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Abstract

Finite difference operators satisfying the summation-by-parts (SBP) rules can be
used to obtain high order accurate, energy stable schemes for time-dependent partial
differential equations, when the boundary conditions are imposed weakly by the
simultaneous approximation term (SAT).

In general, an SBP-SAT discretization is accurate of order p+ 1 with an internal
accuracy of 2p and a boundary accuracy of p. Despite this, it is shown in this
paper that any linear functional computed from the time-dependent solution, will
be accurate of order 2p when the boundary terms are imposed in a stable and dual
consistent way.

The method does not involve the solution of the dual equations, and supercon-
vergent functionals are obtained at no extra computational cost. Four representative
model problems are analyzed in terms of convergence and errors, and it is shown
in a systematic way how to derive schemes which gives superconvergent functional
outputs.
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1. Introduction

When numerically computing solutions to equations in computational fluid dy-
namics (CFD), accurate solutions to the equations themselves might not be the
primary target. Typically, functionals computed from the solution, such as the lift
and drag coefficients, are of equal or even larger interest.

Already in the late 90’s, Giles et al. realized the importance of duality to enhance
the computation of functionals in CFD applications [1, 2, 3, 4, 5, 6]. Since then,
duality and adjoint equations have been vastly studied in the context of finite element
methods (FEM) [2] and more recently using discontinuous Galerkin (DG) methods
[7, 8, 9, 10], finite volume methods (FVM) [11] and spectral difference methods [12].

One can separate three distinct uses of the adjoint equations; adaptive mesh re-
finement [13], error analysis [14] and optimal design problems [15, 16]. The success of
duality based approaches to, in particular, adaptive mesh refinement and error esti-
mation, has made the study of duality somewhat restricted to unstructured methods
such as FEM, DG and FVM.

Recently, however, it was shown by Hicken and Zingg [17, 18] that the adjoint
equations can be used for finite difference (FD) methods to raise the order of accuracy
of linear functionals computed from the FD solution. The technique was based on
using FD operators on summation-by-parts (SBP) form [19, 20] together with the
simultaneous approximation term (SAT) for imposing boundary conditions weakly
[21]. It was shown that when discretizing the equations in a dual consistent [9, 17]
way, the order of accuracy of the output functional was higher than the FD solution
itself. This superconvergent behaviour was seen already in [3] for FEM and in [7] for
DG, but it had not been previously proven for finite difference schemes. Some work
on solution superconvergence for FD-based methods, using mimetic operators, can
be seen in i.e. [22].

So far, most applications of the adjoint equations deal with steady-state prob-
lems, including the recent results presented in [17]. The reason is that the adjoint
equation has limited use for realistic (non-linear) time-dependent problems since it
runs backwards in time [23]. Hence to actually solve the adjoint time-dependent
equation, the full time history of the primal equation has to be stored [24]. For
large scale problems, this quickly becomes unfeasible [25, 26]. Some work has been
done in the time-dependent setting [25, 23], in particular for adaptive error control
[24, 11, 27] and optimization [26, 12].

What is to be presented in this paper is the extension of [17] to unsteady problems
for computing superconvergent time-dependent linear functionals. By superconver-
gence, we mean that the order of convergence of the output functional is higher
than the design order of accuracy of the scheme. We will address two problems
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which usually occurs when attempting to use duality for time-dependent functional
computations;

• The discrete adjoint equations does not approximate the continuous adjoint
equations, i.e. the scheme is dual inconsistent

• If the scheme is dual consistent, it is unstable

The SBP discretization together with the SAT technique is highly suitable for ad-
dressing the above issues since the scheme allows for a multitude of parameters which
can be chosen such that the scheme is both dual consistent and stable. These two
features will result in a superconvergent time-dependent functional output.

2. SBP-SAT discretizations

Summation-by-parts finite difference operators were originally constructed by
Kreiss and Scherer [28] in the 70’s as a means for constructing energy stable [29]
finite difference approximations. The operators are constructed such that they are
automatically stable for linearly well-posed Cauchy problems. Together with the
SAT procedure introduced by Carpenter et al. [21], the SBP-SAT technique pro-
vides a method of constructing energy stable and high order accurate finite difference
schemes for any linearly well-posed initial-boundary value problem. Since then, the
technique has been widely used and proven robust for a variety of problem. See for
example [30, 31, 32, 33, 34, 35, 36, 37] and references therein.

The SBP operators can be defined as follows

Definition 1. A matrix D is called a first derivative SBP operator if D can be
written as

D = P−1Q, (1)

where P defines a norm by ||u||2 = uTPu and Q satisfies

Q+QT = diag[−1, 0, . . . , 0, 1]. (2)

In this paper, only diagonal matrices P will be used. In that case, D consist of a
2p-order accurate central difference approximation in the interior while at the bound-
aries, the accuracy reduces to a p-order one-sided difference. The global accuracy
can then be shown to be p+ 1 [32].

