN;

d
dt

uh þ �cP�1Qph þ �uP�1Quh �
ffiffiffi
e
p

P�1Qvh ¼ s1P�1ðeT
0ph � 0Þe0 þ s2P�1ðeT

0uh � 0Þe0 þ s3P�1ðeT
Nuh � 0ÞeN;

vh �
ffiffiffi
e
p

P�1Quh ¼ c1P�1ðeT
0ph � 0Þe0 þ c2P�1ðeT

0uh � 0Þe0 þ c3P�1ðeT
Nuh � 0ÞeN ð85Þ

and the coefficients r1;2;3; s1;2;3 and c1;2;3 has to be determined such that the scheme is stable. By applying the energy method
to each of the equations and adding them, we can write the result as

d
dt
jjphjj

2 þ d
dt
jjuhjj2 þ 2jjvhjj2 ¼ wT

hM0wþwhMNwh; ð86Þ
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where wh ¼ ½ph;uh;vh� and

M0 ¼
ð�uþ 2r1ÞE0 ð�c þ r2 þ s1ÞE0 c1E0

ð�c þ r2 þ s1ÞE0 ð�uþ 2s2ÞE0 ðc2 �
ffiffiffi
e
p
ÞE0

c1E0 ðc2 �
ffiffiffi
e
p
ÞE0 0

264
375;

MN ¼
��uEN ð��c þ r3ÞEN 0

ð��c þ r3ÞEN ð��uþ 2s3ÞEN ðc3 þ
ffiffiffi
e
p
ÞEN

0 ðc3 þ
ffiffiffi
e
p
ÞEN 0

264
375:

ð87Þ

To simplify (86), we introduce the Kronecker product, which is defined for arbitrary matrices X and Y by

X � Y ¼

x11Y x12Y . . . x1nY

x21Y x22Y . . . x2nY

..

. . .
. . .

. ..
.

xm1Y xm2Y . . . xmnY

266664
377775: ð88Þ

The Kronecker product is bilinear, associative and satisfies the mixed product property
ðX1 � Y1ÞðX2 � Y2Þ ¼ ðX1X2 � Y1Y2Þ ð89Þ

if the usual matrix products are defined. For inversion and transposing we have

ðX � YÞ�1;T ¼ ðX�1;T � Y�1;TÞ ð90Þ

if the usual matrix inverses are defined.
Using the Kronecker product, we can factorize (86) as

d
dt
jjphjj

2 þ d
dt
jjuhjj2 þ 2jjvhjj2 ¼ wT

hðm0 � E0Þwh þwT
hðmN � ENÞwh; ð91Þ

where m0;N are the smaller submatrices

m0 ¼

�uþ 2r1 �c þ r2 þ s1 c1

�c þ r2 þ s1 �uþ 2s2 c2 �
ffiffiffi
e
p

c1 c2 �
ffiffiffi
e
p

0

2664
3775; ð92Þ

mN ¼

��u ��c þ r3 0

��c þ r3 ��uþ 2s3 c3 þ
ffiffiffi
e
p

0 c3 þ
ffiffiffi
e
p

0

2664
3775: ð93Þ

Since E0; EN P 0, we obtain a stable scheme is the coefficients are chosen such that m0;mN 6 0. The coefficients are given in

Proposition 4.1. The scheme (85) is stable using

r1 6 �
�u
2
; �c þ r2 þ s1 ¼ 0; s2 6 �

�u
2
; c1 ¼ 0; c2 ¼

ffiffiffi
e
p

ð94Þ

for the coefficients in (92) and

r3 ¼ �c; c3 ¼ �
ffiffiffi
e
p

; s3 6
�u
2

ð95Þ

for the coefficients in (93).

Proof. By inserting the coefficients (94) and (95) into the scheme (85), the energy estimate (91) reduces to

d
dt
jjphjj

2 þ d
dt
jjuhjj2 þ 2jjvhjj2 6 0: � ð96Þ

To determine the spatial dual consistency of (85), we let pt ¼ ut ¼ 0 and rewrite as

Lhwh ¼ eF ; ð97Þ

where eF ¼ ½Pf1; Pf2;0�T and

Lh ¼
�uQ � r1E0 �cQ � r2E0 � �cEN 0
�cQ � s1E0 �uQ � s2E0 � s3EN �

ffiffiffi
e
p

Q

0 �
ffiffiffi
e
p

Q �
ffiffiffi
e
p

E0 þ
ffiffiffi
e
p

EN P

264
375: ð98Þ
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The discrete dual problem is then given by

LT
hhh ¼ eG; ð99Þ

where hh ¼ ½/h;wh; mh�T , eG ¼ ½Pg1; Pg2;0�
T , and it has to be a consistent approximation of (84) without violating the stability

conditions. By expanding (99), using (94) and (95), we get

� �uP�1Q/h � �cP�1Qwh ¼ ðr1 þ �uÞP�1E0/h þ ðs1 þ �cÞP�1E0wh � �uP�1EN/h � �cP�1ENwh þ g1;

� �cP�1Q/h � �uP�1Qwh þ
ffiffiffi
e
p

P�1Qmh ¼ ðr2 þ �cÞP�1E0/h þ ðs2 þ �uÞP�1E0wh þ ðs3 � �uÞP�1ENwh þ g2;ffiffiffi
e
p

P�1Qwh þ m ¼ �
ffiffiffi
e
p

P�1E0wh þ
ffiffiffi
e
p

P�1ENwh: ð100Þ

Remember that the boundary conditions in the dual Eq. (84) are different from those of the primal equation. This puts
restrictions on the coefficients in order to obtain a consistent approximation of the dual problem. The coefficients are given
in

Proposition 4.2. The scheme (85) is stable and spatially dual consistent with (94), (95) and the choices

r1 ¼ ��u; r2 ¼ ��c: ð101Þ

Proof. The choice (101) cancels the terms in (100) for which additional erroneous boundary conditions would be imposed
for the dual problem. Note that r2 ¼ ��c implies

s1 ¼ 0: ð102Þ

The choice of coefficients given in (101) and (102) does not violate the stability conditions given in (94) and (95). h

Remark 4.5. Note that only the coefficients at the inflow boundary are uniquely determined by the spatial dual consistency
requirements. For the outflow boundary, the conditions for stability are sufficient.

Remark 4.6. The requirements for spatial dual consistency has always constituted a subset of the stability requirements. We
have hence been able to construct schemes which are both energy stable and spatially dual consistent. The energy analysis
for stability typically renders some coefficients in the SAT to be semi-bounded, while the additional requirement of spatial
dual consistency fixes some coefficients to unique values in the semi-bounded region.

5. Numerical results

A forcing function have been chosen in all cases such that an analytical solution is known, and the rate of convergence and
errors are computed with respect to the analytical solution. The analytical solution is smooth for all times, even for the vis-
cous Burger’s equation. This is known as the method of manufactured solutions [51]. Note that the boundary and initial data
are constructed from the analytical solution and are hence the conditions are no longer homogeneous.

The time integration is performed until time t ¼ 10 using the classical 4th-order Runge–Kutta method with timestep
Dt ¼ 2� 10�6, to ensure that the time integration errors are negligible. In each time step we perform a mesh refinement from
32 to 160 gridpoints, in steps of 16, and compute the rate of convergence for both the solution and the functional. In this way,
the rate of convergence can be computed as a function of time.

We compare the new schemes with standard SBP-SAT schemes which impose the Dirichlet boundary conditions tradi-
tionally without respect to the dual problem. The solutions to all problems were verified to converge with the design order
of accuracy. In Tables 1 and 2 we summarize the time-average rates of functional convergence for the dual consistent and
dual inconsistent cases, respectively.

The advection equation, heat equation, viscours Burger’s equation and the incompletely parabolic system of equations are
representatives for the hyperbolic, parabolic, nonlinear and mixed type of partial differential equations. Despite them being
different in nature, the results regarding the functional convergence are consistent. A spatially dual consistent SBP-SAT dis-
cretization gives rise to time-dependent superconvergent linear functional output.

Table 1
Time-average rates of the functional convergence for the dual consistent discretization.

Accuracy Advection Heat Burger’s System ðJðpÞ; JðuÞÞ

3rd 4.14808 4.0073 4.19861 4.27252, 4.18926
4th 6.9023 6.86841 6.36518 6.61803, 6.53875
5th 6.99999 8.83809 8.61754 8.76432, 8.67103
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We stress that the method presented does not require any knowledge about the solution of the adjoint equations. Spatial
dual consistency is a property of the discretization based upon knowledge of the form of the adjoint equation and its bound-
ary conditions. Superconvergent functionals are thus obtained at no extra computational cost.

The superconvergence of the functional ensures that for sufficiently high resolutions, the dual consistent discretization
will outperform a spatially dual inconsistent discretization. Most realistic simulations are, however, marginally or under-re-
solved and it is desirable that the higher order accuracy does not come at the cost of large error constants which ruin com-
putations on a coarse mesh.

The errors in the solution and in the linear functionals were computed for a coarse mesh. The solution and functional er-
rors were computed as a function of time for the coarsest grid level, N ¼ 32 grid points. We consider only the incompletely
parabolic case to reduce the number of tables. The results were verified to be analogous for the other cases. We have also
included an inconsistent scheme with a more accurate compact discretization of the second derivative as described in
[20,52]. The errors are summarized in Table 3, where we present the average error over time for both the solutions and
the functionals. From Table 3, we can see that the dual consistent discretization is somewhat less accurate in computing
the solution, but much more accurate in computing the functionals. The 5th-order accurate spatially dual consistent discret-
ization is already at 32 gridpoints 2 orders of magnitude more accurate than the spatially dual inconsistent discretization.

6. Summary and conclusions

We have defined and derived spatially dual consistent discretizations based on finite difference operators satisfying the
summation-by-parts properties. The boundary conditions were imposed weakly using the simultaneous approximation
term. We have presented derivations of spatial dual consistency in a general way and applied the technique to four repre-
sentative equations; the advection equation, the heat equation, the viscous Burgers’ equation and an incompletely parabolic
system of equations.

In the cases we considered, the requirements for spatial dual consistency conform with the stability requirements. It was
hence always possible to derive schemes which are both energy stable and spatially dual consistent for the cases we have
considered, despite all model problems being of different type.

It was shown for all considered cases that a spatial dual consistent discretization produced superconvergent linear func-
tionals computed from the solution. By superconvergece we mean that the solution is accurate of order p + 1 (or p + 2 under
certain conditions), while the linear functional is computed with 2p-order accuracy.

We have computed the errors in both the solution and in the linear functionals for a coarse mesh to ensure that the super-
convegence does not come at the cost of large error constants. It was seen that the solution computed from the spatially dual
consistent scheme was somewhat less accurate, while the functional could be two orders of magnitude more accurate al-
ready on a coarse grid.

The superconvergence does not require any knowledge about the solution of the adjoint equations. By considering only
the form of the adjoint equation and its boundary conditions, it is a matter of choosing the SAT such that the scheme be-
comes stable and spatial dual consistent. Superconvergent functional outputs can thus be computed at no extra computa-
tional cost compared to a standard discretization.

Table 2
Time-average rates of the functional convergence for the dual inconsistent discretization.

Accuracy Advection Heat Burger’s System ðJðpÞ; JðuÞÞ

3rd 3.06438 4.17441 3.93663 2.71162, 3.68422
4th 4.13107 5.22073 5.08856 3.41406, 3.72249
5th 4.64093 5.42542 5.60646 4.53447, 4.25429

Table 3
Average errors using N ¼ 32 grid points.

Accuracy Solution for p Functional for p

Consistent Wide Compact Consistent Wide Compact

3rd 2.0446e�03 2.0571e�03 1.6012e�03 5.0140e�05 2.8720e�04 5.6833e�04
4th 1.8328e�03 1.3131e�03 1.2423e�03 2.3244e�05 4.0409e�04 8.4830e�04
5th 1.1855e�02 6.9236e�03 6.9241e�03 1.2150e�05 1.2854e�03 3.1519e�03

Solution for u Functional for u

3rd 5.0395e�03 1.0337e�03 4.2541e�04 1.0125e�04 5.1268e�04 4.6830e�04
4th 2.1250e�03 1.0265e�03 4.1681e�04 1.6691e�05 3.1254e�04 3.6392e�04
5th 1.5030e�02 1.1059e�02 3.9369e�03 9.7499e�06 6.1595e�04 5.2289e�03
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Abstract

In this paper we derive well-posed boundary conditions for a linear incompletely
parabolic system of equations, which can be viewed as a model problem for the com-
pressible Navier–Stokes equations. We show a general procedure for the construction
of the boundary conditions such that both the primal and dual equations are well-
posed. The form of the boundary conditions is chosen such that reduction to first
order form with its complications can be avoided.

The primal equation is discretized using finite difference operators on summation-
by-parts form with weak boundary conditions. It is shown that the discretization
can be made energy stable, and that energy stability is sufficient for dual consistency.
Since reduction to first order form can be avoided, the discretization is significantly
simpler compared to a discretization using Dirichlet boundary conditions.