By using non-diagonal matrices P as norms in the SBP definition, it is possible
to raise both the boundary- and global order of accuracy. For a block-diagonal P ,
the boundary stencil can be chosen to be 2p− 1 order accurate which increases the
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global accuracy to 2p [19, 32, 38, 39]. There are, however, drawbacks with a non-
diagonal matrix P . In many cases, the equations are non-linear or have variable
coefficients and energy stability can only be proven if P commutes with diagonal
matrices. Unless P is carefully constructed to fit each problem under consideration,
a diagonal P is the only alternative.

For many realistic problems, the boundary of the domain is non-smooth and the
domain has to be split into blocks, where a curvilinear coordinate transformation
is applied in each block. If the matrix P is not diagonal, energy stability cannot
be shown in general since P is required to commute with the (diagonal) Jacobian
matrix of the coordinate transformation [35, 40, 41, 42].

When computing linear functionals, however, we can recover the loss compared
to the accuracy from a non-diagonal P , while keeping the simplicity and flexibility
of a diagonal P . It is hence always possible to prove energy stability, and keeping
the full order of accuracy.

Currently there exist diagonal norm SBP operators for the first derivative accu-
rate of order 2, 3, 4 and 5. The second derivative can be approximated using either
the first derivative twice which results in a wide finite difference stencil, or a compact
operator as described in [20, 43]. In this paper, we will rewrite the equations in a
form which does not require the application of a second derivative operator.

A first order hyperbolic PDE, for example the advection equation on 0 ≤ x ≤ 1,

ut + aux = 0,

u(0, t) = d1(t),

u(x, 0) = d2(x),

(3)

with a > 0, can be approximated on an equidistant grid with N + 1 gridpoints as

d

dt
uh + aDuh = 0, (4)

where uh is the discrete gridfunction approximating u. However, since the continuous
PDE (3) needs to be supplied with a boundary condition at the inflow boundary, the
scheme (4) has to be modified. The imposition of the boundary condition is done
weakly using SAT as

d

dt
uh + aDuh = σP−1(eT0 uh − d1)e0, (5)

where e0 = [1, 0, . . . , 0] and d1 = d1(t) is the time-dependent boundary data. The
coefficient σ is a parameter which has to be determined such that the scheme is
stable in the P -norm.
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2.1. The energy method

To prove well-posedness of the continuous equations (3) and stability of the nu-
merical scheme (5), the energy metod in continuous and discrete form is used. We
multiply (3) with u and integrate by parts over the spatial domain to obtain (when
assuming d1 = 0)

||u||2t = −au2(1, t). (6)

It is clear that the growth rate of energy is bounded and hence we say that (3) is
well-posed1.

In the discrete case we multiply (5) with uThP and use the SBP properties of the
operator to obtain

||uh||2t = (a+ 2σ)u2
h(x0)− au2

h(xN). (7)

It is clear that an energy estimate is obtained for

σ ≤ −a
2

(8)

and for σ = −a
2

we have exactly (6).
We can see that the parameter σ is allowed to vary in a semi-infinite range for

which the scheme is stable. Any additional requirement we place on the scheme, for
example dual consistency, has to be within a subset of values allowed by the energy
estimate. This flexibility together with the ability to mimic integration by parts is
what makes the SBP-SAT method suitable for treating adjoint problems.

Remark 2.1. Note that the assumption d1 = 0 merely simplifies the analysis. Bound-
ary and initial data can be included, in which case the problem is called strongly
well-posed. If the boundary and initial data is included in the discrete case, and an
energy estimate is obtained, the problem is called strongly stable [45].

3. Adjoint problems and dual consistency

There are various ways of obtaining the adjoint equations. Most common is to
consider a PDE subject to a set of control parameters and a functional output of
interest, and in various ways taking derivatives of the functional with respect to the
control parameters [1, 27]. The adjoint equation can then be seen as a sensitivity
equation for the primal PDE, and is sometimes referred to as the sensitivity equation.
In this work we will adopt the notation in [17] and derive the adjoint equation by

1Existence of solutions is not formally considered in this context. Existence is motivated by the
fact that a minimal number of boundary conditions is used to obtain an energy estimate [44].
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posing the SBP-SAT method in a variational framework similar to the one used in
FEM.

The order of convergence is measured in space, not in time. To obtain a super-
convergent time-dependent linear functional output, it is sufficient to consider the
steady equations and discretize them in a dual consistent way which does not violate
any stability conditions for the unsteady equations.

We shall use the following notations regarding the inner products. The continuous
inner product is defined as

(f, g) =

∫
Ω

fgdΩ (9)

and the corresponding discrete inner product is defined as

(fh, gh)h = fT
h Pgh, (10)

where fh, gh are projections of f, g onto a grid, and P is the matrix (and integration
operator) used to define a norm in the definition of the SBP operator. The subscript
h will be omitted for known functions if the meaning is clear from the context.

Before we begin, we need to define what is meant by the continuous dual problem,
discrete dual problem and dual consistency. Let L be a linear differential operator
and consider the (steady) equation

Lu− f = 0, ∀x ∈ Ω, (11)

subject to homogeneous boundary conditions. Let

J(u) = (g, u) (12)

be a linear functional output of interest. We obtain the adjoint equation by seeking
φ in some appropriate function space, such that

J(u) = (φ, f). (13)

A formal computation gives

J(u) = (g, u)− (φ, Lu− f)

= (φ, f)− (L∗φ− g, u)
(14)

and hence the adjoint equation is given by

L∗φ− g = 0, (15)
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where L∗ is the formal adjoint of L. Note that L∗ is abstractly defined, and finding
an exact expression for the dual operator is in general a non-trivial task. In the case
of linear differential operators, the adjoint operator is obtained by integration by
parts.