We compare the new boundary conditions with standard Dirichlet boundary con-
ditions in terms of rate of convergence, errors and discrete spectra. It is shown that
the scheme with the new boundary conditions is not only far simpler, but also has
smaller errors, error bounded properties, and highly optimizable eigenvalues, while
maintaining all desirable properties of a dual consistent discretization.
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1. Introduction

Functionals can represent the lift or drag on an aircraft, energy or any other
scalar quantity computed from the solution to a partial differential equation (PDE).
In many engineering applications, high order accurate functionals are often of greater
interest than accurate solutions of the equations themselves. Whenever there is a
functional involved, the concept of duality becomes important. The solution of a
PDE resides in some function space, and the set of all bounded linear functionals on
that space is called its dual space. Knowledge of the functional of interest can thus
be obtained by studying the dual space. This is the main topic in functional analysis
and references can be found in any standard textbook.

The dual equations need, as the primal equations, to be supplied with the correct
boundary conditions in order for a solution to exist and be unique. Like the dual
differential operator, the dual boundary conditions depend on the primal problem
and it is a non-trivial task to construct boundary conditions such that both the primal
and dual problems are well-posed. The most common choice is Dirichlet boundary
conditions since the analysis of the continuous equations is simplified. However, it
is well-known that Dirichlet boundary conditions cause large reflections and reduces
the accuracy and stability properties of a numerical scheme [18]. Other kinds of
boundary conditions are beneficial for a discretization, but complicate the analysis
of the dual equations. Here, we shall study boundary conditions of far-field type
which have been shown to be beneficial for discretizations [19, 23, 21].

In numerical analysis, and in particular for computational fluid dynamics prob-
lems, duality has been exploited for optimal control problems [27, 15, 8], error esti-
mation [26, 34, 35, 12, 7] and convergence acceleration [9, 25, 13, 4]. An extensive
summary of the use of adjoint problems can be found in [10], and more recently in
[6] with focus on error estimation and adaptive mesh refinement.

In this paper we will use a finite difference method on summation by parts (SBP)
form with boundary conditions weakly imposed by the simultaneous approximation
term (SAT). There has recently been a development of the quadrature properties of
SBP-SAT discretizations. The base for an SBP operator is a norm matrix, denoted
by P . The norm matrix is an integration operator for equidistant grid points. The
integration properties of P has been studied in [14] and it was shown that P is a
high-order accurate quadrature rule which extends the Gregory formulas. In [13],
the discretization of steady problems were considered. The authors showed that
certain SBP-SAT discretizations, so called dual consistent discretizations, led to
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superconvergent functionals if the same P was used in the discretization as in the
functional evaluation. The theory of dual consistency and superconvergence was
extended to time-dependent problems in [4]. Several problems were analyzed and
it was shown that dual consistency and stability implies superconvergence of linear
functionals.

In order to avoid additional theoretical difficulties in [4], Dirichlet boundary con-
ditions for both the primal and dual problems were used. The Dirichlet boundary
conditions ensured that both problems were well-posed without additional efforts. In
an Euler or Navier–Stokes calculation, however, Dirichlet boundary conditions are
rarely used at far-field boundaries. Unless exact boundary data is known, Dirichlet
boundary conditions cause reflections which pollute the solution.

In this paper we will investigate the potential gain, or loss, when replacing the
Dirichlet boundary conditions with more sophisticated ones. The aim of the paper
is to derive well-posed boundary conditions for both the primal and dual problems
such that the complications of having Dirichlet boundary conditions are removed,
while maintaining all desirable properties of a dual consistent discretization and
sophisticated boundary conditions.

2. Preliminaries

In this paper, we will consider time-dependent partial differential equations of
the form

ut + L(u) = f,

J(u) = (g, u),
(1)

where J(u) is a linear functional output of interest with g = g(x, t) being an arbitrary
weight function. L can be either linear or non-linear and u can represent either a
scalar or vector valued function. Detailed descriptions can be found in [4] but for
convenience, we summarize the main preliminaries here.

The inner product is the standard L2-inner product

(u, v) =

∫
Ω

uTvdΩ.

In [4], the concept of spatial dual consistency was introduced to avoid treating the
full time-dependent dual equations when discretizing using a method of lines. The
concept is motivated by the following. To find the dual problem, we follow the
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notation in [4, 13], and seek a function θ in some appropriate function space, such
that

T∫
0

J(u)dt =

T∫
0

(θ, f)dt.

A formal computation (assume L linear and u, θ to have compact support in space)
gives

T∫
0

J(u)dt =

T∫
0

J(u)dt−
T∫

0

(θ, ut + Lu− f)dt

=

T∫
0

(θt − L∗θ + g, u)dt−
∫
Ω

[θu]T0 dΩ +

T∫
0

(θ, f)dt,

where L∗ is the formal adjoint, or dual, operator associated with L under the inner
product such that (θ, Lu) = (L∗θ, u). By having homogeneous initial conditions for
the primal problem, we obtain the time-dependent dual problem as

−θt + L∗θ = g, (2)

where we have to put an initial condition for the dual problem at time t = T . The
time transformation τ = T − t transforms (2) to

θτ + L∗θ = g

with an initial condition at τ = 0. A discretization which simultaneously approx-
imates the spatial primal and dual operator consistently, is called spatially dual
consistent and produces superconvergent time-dependent linear functionals if the
scheme for the primal problem is stable [4].

A difference operator for the first derivative is said to be on SBP form if it can
be written as D1 = P−1Q. P defines a norm by ||uh||2 = uThPuh and Q satisfies the
SBP property Q+QT = EN − E0, where

EN = diag[0, . . . , 0, 1], E0 = diag[1, 0, . . . , 0].

The second derivative operator can be constructed either by applying the first deriva-
tive twice, i.e. D2 = (P−1Q)2 which results in a wide operator, or a compact operator
with minimal bandwidth of the form

D2 = P−1(−H + (EN − E0)S)
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as described in [5, 17, 16]. In this paper, we consider only diagonal [28] norms and
wide second derivative operators. The diagonal norm is flexible for realistic simula-
tions as the resulting schemes can be shown to be energy stable under curvilinear
coordinate transforms. This does not hold for non-diagonal norms [20, 22, 30, 32].

A first derivative SBP operator is essentially a 2s-order accurate central finite
difference operator which has been modified close to the boundaries such that it be-
comes one-sided. Together with the diagonal norm, the boundary closure is accurate
of order s making the SBP operator accurate of order s + 1 in general [28]. For
problems with second derivatives, the compact operator can be modified with higher
order accurate boundary closures to gain one extra order of accuracy [17, 33].