Remark 3.1. In this paper, we consider homogeneous boundary- and initial condi-
tions. This is only for the purpose of analysis. The dual problem depends only on
the form of the boundary conditions, but not on the particular boundary- or initial
data. In computations, the boundary- and initial data can be non-zero.

The boundary conditions for the adjoint equation are obtained by considering the
boundary terms resulting from the integration by parts procedure. After applying the
homogeneous boundary conditions for the primal PDE, the dual boundary conditions
are defined as the minimal set of homogeneous conditions such that all boundary
terms vanish.

Definition 2. The continuous dual problem is given by

L∗φ = g (16)

subject to the dual boundary conditions.

The same reasoning can be applied in the discrete setting. Let

Lhuh − f = 0 (17)

be a discretization of (11), including the homogeneous boundary conditions. Then

Jh(uh) = (g, uh)h (18)

is an approximation of (12). We obtain the discrete dual problem by seeking φh such
that

Jh(uh) = (φh, f)h. (19)

The same formal computation as before gives

Jh(uh) = (g, uh)h − (φh, Lhuh − f)h

= (φh, f)h − (P−1LT
hPφh − g, uh)h

(20)

and we have

Definition 3. The discrete dual problem is given by

P−1LT
hPφh − g = 0. (21)
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Remark 3.2. In an SBP-SAT setting, the difference operator Lh can be written as

Lh = P−1L̃h (22)

and the discrete dual problem reduces to

P−1L̃T
hφh = g. (23)

Finally, by using (16) and (21) we make the definition of dual consistency.

Definition 4. A discretization is called dual consistent if (21) is a consistent ap-
proximation of (16).

So far, we have been concerned with steady problems only. Since we are interested
in unsteady problems, we need to define what is meant by dual consistency in this
context. Consider an unsteady problem

ut + Lu− f = 0, t > 0,∀x ∈ Ω, (24)

subject to homogeneous boundary and initial conditions. By seeking φ such that

T∫
0

J(u)dt =

T∫
0

(φ, f)dt (25)

we obtain
T∫

0

J(u)dt =

T∫
0

J(u)dt−
T∫

0

(φ, ut + Lu− f)dt

T∫
0

(φt − L∗φ+ g, u)dt+

T∫
0

(φ, f)dt.

(26)

The time-dependent dual problem thus becomes

−φt + L∗φ = g (27)

subject to the dual boundary conditions. A homogeneous initial condition for the
dual problem is placed at time t = T which removes the boundary term from the
partial time integration.

The discrete procedure can be formulated analagously. Let

d

dt
uh + Lhuh − f = 0 (28)

be a semi-discretization of (24), including the boundary conditions. We then have
the following definition regarding dual consistency of time-dependent problems,
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Definition 5. The semi-discretization (28) is called spatially dual consistent if the
corresponding steady problem is dual consistent.

Note that a stable and consistent discretization of the primal PDE does not imply
spatial dual consistency.

To prove the main result of this paper, we need Corollary 1 from [46], which
states that P is a 2p-order accurate quadrature. For our purpose, we can restate the
result as

Lemma 3.1. Let P be the norm-matrix of an SBP discretization with 2p-order in-
ternal accuracy. Then for u ∈ C2p we have

Jh(u) = J(u) +O(h2p). (29)

Using Lemma 3.1 we can prove the main result of this paper which is

Theorem 3.2. Let
d

dt
uh + Lhuh = f (30)

be a stable and spatial dual consistent SBP-SAT discretization of the continuous
problem

ut + Lu = f. (31)

Then the linear functional
Jh(uh) = gTPuh (32)

is a 2p-order accurate approximation of

J(u) =

∫
Ω

gTudΩ. (33)

Proof. By using the results in [46] together with the definition of the discrete dual
problem, we can add and subtract terms to relate the the continuous functional to
the discrete as

J(u) = Jh(u) +O(h2p)

= gTPuh + gTP (u− uh) +O(h2p)

= gTPuh + gTP (u− uh)− φT
hP (Lhuh − f) +O(h2p)

= Jh(uh) + gTP (u− uh)− φT
hPLh(u− uh)− φTPf + φT

hPLhu+O(h2p)

= Jh(uh)− (u− uh)TP (P−1LT
hPφh − g) + φTP (Lhu− f) +O(h2p)

= Jh(uh) + φTP (Lhu− f) +O(h2p),

(34)
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where the last error term is of order h2p [46]. We can hence conclude that

J(u) = Jh(uh) +O(h2p). (35)

4. Derivation of stable and spatially dual consistent schemes

Based on Theorem 3.2, we will derive stable and spatially dual consistent schemes
for four time-depedent model problems in a systematic way. The equations we con-
sider are the advection equation, the heat equation, the viscous Burgers’ equation
and an incompletely parabolic system of equations. We will see that a stable and
spatial dual consistent discretization produces superconvergent time-dependent lin-
ear functionals.

4.1. The advection equation

Consider (3) again together with a linear functional output of interest. We let the
boundary condition be homogeneous, add a forcing function and ignore the initial
condition,

ut + aux = f

u(0, t) = 0

J(u) = (g, u).

(36)

Note that J(u) is a time-dependent functional. The adjoint equation is obtained by
letting ut = 0 and finding φ such that J(u) = (φ, f). We get

J(u) = J(u)−
1∫

0

φ(aux − f)dx

= −aφ(1, t)u(1, t)−
1∫

0

(g + aφx)udx+ (v, f)

(37)

and hence the steady adjoint problem is given by

−aφx = g

φ(1, t) = 0.
(38)
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Note that the sign has changed and the adjoint boundary condition is located at the
opposite boundary compared to the primal problem.

Equation (36) is discretized as before,

d

dt
uh + aP−1Quh = f + σP−1(eT0 uh − 0)e0, (39)

where 0 is the boundary data. We know from the preceding energy esimate (7) that
the scheme is stable if σ ≤ −a

2
. The addition of the forcing function does not change

the number or form of the boundary conditions and can be assumed to be zero in
an energy estimate according to the principle of Duhamel [45]. To determine spatial
dual consistency, we let d

dt
uh = 0 and rewrite (39) as

Lhuh = Pf, (40)

where
Lh = aQ− σE0 (41)

and E0 = eT0 e0 = diag[1, 0, . . . , 0]. According to the definition of dual consistency,

LT
hφh = Pg (42)

has to be a consistent approximation of the adjoint equation (38). By using the SBP
property of Q, we expand (42) as

−aP−1Qφh = g − aP−1ENφh + (σ + a)P−1E0φh (43)

which is a consistent approximation of (38) only if

σ = −a. (44)

For any other value of σ, the numerical scheme would impose a boundary condition at
x = 0 which does not exist in the adjoint equation. We can also see that σ = −a does
not violate the stability condition given by the energy estimate. Thus the scheme is
both stable and spatially dual consistent.

Remark 4.1. Note that the parameter σ is allowed to vary in a semi-infinite range
from the stability requirements, while spatial dual consistency requires a unique
value.
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4.2. The heat equation

The heat equation on 0 ≤ x ≤ 1 with homogeneous Dirichlet boundary conditions
is given by

ut = αuxx + f,

u(0, t) = 0,

u(1, t) = 0,

J(u) = (g, u).

(45)

The initial condition is omitted since the derivation of the dual problem depends
only on the equation and the form of the boundary conditions. In the computations,
however, an initial condition has to be supplied. In order to derive a stable and
spatially dual consistent scheme, (45) has to be rewritten as a first order system in
the same way as in the local discontinuous Galerkin (LDG) method [47]. It has been
shown that the LDG method has interesting superconvergent features not only for
functionals, but also for the solution itself [7, 30, 48]. We hence adapt the LDG
formulation and rewrite (45) as

ut =
√
αvx + f,

v =
√
αux,

u(0, t) = 0,

u(1, t) = 0,

J(u) = (g, u).

(46)

To obtain the dual problem, we let ut = 0 and write (46) as

Aw +Bwx = F, (47)

where w = [u, v]T , F = [f, 0]T and

A =

[
0 0
0 1

]
, B =

[
0 −

√
α

−
√
α 0

]
. (48)

Let now G = [g, 0]T , θ = [φ, ψ]T and find θ such that

J(w) = (θ, F ). (49)

Note that
J(w) = (G,w) = (g, u) (50)
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and we are still computing the functional of interest from the primal problem. This
gives us the adjoint problem by computing

J(w) = J(w)−
1∫

0

θT (Aw +Bwx − F )dx

=

1∫
0

wT (G− Aθ +Bθx)dx−
[
θTBw

]1
0

+ (θ, F ).

(51)

The adjoint equation is thus given by

Aθ −Bθx = G (52)

and the adjoint boundary conditions are the minimal number of conditions such that[
θTBw

]1
0

= 0. After applying the homogeneous boundary conditions for the primal
problem, we get the adjoint problem on component form

√
αψx = g

ψ +
√
αφx = 0

φ(0, t) = 0

φ(1, t) = 0.

(53)

The primal PDE on LDG form (46) is discretized as

d

dt
uh =

√
αP−1Qvh + f + σLP

−1(eT0 uh − 0)e0 + σRP
−1(eTNuh − 0)eN

vh =
√
αP−1Quh + τLP

−1(eT0 uh − 0)e0 + τRP
−1(eTNuh − 0)eN .