A discretization of the primal problem (1) can be written as

d

dt
uh + Lhuh = f,

where uh is the discrete approximation of u and Lh is a discrete approximation of L,
including the boundary conditions. The discrete inner product in an SBP setting is
defined by

(uh, vh)h = uThPvh

and hence the discrete adjoint operator can be computed, according to the definition

(vh, Lhuh)h = (L∗hvh, uh)h,

as
L∗h = P−1LThP.

The proof that a stable and spatially dual consistent SBP scheme produces super-
convergent linear functionals is presented in [4]. The proof is based on the fact that
the mass matrix, P , in the norm is a 2s-order accurate integration operator [14, 13].

The procedure for constructing stable schemes which produce superconvergent
linear functionals can now be summarized as follows;

1. Determine boundary conditions such that both the primal and dual problems
are well-posed

2. Discretize the primal problem and ensure stability

3. Compute L∗h and choose the remaining parameters (if any) such that the contin-
uous adjoint L∗ is consistently approximated together with the dual boundary
conditions

Note that a stable and consistent discretization of the primal problem does not imply
that the dual problem is consistently approximated.
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3. Linear incompletely parabolic system

We shall study the linear incompletely parabolic system of equations on 0 ≤ x ≤ 1
given by

Ut + AUx = BUxx, (3)

where U = [p, u]T and

A =

[
ū c̄
c̄ ū

]
, B =

[
0 0
0 ε

]
,

together with a linear functional of interest,

J(U) =

1∫
0

GTUdx. (4)

Equation (3) can be viewed as the symmetrized [2], one-dimensional Navier–Stokes
equations, linearized around a flow field with constant velocity ū > 0 and speed of
sound c̄ > 0. In this case, we assume ū < c̄ and it can be shown [24, 29] that (3)
requires two boundary conditions at the inflow boundary, x = 0, and one at the
outflow boundary at x = 1, in both the subsonic and supersonic case. Even though
this is a model problem, we denote the case ū < c̄ as subsonic, and supersonic if
ū > c̄.

3.1. Dirichlet boundary conditions
In [4], equation (3) was supplied with the Dirichlet boundary conditions

p(0, t) = 0, u(0, t) = 0, u(1, t) = 0.

An energy estimate results in

||U ||2t + ||BUx||2 ≤ 0, (5)

where we used the notation ||U ||2t = d
dt

(||U ||2). Note that the boundary conditions
cancel all boundary terms completely, and does not give any additional damping of
the energy, ||U ||2.

The spatial dual operator was obtained by reducing (3) to a first order system by
introducing the auxiliary variable v =

√
εux. There are several drawbacks with this

technique. The most obvious one is that it results in a larger system of equations
which complicates the analysis. The drawbacks of the first order form also carries
over to the discretization. In the discretization of the first order form, there are nine
unknown penalty parameters in the SAT procedure which have to be determined for
stability and dual consistency [4]. This makes extensions to larger system in multiple
dimensions complicated.
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3.2. Flux based boundary conditions

The new boundary conditions we consider are of the form

HL,RU ∓BUx = GL,R, (6)

where HL,R will be determined for well-posedness of both the primal and dual prob-
lems.

There are many different forms of the matrices HL,R in (6) which give well-
posed inflow or outflow boundary conditions. The typical way to determine the
structure of HL,R is to diagonalize the hyperbolic part of the equation and consider
the ingoing or outgoing characteristics. This method will provide an energy estimate
with optimal damping properties [19]. However, the dual problem associated with
the linear functional (4) will most likely be ill-posed. Well-posedness of the primal
problem does not imply well-posedness of the dual problem.

Since we are only interested in the spatial dual operator, it is sufficient to consider
the steady, inhomogeneous, problem

AUx −BUxx = F.

In this case, the differential operator L is given by

L = A
∂

∂x
−B ∂2

∂x2

and we seek θ = [φ, ψ]T such that J(U) = (θ, F ). Integration by parts gives

J(U) = (G,U)− (θ, LU − F )

= (G− L∗θ, U)− [θTAU − θTBUx + θTxBU ]10 + (θ, F ),

where L∗θ = −Aθx −Bθxx and hence the dual operator is given by

L∗ = −A ∂

∂x
−B ∂2

∂x2
. (7)

To determine the boundary conditions for the dual problem, we have to find a min-
imal set of conditions such that

[θTAU − θTBUx + θTxBU ]10 = 0 (8)

after the homogeneous boundary conditions for the primal problem have been ap-
plied. This is what put restrictions on the matrices HL,R in (6). Not only does the
boundary terms have to vanish, they will also have to satisfy the correct number
and form for the dual equation. Wrong choice of boundary conditions for the primal
problem will cause the dual problem to be ill-posed [24, 29].
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3.2.1. Left boundary conditions

To simplify the analysis, we assume the left boundary condition to be homoge-
neous,

HLU −BUx = 0. (9)

By considering only the terms at x = 0, we can write (8) as

θT (AU −BUx) + θTxBU = UT ((A−HT
L )θ +Bθx)

after having applied the homogeneous boundary conditions (9) for the primal equa-
tion. The boundary conditions for the dual equation are thus given by

(A−HT
L )θ +Bθx = 0. (10)

The form of the matrix HL can now be determined. Since the left boundary is an
inflow boundary for the primal equation, but an outflow boundary for the dual equa-
tion, only one boundary condition is allowed for the dual equation. The boundary
conditions (10) hence have to be of rank one and thus it is required that

A−HT
L =

[
0 0
αL βL

]
(11)

or equivalently

HL =

[
ū c̄− αL
c̄ ū− βL

]
. (12)

Any other form of HL would impose too many boundary conditions for the dual
equation and it would not be well-posed. The coefficients αL, βL have to be chosen
such that we obtain an energy estimate for both the time-dependent primal and dual
problems.

We can now turn our attention back to the primal equation. The primal equation
needs two boundary conditions at x = 0, and hence HL is required to have a non-zero
top row. This requirement is automatically fulfilled since ū > 0 by assumption. To
determine the coefficients αL, βL we apply the energy method to (3) and consider
only the left boundary terms. We get

||U ||2t = UTAU − UTBUx − UT
x BU. (13)

By applying the homogeneous boundary conditions (9), we can write (13) as

||U ||2t = −UTMLU,
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where

ML = −A+HL +HT
L =

[
ū c̄− αL

c̄− αL ū− 2βL

]
(14)

and we have to choose the coefficients αL, βL such that ML ≥ 0. There are several
strategies for how to choose the parameters αL and βL such that ML ≥ 0. The most
general is to compute the eigenvalues of ML and determine the parameters such that
all eigenvalues are positive. In this simple 2× 2 case, the eigenvalues can be directly
computed as

µ
(L)
1,2 = ū− βL ±

√
(ū− βL)2 − ū(ū− 2βL) + (c̄− αL)2

and it is required that
(c̄− αL)2 − ū(ū− 2βL) ≤ 0.

For larger systems and more complicated equations, this approach might not be pos-
sible as the eigenvalues are not analytically available. A simpler strategy is proposed
in

Proposition 3.1. The primal equation (3) is well-posed with the left boundary con-
ditions given in (9), where HL is defined in (12) and the parameters αL, βL satisfy

αL = c̄, βL ≤
ū

2
. (15)

Proof. The primal problem requires two boundary conditions at x = 0. Hence the
top row of HL needs to be non-zero. We can see from (12) that this is always the
case since ū > 0 by assumption. By inserting the values in (15) into (14), we get

ML =

[
ū 0
0 ū− 2βL

]
which is diagonal with non-negative diagonal entries.

Note that the strategy in proposition 3.1 is to i) cancel the off-diagonal terms
and ii) ensure that the remaining diagonal terms have the correct sign.

A third option is to determine αL and βL such that the boundary conditions
converge uniformly to a well-posed set of boundary conditions for the hyperbolic
system

Ut + AUx = 0

as ε → 0. The third option will be discussed later, and for now we consider the
choices in (15).
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It is not only the primal equation which has to be well-posed. The time-dependent
dual equation with its dual boundary conditions need also be well-posed with the
conditions given in (15). By introducing the time transformation τ = T − t, we can
write the time-dependent dual equation as

θτ − Aθx = Bθxx. (16)

The well-posedness of the dual problem is proven in

Proposition 3.2. The time-dependent dual problem (16) is well-posed with the dual
boundary conditions (10) where HL is defined in (12) with the parameters given in
(15).

Proof. The dual problem is only allowed to have one boundary condition at x = 0.
It is thus required that the top row of A −HT

L is zero. By construction of HL, this
is the case as can be seen in (11). By applying the energy method to (16), and only
considering the terms at x = 0, we obtain

||θ||2τ = −θTAθ − θTBθx − θTxBθ
= −θT (−A+HL +HT

L )θ

= −θTMLθ

after applying the boundary conditions (10). The semi-definiteness of ML, with the
choices (15), were already proven in the energy estimate of the primal equation.

To summarize, the left homogeneous boundary conditions for the primal problem
are given in (9) and for the dual problem in (10), where HL is defined in (12) with
the coefficients given in (15).

3.2.2. Right boundary conditions

The right boundary, x = 1, is an outflow boundary for the primal problem and
hence only one boundary condition can be used, while we have two variables in the
system. This immediately puts restrictions on the homogeneous primal boundary
condition

HRU +BUx = 0 (17)

in such a way that HR is required to have the form

HR =

[
0 0
αR βR

]
. (18)
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For any other form of HR, too many boundary conditions are placed at the outflow
boundary and the primal problem is ill-posed. The coefficients αR, βR have to be
determined such that both the time-dependent primal and dual problems are well-
posed.

Once the form of HR in (18) has been determined, we must make sure that
the correct number of boundary conditions are imposed on the dual problem. To
determine the boundary conditions for the dual problem, we restrict (8) to the terms
at x = 1. After applying the homogeneous primal boundary conditions (17) we
obtain

θT (AU −BUx) + θTxBU = UT ((A+HT
R)θ +Bθx)

and hence the boundary conditions for the dual problem are given by

(A+HT
R)θ +Bθx = 0, (19)

where

A+HT
R =

[
ū c̄+ αR
c̄ ū+ βR

]
. (20)

Since the dual problem requires two boundary conditions at x = 1, it is required that
the top row of A+HT

R is non-zero. We can see that this requirement is automatically
fulfilled since ū > 0 by assumption.

The coefficients αR and βR can now be determined such that we obtain energy
estimates for both the primal and dual equations. The energy method applied to the
time-dependent dual problem (16), with the homogeneous dual boundary conditions
in (19), gives

||θ||2τ = −θTMRθ,

where

MR = A+HR +HT
R =

[
ū c̄+ αR

c̄+ αR ū+ 2βR

]
. (21)

As this is a 2× 2 system, we can directly compute the eigenvalues of the symmetric
matrix MR as

µ
(R)
1,2 = ū+ βR ±

√
(ū+ βR)2 − ū(ū+ 2βR) + (c̄+ αR)2

and see that they are both non-negative if we choose αR and βR such that

(c̄+ αR)2 − ū(ū+ 2βR) ≤ 0.

Again, in more realistic situations the eigenvalues might not be analytically com-
putable and we use the same strategy as before — to cancel the off-diagonal elements
and ensure that the remaining diagonal terms have the correct sign. The values of
αR and βR with this strategy are given in
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Proposition 3.3. The time-dependent dual problem (16) is well-posed with the right
dual boundary conditions in (19) where the parameters in HR satisfy

αR = −c̄, βR ≥ −
ū

2
. (22)

Proof. The dual problem requires two boundary conditions at x = 1 and hence the
top row of A + HT

R must be non-zero. That this is always the case can be seen in
(20) since ū > 0 by assumption. By substituting the relations in (22) into (21), we
obtain

MR =

[
ū 0
0 ū+ 2β

]
which is diagonal with non-negative diagonal entries.

The well-posedness of the primal problem is given in

Proposition 3.4. The primal problem (3) is well-posed with the right boundary
conditions in (17), where the parameters in HR are given in (22).

Proof. The primal problem requires one boundary condition at x = 1 which is fulfilled
by the construction of HR in (18). As before, the energy method applied to the time-
dependent primal problem gives

||U ||2t = −UT (A+HR +HT
R)U

= −UTMRU,

where semi-definiteness of MR is already proven from the energy estimate of the dual
equation.

To summarize, the right homogeneous boundary conditions for the primal prob-
lem are given in (17) and for the dual problem in (19), where HR is defined in (18)
with the coefficients given in (22).

Remark 3.1. Note how it is the problem which requires the least number of boundary
conditions which sets restrictions on the form of the boundary conditions. When also
considering well-posedness of the dual problem, it can be used to reduce the number
of unknown parameters in the boundary conditions of the primal problem.

Remark 3.2. The energy estimate, when considering all terms, for the primal problem
is given by

||U ||2t + ||BUx||2 = −UTMLU − UTMRU,
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and for the dual problem by

||θ||2τ + ||Bθx||2 = −θTMLθ − θTMRθ.

Both matrices ML and MR have at least one positive eigenvalue and hence the
boundary conditions contribute to damping of the energy. In the energy estimate
(5) with Dirichlet boundary conditions, no additional damping is obtained.