(54)

By multiplying the first equation by uThP , the second by vThP and adding the results
we get

1

2

d

dt
||uh||2 + ||vh||2 = (τL −

√
α)uThE0vh + (τR +

√
α)uThENvh

+ σLu
T
hE0uh + σRu

T
hENuh

(55)

and the scheme is clearly stable if

τL =
√
α, τR = −

√
α, σL ≤ 0, σR ≤ 0. (56)
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To determine spatial dual consistency we again let ut = 0 and rewrite (54), using
(56), as

Lhwh = F̃ , (57)

where wh = [uh, vh]T , F̃ = [Pf, 0]T and

Lh =

[
−σLE0 − σREN −

√
αQ

−
√
αQ−

√
αE0 +

√
αEN P

]
. (58)

The discrete dual problem is given by

LT
h θh = G̃, (59)

where θh = [φh, ψh]T , G̃ = [Pg, 0]T , and it has to be a consistent approximation of
(53) without violating the stability conditions (56). By using the SBP properties of
the operators we expand (59) and write it in component form as

√
αP−1Qψh = g + σLP

−1E0φh + σRP
−1ENφh

ψh +
√
αP−1Qφh = −

√
αP−1E0φh +

√
αP−1ENφh

(60)

which exactly approximates (53), including the dual boundary conditions. Note that
there are no restrictions on σL,R for dual consistency.

Remark 4.2. Note that the stability requirements are sufficient for spatial dual con-
sistency, in contrast to the pure advection case.

Remark 4.3. The LDG form can be transformed back to second order form, see also
[30], in which case the scheme becomes

d

dt
uh = α(P−1Q)2uh + f + (σLI + αP−1Q)P−1(eT0 uh − 0)e0

+ (σRI − αP−1Q)P−1(eTNuh − 0)eN ,
(61)

where I is the identity matrix of size N + 1. Note that we get back the wide sec-
ond derivative operator, possibly suggesting that dual consistency requires a second
derivative operator which can be factorized into the product of two first derivative
operators.

4.3. The viscous Burgers’ equation

The viscous Burgers’ equation, together with a linear functional of interest, with
homogeneous Dirichlet boundary conditions on 0 ≤ x ≤ 1 is given on conservative
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form by

ut +

(
u2

2

)
x

= εuxx + f

u(0, t) = 0

u(1, t) = 0

J(u) = (g, u).

(62)

Since (62) is a non-linear equation, the present theory cannot directly be applied.
The viscous Burger’s equation have regular solutions due to the viscosity term, and
the behavior of the solution is not far from that of a linear problem. In the absence of
a general method for non-linear analysis, a linear analysis is used. In the presence of
shocks, for more complicated equations, it is not clear what meaning a linear analysis
have.

We linearize (62) around a constant state u = a to obtain the linear equation,

ut + aux = εuxx + f

u(0, t) = 0

u(1, t) = 0

J(u) = (g, u),

(63)

which is usually referred to as the advection-diffusion equation.
Since (62) contains second derivatives, we introduce the auxiliary variable v =

√
εux

and rewrite the steady (linear) problem as

Aw +Bwx = F, (64)

where w = [u, v]T , F = [f, 0]T and

A =

[
0 0
0 1

]
, B =

[
a −

√
ε

−
√
ε 0

]
. (65)

To find the adjoint equation, we define G = [g, 0]T and seek θ = [φ, ψ]T such that

J(w) = (θ, F ) (66)
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as before. Integration by parts leads to

J(w) = J(w)−
1∫

0

θT (Aw +Bwx − F )dx

=

1∫
0

wT (G− Aθ +Bθx)dx−
[
θTBw

]1
0

+ (θ, F )

(67)

and hence the adjoint equation is given on component form as

−aφx +
√
εψx = g

φ+
√
εφx = 0

φ(0, t) = 0

φ(1, t) = 0.

(68)

The stability analysis will also be performed on the linearized equations. The
time-dependent equation on LDG form is discretized as

d

dt
uh + aP−1Quh =

√
εP−1Qvh + σLP

−1(eT0 uh − 0)e0 + σRP
−1(eTNuh − 0)eN + f

vh =
√
εP−1Quh + τLP

−1(eT0 uh − 0)e0 + τRP
−1(eTNuh − 0)eN

(69)

and the coefficients σL,R and τL,R has to be determined such that the scheme is stable.
By multiplying the first equation in (69) by uThP and the second by vThP , we obtain
by adding the results

d

dt
||uh||2 + 2||vh||2 = (2σL + a)uThE0uh + (2σR − a)uThENuh

+ 2(τL −
√
ε)vThE0uh + 2(τR +

√
ε)vThENuh.

(70)

We can see that (70) is stable if we chose

σL ≤ −
a

2
, σR ≤

a

2
, τL =

√
ε, τR = −

√
ε. (71)

To determine if the scheme is spatially dual consistent, we let ut = 0 and rewrite
(69), using (71), as

Lhwh = F̃ , (72)
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where wh = [uh, vh]T , F̃ = [Pf, 0]T and

Lh =

[
aQ+ σLE0 + σREN −

√
ε

−
√
εQ−

√
εE0 +

√
εEN P

]
. (73)

The discrete dual problem is then given by

LT
h θh = G̃, (74)

where θh = [φh, ψh]T and G̃ = [Pg, 0]T , which has to be a consistent approximation
of (68) without violating the stability conditions (71). By expanding (74), we can
write it in component form as

−aP−1Qφh +
√
εP−1Qψh = −(σL − a)P−1E0φh − (σR + a)P−1ENφh + g

ψh +
√
εP−1Qφh = −

√
εP−1E0φh +

√
εP−1ENφh

(75)

which can be seen to be a consistent approximation of (74) without violating any of
the stability conditions in (71). Hence the scheme (69) is both a stable and spatially
dual consistent approximation of the linearized equation.