3.3. Convergence to the hyperbolic system

As was discussed previously, the parameters αL,R and βL,R can be chosen such
that they converge to well-posed boundary conditions of the hyperbolic system

Ut + AUx = 0 (23)

as ε→ 0. The energy method applied to (23) results in

||U ||2t = −[UTAU ]10.

Since A is symmetric there is an orthonormal matrix X which diagonalizes A as
A = XΛXT , where Λ = diag[ū+ c̄, ū− c̄] contains the eigenvalues of A. The energy
estimate can hence be rewritten as

||U ||2t = [(XTU)TΛ(XTU)]10

and we can see that one boundary condition is required on each boundary, since by
assumption we have ū < c̄. Hence, as ε → 0 the number of boundary conditions
change from 2 to 1 on the left boundary for the primal problem. For the dual problem,
the number of boundary condition change from 2 to 1 on the right boundary. As a
consequence it is required that the matrices HL in (12) and A + HT

R in (20) both
have rank 1 and non-zero top rows, and that energy estimates can be obtained. The
choices which fulfills these requirements are given in

Proposition 3.5. Let

αL = c̄− ū, βL = ū− c̄, αR = ū− c̄, βR = c̄− ū. (24)

Then the boundary conditions

HLU −BUx = 0,

HRU +BUx = 0,

constitute a well-posed set of boundary conditions for the incompletely parabolic sys-
tem of equations (3) and its dual equations (16), and converge to a well-posed set of
boundary conditions for the hyperbolic system (23) and its dual as ε→ 0.
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Proof. On the left boundary it is required that HL has rank 1 and non-zero top
row. In this case, two boundary conditions will be imposed if ε 6= 0 and one linearly
independent condition if ε = 0. On the right boundary it is required that A + HT

R

has rank 1 and non-zero top row. Thus the dual equations will have two conditions
if ε 6= 0 and one linearly independent condition if ε = 0. Inserting the values of αL,R
and βL,R in (24) gives

HL =

[
ū ū
c̄ c̄

]
, A+HT

R =

[
ū ū
c̄ c̄

]
and we can see that the requirements are fulfilled. The energy estimates of both the
primal and dual equations, independently of ε, are of the form

||ξ||2t + ||Bξx||2 = −ξTMLξ − ξTMRξ,

where ML,R are as before. The 2×2 matrices ML and MR have the same eigenvalues
which are given by

λ1,2 = c̄±
√
c̄2 − 2ū(c̄− ū) ≥ 0,

since ū < c̄ by assumption. Hence energy estimates are obtained for all cases.

Remark 3.3. The choices in (24) make the boundary conditions for both the primal
and dual equations relate to the characteristics of A by

HL = A+HT
R = XT

LΛ+XL,

−HR = A−HT
L = XT

RΛ−XR,

where XL,R are the normalized eigenvector matrices and

Λ± =
Λ± |Λ|

2

contains the positive and negative eigenvalues of A, respectively. See for example
[18, 31].

3.4. Discretization, stability and spatial dual consistency

To discretize systems of equations, it is convenient to introduce the Kronecker
product which is defined for arbitrary matrices C,D as

C ⊗D =


C11D C12D · · · C1nD
C21D C22D · · · C2nD

...
. . . . . .

...
Cn1D Cn2D · · · CnnD

 .
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For the matrix inverse and transpose we have

(C ⊗D)−1,T = C−1,T ⊗D−1,T

if the usual matrix inverses are defined. Furthermore, a useful property which will
be extensively used, is the mixed product property,

(C ⊗D)(C̃ ⊗ D̃) = CC̃ ⊗DD̃,

if the usual matrix products are defined.
Using the Kronecker product, equation (3) with the boundary conditions (6) can

be discretized using the SBP-SAT technique as

d

dt
Uh + (D1 ⊗ A)Uh = (D2 ⊗B)Uh

+ (P−1E0 ⊗ ΣL)((IN+1 ⊗HL)Uh − (D1 ⊗B)Uh −GL)

+ (P−1EN ⊗ ΣR)((IN+1 ⊗HR)Uh + (D1 ⊗B)Uh −GR),

(25)

where ΣL,R are 2× 2 matrices which have to be determined for stability. The second
derivative is approximated using the wide operator, D2 = D1D1 = (P−1Q)2. The
matrices ΣL,R are given in

Proposition 3.6. The scheme (25) is energy stable by choosing

ΣL = ΣR = −I. (26)

Proof. We let GL = GR = 0 and apply the energy method to (25). By using the
SBP properties of the operators, we obtain

||Uh||2t + 2||(D1 ⊗B)Uh||2 = UT
h (E0 ⊗ (A+ ΣLHL +HT

LΣT
L))Uh

− UT
h (EN ⊗ (A− ΣRHR −HT

RΣT
R))Uh

− 2UT
h (E0D1 ⊗ (B + ΣLB))Uh

+ 2UT
h (END1 ⊗ (B + ΣRB))Uh.

(27)

By choosing ΣL = ΣR = −I, equation (27) simplifies to

||Uh||2t + 2||(D1 ⊗B)Uh||2 =− UT
h (E0 ⊗ (−A+HL +HT

L ))Uh

− UT
h (EN ⊗ (A+HR +HT

R))Uh,

where, by construction in the continuous case,

−A+HL +HT
L ≥ 0, A+HR +HT

R ≥ 0
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according to propositions 3.1 and 3.3. Since the Kronecker product preserves positive
(semi) definiteness, we have

||Uh||2t + 2||(D1 ⊗B)Uh||2 =− UT
h (E0 ⊗ (−A+HL +HT

L ))Uh

− UT
h (EN ⊗ (A+HR +HT

R))Uh ≤ 0

and the scheme is energy stable.

The choices of penalty matrices in (26) renders the scheme not only energy stable,
but also spatially dual consistent. To prove this we must show that the discrete
adjoint operator L∗h consistently approximates the continuous adjoint L∗, including
the dual boundary conditions (10) and (19). This is done in

Proposition 3.7. The scheme (25) is spatially dual consistent with the choices of
ΣL,R given in (26).

Proof. For GL,R = 0, we can write the scheme (25) as

d

dt
Uh + LhUh = 0, (28)

where

Lh = (D1 ⊗ A)− (D2 ⊗B)

+ (P−1E0 ⊗ I2)((IN+1 ⊗HL)− (D1 ⊗B))

+ (P−1EN ⊗ I2)((IN+1 ⊗HR) + (D1 ⊗B)).