When performing the computations, however, we use the nonlinear LDG formu-
lation

d

dt
uh + P−1Q

(
u2
h

2

)
=
√
εP−1Qvh + σLP

−1(eT0 uh − 0)e0 + σRP
−1(eTNuh − 0)eN + f

vh =
√
εP−1Quh + τLP

−1(eT0 uh − 0)e0 + τRP
−1(eTNuh − 0)eN ,

(76)

where every occurence of the mean flow coefficient, a, in the SAT is replaced by
u to obtain a nonlinear SAT. This procedure is motivated by the linearization and
localization principle, see [49] for details.

Remark 4.4. Note again that stability is sufficient for spatial dual consistency and
no extra conditions have to be placed on the SAT coefficients. The coefficients σL,R
are still allowed to vary in a semi-infinite range.

4.4. An incompletely parabolic system

In this section we consider the incompletely parabolic system

Ut + AUx = BUxx + F

J(U) = (G,U),
(77)
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where U = [p, u], F = [f1, f2]T , G = [g1, g2]T and

A =

[
ū c̄
c̄ ū

]
, B =

[
0 0
0 ε

]
. (78)

Equation (77) can be thought of as the symmetrized [50] Navier-Stokes equations
linearized around the mean velocity ū > 0 and speed of sound c̄. We shall assume a
linearization around a subsonic flow field, that is ū < c̄. In this case, (77) requires
two boundary conditions at the inflow boundary and one at the outflow. For the
purpose of analysis, we will use the homogeneous Dirichlet conditions

u(0, t) = 0, p(0, t) = 0, u(1, t) = 0. (79)

To obtain the adjoint equations, we let ut = pt = 0 and rewrite (77) in LDG form as

Āw + B̄wx = F̄ , (80)

where w = [p, u, v]T , F̄ = [f1, f2, 0]T , v =
√
εux and

Ā =

 0 0 0
0 0 0
0 0 1

 , B̄ =

 ū c̄ 0
c̄ ū −

√
ε

0 −
√
ε 0

 . (81)

The adjoint equations are now found by seeking θ = [φ, ψ, ν]T such that

J(w) = (θ, F̄ ). (82)

Integration by parts gives

J(w) = J(w)−
1∫

0

θT (Āw + B̄wx − F̄ )dx

=

1∫
0

wT (Ḡ− Āθ + B̄θx)dx−
[
θT B̄w

]1
0

+ (θ, F̄ ),

(83)

where Ḡ = [g1, g2, 0]T . The adjoint problem is hence given on component form as

−ūφx − c̄ψx = g1

−c̄φx − ūψx +
√
ενx = g2

ν +
√
εψx = 0

ψ(0, t) = 0

φ(1, t) = 0

ψ(1, t) = 0.

(84)
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Note that the dual problem has one boundary condition at x = 0 and two at x = 1,
in contrast to the primal problem for which the situation is reversed.

The time-dependent problem (80) is discretized as

d

dt
ph + ūP−1Qph + c̄P−1Quh = σ1P

−1(eT0 ph − 0)e0 + σ2P
−1(eT0 uh − 0)e0

+ σ3P
−1(eTNuh − 0)eN

d

dt
uh + c̄P−1Qph + ūP−1Quh −

√
εP−1Qvh = τ1P

−1(eT0 ph − 0)e0 + τ2P
−1(eT0 uh − 0)e0

+ τ3P
−1(eTNuh − 0)eN

vh −
√
εP−1Quh = γ1P

−1(eT0 ph − 0)e0 + γ2P
−1(eT0 uh − 0)e0

+ γ3P
−1(eTNuh − 0)eN

(85)

and the coefficients σ1,2,3, τ1,2,3 and γ1,2,3 has to be determined such that the scheme
is stable. By applying the energy method to each of the equations and adding them,
we can write the result as

d

dt
||ph||2 +

d

dt
||uh||2 + 2||vh||2 = wT

hM0w + whMNwh, (86)

where wh = [ph, uh, vh] and

M0 =

 (ū+ 2σ1)E0 (c̄+ σ2 + τ1)E0 γ1E0

(c̄+ σ2 + τ1)E0 (ū+ 2τ2)E0 (γ2 −
√
ε)E0

γ1E0 (γ2 −
√
ε)E0 0


MN =

 −ūEN (−c̄+ σ3)EN 0
(−c̄+ σ3)EN (−ū+ 2τ3)EN (γ3 +

√
ε)EN

0 (γ3 +
√
ε)EN 0

 .
(87)

To simplify (86), we introduce the Kronecker product, which is defined for arbitrary
matrices X and Y by

X ⊗ Y =


x11Y x12Y . . . x1nY
x21Y x22Y . . . x2nY

...
. . . . . .