The discrete dual operator is defined by

L∗h = (P ⊗ I2)−1LTh (P ⊗ I2) (29)

and a straight forward calculation shows that

L∗h = −(D1 ⊗ A)− (D2 ⊗B)

− (P−1E0 ⊗ I2)((IN+1 ⊗ (A−HT
L )) + (D1 ⊗B))

+ (P−1EN ⊗ I2)((IN+1 ⊗ (A+HT
R)) + (D1 ⊗B))

which is a consistent approximation of (7) including the dual boundary conditions
(10) and (19). The scheme is hence spatially dual consistent.

Not only is the scheme dual consistent, the discrete dual scheme is also stable
which is shown in
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Proposition 3.8. The discrete dual scheme

d

dτ
θh + L∗hθh = 0, (30)

is stable with L∗h given in (29).

Proof. The energy estimate of (30) is given by

||θh||2t + 2||(D1 ⊗B)θh||2 =− θTh (E0 ⊗ (−A+HL +HT
L ))θh

− θTh (EN ⊗ (A+HR +HT
R))θh ≤ 0,

which is again stable by construction of the continuous boundary conditions. The
discretization of the primal problem (28) is hence simultaneously a stable discretiza-
tion of the dual problem (30).

Remark 3.4. To obtain a stable and dual consistent scheme with the flux based
boundary conditions, only one penalty parameter at each boundary is required.
From the stability analysis both of them are determined uniquely as the identity
matrix, which is also sufficient for spatial dual consistency. For Dirichlet bound-
ary conditions, nine non-trivial penalty parameters were required, and the stability
requirements were not sufficient for dual consistency.

4. Convergence and errors

A forcing function has been chosen such that an analytical solution is known,
and the rates of convergence and errors are computed with respect to the analytical
solution. This is known as the method of manufactured solutions. The solution in
this case is given by

p(x, t) = (arctan(x)− δ cos(αx− t) + 1)e−x
2

,

u(x, t) = (arctan(x) + δ sin(αx− t) + 1)e−x
2

,

and the functionals by

J(p) = 1 +
π

4
− log(2)

2
+
δ(sin(t− α)− sin(t))

α
,

J(u) = 1 +
π

4
− log(2)

2
+
δ(cos(t)− cos(t− α))

α
.

Typical values of the parameters are

ū = 0.5, c̄ = 1, ε = 10−2, δ = 0.1, α = 5π.
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Flux 1 Dirichlet
N 64 96 128 160 64 96 128 160

3rd-order
p 3.0530 3.0426 3.0377 3.0345 3.5301 3.3552 3.2357 3.1667
u 2.8870 2.9740 2.9973 3.0061 3.6191 3.5355 3.4484 3.3812

J(p) 2.5584 3.9209 4.2617 4.4285 3.9162 4.1626 4.2958 4.3643
J(u) 4.2536 4.2841 4.3698 4.4192 3.7781 3.5831 4.2249 4.5709

4th-order
p 3.9728 4.2644 4.3975 4.4581 3.6293 4.3273 4.4387 4.4715
u 5.0736 4.6958 4.5338 4.4499 4.6610 5.0024 4.9220 4.7676

J(p) 2.2407 4.5614 5.5758 5.9743 4.0073 5.1505 5.4943 5.6757
J(u) 4.4065 5.6051 6.0071 6.2345 3.9695 4.3917 5.2755 5.5775

5th-order
p 5.4375 5.2515 5.0597 4.9655 5.2057 5.7541 5.7028 5.5475
u 4.1043 5.0985 5.2485 5.2911 5.7376 5.1068 4.8237 4.8244

J(p) 4.9722 7.4842 7.8269 8.1507 6.0856 7.1729 7.7521 8.2018
J(u) 6.4334 7.1878 7.7660 8.1503 5.9507 6.9309 7.7971 8.2529

Table 1: Convergence rates for the variables and functionals using both flux based and Dirichlet
boundary conditions

In Table 1 we present the numerical results regarding the order of convergence of
the solution and functionals using both flux based and Dirichlet boundary conditions.
The time integration is performed until time t = 0.2 with the classical 4th-order
Runge-Kutta method using 1000 time steps. The convergence rates for the flux based
boundary conditions (6) are not sensitive to the choice of the continuous parameters,
and in the numerical examples that follow, we have chosen the marginal values

αL = c̄, βL = ū/2, αR = −c̄, βR = −ū/2. (31)

The choices in (24) give very similar results and are excluded.
As can be seen from Table 1, both schemes results in superconvergent functionals

with similar rates of convergence. The error in the solutions and functionals as a
function of time for 3rd-order and N = 32 grid points can be seen in Figure 1 and 2,
respectively. We denote the values in (31) by ”Flux 1” and the characteristic values
in (24) by ”Flux 2”.

As we can see from Figure 1 and 2, in particular the characteristic flux based
scheme (Flux 2) has significantly smaller functional errors.

In [21, 1] it was shown that schemes based on characteristic boundary conditions
for hyperbolic problems, have non-growing errors in time – so called error bounded
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Figure 1: Solution l2 errors as a function of time using N = 32 grid points and 3rd-order for both
the Dirichlet and the flux based boundary conditions
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Figure 2: Functional errors as a function of time using N = 32 grid points and 3rd-order for both
the Dirichlet and the flux based boundary conditions
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Figure 3: Solution l2 errors as a function of time using N = 32 grid points and 3rd-order for both
the Dirichlet and the flux based boundary conditions using ε = 10−6

schemes. We can hence expect the discretization with Dirichlet boundary condition
to have linearly growing errors in time for ε << 1, while the flux based boundary
conditions are error bounded. Indeed, in Figures 3 and 4 we plot the error as a func-
tion of time for large times using ε = 10−6. The Dirichlet boundary conditions give
linearly growing errors while the flux based boundary conditions are error bounded.

With increasing ε, the discretization using the Dirichlet boundary conditions also
becomes error bounded due to the parabolic effects. Since the characteristic choices
in (24) converges uniformly to well-posed and stable boundary conditions for the
hyperbolic system, we have an error bounded scheme for all values of ε, including
ε = 0.

5. Spectral analysis

A consistent numerical scheme should have eigenvalues which converge to the
continuous eigenvalues as the mesh is refined [23, 3]. The continuous spectrum of a
PDE is obtained by Laplace transforms in time to reduce the PDE to an ordinary
differential equation, and solve the corresponding Sturm-Liouville problem. Let

Û =

∞∫
0

estUdt
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Figure 4: Functional errors as a function of time using N = 32 grid points and 3rd-order for both
the Dirichlet and the flux based boundary conditions using ε = 10−6

denote the Laplace transform of U . By ignoring the initial condition, as usual, and
Laplace transforming (3), we obtain

sÛ − AÛx = BÛxx (32)

and the ansatz Û = ekxΨ turns (32) into the eigenvalue problem

(sI + kA− k2B)Ψ = 0.