...
xm1Y xm2Y . . . xmnY

 . (88)

The Kronecker product is bilinear, associative and satisfies the mixed product prop-
erty

(X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2 ⊗ Y1Y2) (89)
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if the usual matrix products are defined. For inversion and transposing we have

(X ⊗ Y )−1,T = (X−1,T ⊗ Y −1,T ) (90)

if the usual matrix inverses are defined.
Using the Kronecker product, we can factorize (86) as

d

dt
||ph||2 +

d

dt
||uh||2 + 2||vh||2 = wT

h (m0 ⊗ E0)wh + wT
h (mN ⊗ EN)wh, (91)

where m0,N are the smaller submatrices

m0 =

 ū+ 2σ1 c̄+ σ2 + τ1 γ1

c̄+ σ2 + τ1 ū+ 2τ2 γ2 −
√
ε

γ1 γ2 −
√
ε 0

 (92)

mN =

 −ū −c̄+ σ3 0
−c̄+ σ3 −ū+ 2τ3 γ3 +

√
ε

0 γ3 +
√
ε 0

 . (93)

Since E0, EN ≥ 0, we obtain a stable scheme is the coefficients are chosen such that
m0,mN ≤ 0. The coefficients are given in

Proposition 4.1. The scheme (85) is stable using

σ1 ≤ −
ū

2
, c̄+ σ2 + τ1 = 0, τ2 ≤ −

ū

2
, γ1 = 0, γ2 =

√
ε (94)

for the coefficients in (92) and

σ3 = c̄, γ3 = −
√
ε, τ3 ≤

ū

2
(95)

for the coefficients in (93).

Proof. By inserting the coefficients (94) and (95) into the scheme (85), the energy
estimate (91) reduces to

d

dt
||ph||2 +

d

dt
||uh||2 + 2||vh||2 ≤ 0. (96)
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To determine the spatial dual consistency of (85), we let pt = ut = 0 and rewrite
as

Lhwh = F̃ , (97)

where F̃ = [Pf1, Pf2, 0]T and

Lh =

 ūQ− σ1E0 c̄Q− σ2E0 − c̄EN 0
c̄Q− τ1E0 ūQ− τ2E0 − τ3EN −

√
εQ

0 −
√
εQ−

√
εE0 +

√
εEN P

 . (98)

The discrete dual problem is then given by

LT
h θh = G̃, (99)

where θh = [φh, ψh, νh]T , G̃ = [Pg1, Pg2, 0]T , and it has to be a consistent approxi-
mation of (84) without violating the stability conditions. By expanding (99), using
(94) and (95), we get

−ūP−1Qφh − c̄P−1Qψh = (σ1 + ū)P−1E0φh + (τ1 + c̄)P−1E0ψh

− ūP−1ENφh − c̄P−1ENψh + g1

−c̄P−1Qφh − ūP−1Qψh +
√
εP−1Qνh = (σ2 + c̄)P−1E0φh + (τ2 + ū)P−1E0ψh

+ (τ3 − ū)P−1ENψh + g2√
εP−1Qψh + ν = −

√
εP−1E0ψh +

√
εP−1ENψh.

(100)

Remember that the boundary conditions in the dual equation (84) are different from
those of the primal equation. This puts restrictions on the coefficients in order to
obtain a consistent approximation of the dual problem. The coefficients are given in

Proposition 4.2. The scheme (85) is stable and spatially dual consistent with (94),
(95) and the choices

σ1 = −ū, σ2 = −c̄. (101)

Proof. The choise (101) cancels the terms in (100) for which additional erroneous
boundary conditions would be imposed for the dual problem. Note that σ2 = −c̄
implies

τ1 = 0. (102)

The choice of coefficients given in (101) and (102) does not violate the stability
conditions given in (94) and (95).
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Remark 4.5. Note that only the coefficients at the inflow boundary are uniquely
determined by the spatial dual consistency requirements. For the outflow boundary,
the conditions for stability are sufficient.

Remark 4.6. The requirements for spatial dual consistency has always constituted a
subset of the stability requirements. We have hence been able to construct schemes
which are both energy stable and spatially dual consistent. The energy analysis for
stability typically renders some coefficients in the SAT to be semi-bounded, while the
additional requirement of spatial dual consistency fixes some coefficients to unique
values in the semi-bounded region.

5. Numerical results

A forcing function have been chosen in all cases such that an analytical solution
is known, and the rate of convergence and errors are computed with respect to the
analytical solution. The analytical solution is smooth for all times, even for the
viscous Burger’s equation. This is known as the method of manufactured solutions
[51]. Note that the boundary- and initial data are constructed from the analytical
solution and are hence the conditions are no longer homogeneous.

The time integration is performed until time t = 10 using the classical 4th-order
Runge-Kutta method with timestep ∆t = 2∗10−6, to ensure that the time integration
errors are negligible. In each time step we perform a mesh refinement from 32 to
160 gridpoints, in steps of 16, and compute the rate of convergence for both the
solution and the functional. In this way, the rate of convergence can be computed
as a function of time.

We compare the new schemes with standard SBP-SAT schemes which impose the
Dirichlet boundary conditions traditionally without respect to the dual problem. The
solutions to all problems were verified to converge with the design order of accuracy.
In Table 1 and 2 we summarize the time-average rates of functional convergence for
the dual consistent and dual inconsistent cases, respectively.

Table 1: Time-average rates of the functional convergence for the dual consistent discretization

Accuracy Advection Heat Burger’s System (J(p), J(u))
3rd 4.14808 4.0073 4.19861 4.27252, 4.18926
4th 6.9023 6.86841 6.36518 6.61803, 6.53875
5th 6.99999 8.83809 8.61754 8.76432, 8.67103
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Table 2: Time-average rates of the functional convergence for the dual inconsistent discretization

Accuracy Advection Heat Burger’s System (J(p), J(u))
3rd 3.06438 4.17441 3.93663 2.71162, 3.68422
4th 4.13107 5.22073 5.08856 3.41406, 3.72249
5th 4.64093 5.42542 5.60646 4.53447, 4.25429

The advection equation, heat equation, viscours Burger’s equation and the in-
completely parabolic system of equations are representatives for the hyperbolic,
parabolic, nonlinear and mixed type of partial differential equations. Despite them
being different in nature, the results regarding the functional convergence are consis-
tent. A spatially dual consistent SBP-SAT discretization gives rise to time-dependent
superconvergent linear functional output.

We stress that the method presented does not require any knowledge about the
solution of the adjoint equations. Spatial dual consistency is a property of the
discretization based upon knowledge of the form of the adjoint equation and its
boundary conditions. Superconvergent functionals are thus obtained at no extra
computational cost.

The superconvergence of the functional ensures that for sufficiently high resolu-
tions, the dual consistent discretization will outperform a spatially dual inconsistent
discretization. Most realistic simulations are, however, marginally or under-resolved
and it is desirable that the higher order accuracy does not come at the cost of large
error constants which ruin computations on a coarse mesh.

The errors in the solution and in the linear functionals were computed for a coarse
mesh. The solution and functional errors were computed as a function of time for the
coarsest grid level, N = 32 grid points. We consider only the incompletely parabolic
case to reduce the number of tables. The results were verified to be analogous for
the other cases. We have also included an inconsistent scheme with a more accurate
compact discretization of the second derivative as described in [20, 52]. The errors
are summarized in Table 3, where we present the average error over time for both
the solutions and the functionals.

23



Table 3: Average errors using N = 32 grid points

Solution for p Functional for p
Accuracy Consistent Wide Compact Consistent Wide Compact

3rd 2.0446e-03 2.0571e-03 1.6012e-03 5.0140e-05 2.8720e-04 5.6833e-04
4th 1.8328e-03 1.3131e-03 1.2423e-03 2.3244e-05 4.0409e-04 8.4830e-04
5th 1.1855e-02 6.9236e-03 6.9241e-03 1.2150e-05 1.2854e-03 3.1519e-03

Solution for u Functional for u
Accuracy Consistent Wide Compact Consistent Wide Compact

3rd 5.0395e-03 1.0337e-03 4.2541e-04 1.0125e-04 5.1268e-04 4.6830e-04
4th 2.1250e-03 1.0265e-03 4.1681e-04 1.6691e-05 3.1254e-04 3.6392e-04
5th 1.5030e-02 1.1059e-02 3.9369e-03 9.7499e-06 6.1595e-04 5.2289e-03

From Table 3, we can see that the dual consistent discretization is somewhat
less accurate in computing the solution, but much more accurate in computing the
functionals. The 5th-order accurate spatially dual consistent discretization is al-
ready at 32 gridpoints 2 orders of magnitude more accurate than the spatially dual
inconsistent discretization.

6. Summary and conclusions

We have defined and derived spatially dual consistent discretizations based on
finite difference operators satisfying the summation-by-parts properties. The bound-
ary conditions were imposed weakly using the simultaneous approximation term.
We have presented derivations of spatial dual consistency in a general way and ap-
plied the technique to four representative equations; the advection equation, the
heat equation, the viscous Burgers’ equation and an incompletely parabolic system
of equations.

In the cases we considered, the requirements for spatial dual consistency conform
with the stability requirements. It was hence always possible to derive schemes which
are both energy stable and spatially dual consistent for the cases we have considered,
despite all model problems being of different type.

It was shown for all considered cases that a spatial dual consistent discretization
produced superconvergent linear functionals computed from the solution. By super-
convergece we mean that the solution is accurate of order p+1 (or p+2 under certain
conditions), while the linear functional is computed with 2p-order accuracy.

We have computed the errors in both the solution and in the linear functionals
for a coarse mesh to ensure that the superconvegence does not come at the cost of
large error constants. It was seen that the solution computed from the spatially dual
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consistent scheme was somewhat less accurate, while the functional could be two
orders of magnitude more accurate already on a coarse grid.

The superconvergence does not require any knowledge about the solution of the
adjoint equations. By considering only the form of the adjoint equation and its
boundary conditions, it is a matter of choosing the SAT such that the scheme becomes
stable and spatial dual consistent. Superconvergent functional outputs can thus be
computed at no extra computational cost compared to a standard discretization.
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