The general solution to (32), assuming distinct roots, can be written as

Û =
3∑
i=1

σie
kiΨi,

where ki are the roots of the polynomial det(sI+kA−k2B) and Ψi = [Ψi(1),Ψi(2)]T

are the corresponding eigenvectors. Once the ki and Ψi have been determined, the
system of equations for determining σi can be written as

E(s)σ = 0

after the homogeneous boundary conditions have been applied. The continuous
spectrum is then given by the values of s such that det(E(s)) = 0. See [11] for
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further details on the proceedure. For the Dirichlet boundary conditions we obtain
the 3× 3 matrix

ED(s) =

 Ψ1(1) Ψ2(1) Ψ3(1)
Ψ1(2) Ψ2(2) Ψ3(2)
ek1Ψ1(2) ek2Ψ2(2) ek3Ψ3(2)

 .
The flux based boundary conditions yield the 4× 3 matrix

EF (s) =

[
(HL − k1B)Ψ1 (HL − k2B)Ψ2 (HL − k3B)Ψ3

(HR + k1B)ek1Ψ1 (HR + k2B)ek2Ψ2 (HR + k3B)ek3Ψ3

]
,

where the 3rd row is zero and hence EF (s) is condensed to a 3×3 matrix. Analytical
solutions to det(E(s)) = 0 can in general not be obtained due to the algebraic
complexity. For scalar equations, analytical results are available in [3], while for
more complicated equations, numerical methods have to be used. See [23] for more
details.

Once ED,F (s) has been computed, eigenvalues s from the discrete spectrum can
be inserted into the matrices to see whether or not a discrete eigenvalue actually
belongs to the spectrum of the PDE. This technique can be used to verify convergence
of discrete eigenvalues with certain properties. The semi-discretization of a linear
system of equations can be written as

d

dt
uh = Kuh + f,

where the entire spatial discretization, including the boundary conditions, are in-
cluded in the matrix K. The discrete spectrum can be modified and tuned for
certain purposes depending on the boundary treatment.

The maximum real part and absolute value of the spectra are important since the
first determines the convergence rate to steady-state [18, 23] while the second is a
measure of the stiffness of the system. Both of these depend on the value of ε, which
can be viewed as the viscosity. To see the effects, we show the maximum real part
and absolute value in Table 2. For small values of ε, the characteristic flux based
conditions, Flux 2, has significantly smaller real part of the spectrum. The difference
is about a factor of 50–100 compared to Flux 1, and between 3 and 8 compared to
Dirichlet. The spectrum of Flux 1 can, however, easily be shifted to the left in the
complex plane by having strict inequalities in (24). The maximum absolute values
are similar for small values of ε, while larger values forces the flux based conditions
towards a much stiffer discretization.
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Maximum real part Maximum absolute value
ε Dirichlet Flux 1 Flux 2 Dirichlet Flux 1 Flux 2

10−6 −0.412 −0.029 −1.515 34.4 34.4 32.1
10−5 −0.412 −0.029 −1.517 34.4 34.4 32.1
10−4 −0.412 −0.029 −1.539 34.4 34.4 32.1
10−3 −0.412 −0.029 −1.753 34.4 34.5 32.1
0.01 −0.415 −0.029 −3.158 34.5 34.9 32.1
0.1 −0.463 −0.030 −1.492 35.7 85.0 121.0
1 −0.537 −0.027 −0.498 45.6 961.3 987.0

Table 2: Maximum real part and absolute values of the spectras using 3rd order and N = 16
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Figure 5: Convergence of maximum real part and absolute value for the Flux 2 boundary conditions

The continuous eigenvalue with real part closest to zero can be computed from the
determinants of ED,F (s). As an example, we show the convergence of Flux 2 towards
this eigenvalue in Figure 5(a). In Figure 5(b) we show the increase in stiffness for
different values of ε as the mesh is refined.

6. Conclusions

New flux based boundary conditions for a linear incompletely parabolic system
of equations have been derived. The boundary conditions are constructed such that
both the primal and dual problems are well-posed. Depending on parameter varia-
tions in the new boundary conditions, choices can be made to either provide well-
posedness independently of sub- or supersonic conditions, or such that convergence
to the hyperbolic system is ensured for the subsonic case.
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The numerical scheme based on the new boundary conditions can be constructed
to be both energy stable and dual consistent. Compared to a discretization using
standard Dirichlet boundary conditions, the new scheme is significantly simpler since
reduction to first order form, and additional penalty parameters, can be avoided.

The solutions and functionals computed using the flux based boundary conditions
are more accurate and have better damping properties. Long time computations
showed that the new scheme can provide error boundedness independently of the
amount of viscosity, even in the hyperbolic limit.

Eigenvalue computations showed that the maximum real part of the discrete
spectrum converges to the analytical value. The flux based boundary conditions can
provide smaller real parts than a discretization with Dirichlet boundary conditions
which is beneficial for steady-state computations. The stiffness is, however, increased
for large viscosity.

The analysis of this model problem will be applied to the more complicated
compressible Navier–Stokes equations in future work.

References

[1] S. Abarbanel, A. Ditkowski, and B. Gustafsson. On error bounds of finite
difference approximations to partial differential equations — temporal behavior
and rate of convergence. Journal of Scientific Computing, 15:79–116, 2000.

[2] S. Abarbanel and D. Gottlieb. Optimal time splitting for two- and three-
dimensional Navier–Stokes equations with mixed derivatives. Journal of Com-
putational Physics, 41(1):1–33, 1981.

[3] J. Berg and J. Nordström. Spectral analysis of the continuous and discretized
heat and advection equation on single and multiple domains. Applied Numerical
Mathematics, 62(11):1620–1638, 2012.

[4] J. Berg and J. Nordström. Superconvergent functional output for time-
dependent problems using finite differences on summation-by-parts form. Jour-
nal of Computational Physics, 231(20):6846–6860, 2012.

[5] M. H. Carpenter, J. Nordström, and D. Gottlieb. A stable and conservative
interface treatment of arbitrary spatial accuracy. Journal of Computational
Physics, 148(2):341–365, 1999.

[6] K. J. Fidkowski and D. L. Darmofal. Review of output-based error estima-
tion and mesh adaptation in computational fluid dynamics. AIAA Journal,
49(4):673–694, 2011.

24



[7] M. B. Giles, M. G. Larson, J. M. Levenstam, and E. Süli. Adaptive error control
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