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Abstract

In this paper we prove stability of Robin solid wall boundary conditions for the
compressible Navier-Stokes equations. Applications include the no-slip boundary
conditions with prescribed temperature or temperature gradient and the first order
slip-flow boundary conditions. The formulation is uniform and the transitions be-
tween different boundary conditions are done by a change of parameters. We give
different sharp energy estimates depending on the choice of parameters.

The discretization is done using finite differences on Summation-By-Parts form
with weak boundary conditions using the Simultaneous Approximation Term. We
verify convergence by the method of manufactured solutions and show computations
of flows ranging from no-slip to almost full slip.

Keywords: Navier-Stokes, Robin boundary conditions, Well-posedness, Stability,
High order accuracy, Summation-By-Parts

1. Introduction

There has recently been a development of stable boundary [1, 2] and interface
[3] conditions of a specific form for the compressible Navier-Stokes equations. This
paper extends the result in [2] to more general solid wall boundary conditions and
includes sharp energy estimates. While [2] deals only with the no-slip boundary
conditions, we will provide a uniform formulation which includes the no-slip bound-
ary conditions with prescribed temperature or temperature gradient and slip-flow
boundary conditions or any combination thereof.

The tools that we will use to obtain a uniform formulation together with proof
of stability are finite difference approximations on Summation-By-Parts (SBP) form
together with the Simultaneous Approximation term. This method has the benefit
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of being stable by construction for any linear well-posed Cauchy problem [4, 5] and
the robustness has been shown in a wide range of applications [5, 6, 7, 8, 9].

The first derivative is approximated by ux ≈ Dv = P−1Qv, where v is the
discrete grid function, D is the differentiation matrix, P = P T > 0 defines a norm
by ||v||2 = vTPv and Q has the SBP property Q+QT = B = [−1, 0, . . . , 0, 1]T . See
[10, 11] for details about these operators.

There exist operators accurate of order 2, 4, 6 and 8 and the stability analysis
does not depend on the order of accuracy of the operators. We will pose our equa-
tions on conservative form and hence we do not need an operator approximating
the second derivative. Operators approximating the second derivative with con-
stant coefficients are derived in [11] and have recently been developed for variable
coefficients problems in [12].

The boundary conditions will be imposed weakly using the Simultaneous Ap-
proximation Term (SAT). The SAT term is added to the right-hand-side of the dis-
cretized equations as a penalty term which forces the equation towards the boundary
conditions. Together the SBP and SAT technique provide a tool for creating sta-
ble approximations for well-posed initial-boundary value problems. The relation
between weak and strong boundary conditions in terms of accuracy is discussed in
[13].

2. The Navier-Stokes equations

2.1. Continuous case

We consider the two-dimensional Navier-Stokes equations on conservative form

qt + Fx +Gy = 0 (1)

where

F = F I − εF V , G = GI − εGV . (2)

The superscript I denotes the inviscid part of the fluxes and V the viscous part.
The components of the solution vector are q = [ρ, ρu, ρv, e]T which are the density,
x- and y-directional momentum respectively and energy. The components of the
fluxes are given by

F I = [ρu, p+ ρu2, ρuv, u(p+ e)]T

GI = [ρv, ρuv, p+ ρv2, v(p+ e)]T

F V = [0, τxx, τxy, uτxx + vτxy −Qx]
T

GV = [0, τxy, τyy, uτyx + vτyy −Qy]
T

(3)

where p is the pressure, Pr the Prandtl number, γ the ratio of specific heat and
Q = −κT is the thermal conductivity times the temperature according to Fourier’s
law. The stress tensors are given by

τxx = 2µ
∂u

∂x
+λ

(
∂u

∂x
+
∂v

∂y

)
, τyy = 2µ

∂v

∂y
+λ

(
∂u

∂x
+
∂v

∂y

)
, τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
(4)
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where µ and λ are the dynamic and second viscosity respectively.
All the equations above have been non-dimensionalized as

u = u∗

c∗∞
, v = v∗

c∗∞
, ρ = ρ∗

ρ∗∞
, T = T ∗

T ∗∞
,

p = p∗

ρ∗∞(c∗∞)2
, e = e∗

ρ∗∞(c∗∞)2
, λ = λ∗

µ∗∞
, µ = µ∗

µ∗∞

(5)

where the ∗-superscript denotes a dimensional variable and the ∞-subscript the
freestream value. In (2) we have ε = Ma

Re
where Ma is the Mach-number and

Re = ρ∗∞u
∗
∞L
∗
∞

µ∗∞
is the Reynolds-number with L∗∞ being a characteristic length scale.

The equations as stated in (1) is a highly non-linear system of equations. The
well-posedness and stability conditions that will be derived in this paper will be
based on a linear symmetric formulation.

We freeze the coefficients at some constant state w̄ = [ρ̄, ū, v̄, p̄]T and linearize
as w̃ = w̄ + w′ where w′ = [ρ, u, v, p]T is a perturbation around the constant state
w̄. This yields an equation with constant matrix coefficients. Next we transform
to primitive variables and use the parabolic symmetrizer derived in [14] to get the
linear, constant coefficient and symmetric system

wt + Awx +Bwy = ε
(

(C11wx + C12wy)x + (C21wx + C22wy)y

)
(6)

where the symmetrized variables are

w =

[
c̄
√
γρ̄
ρ, u, v,

1

c̄
√
γ(γ − 1)

T

]T
. (7)

All matrix coefficients can be found in [14] but we restate them in Appendix A
for convenience.

We will use the energy method to determine the well-posedness of (6). The
energy norm in which we will derive our estimates is defined by

||w||2 =

∫
Ω

wTwdΩ. (8)

By multiplying (6) with wT , integrating over Ω and using the Gauss-Green theorem
for higher-dimensional integration by parts we obtain

||w||2t = −
∮
∂Ω

wT (Aw − 2ε(C11wx + C12wy), Bw − 2ε(C21wx + C22wy)) · nds

− 2ε

∫
Ω

[
wx
wy

]T [
C11 C12

C21 C22

] [
wx
wy

]
dΩ

(9)

where the last term in (9) can be seen to be dissipative by computing the eigenvalues
of the matrix in the quadratic form [1, 2, 4].
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To simplify we let the domain of interest be the unit square 0 ≤ x, y ≤ 1 and we
consider only the south boundary at y = 0. Equation (9) is then simplified to

||w||2t =

1∫
0

wT (Bw − 2ε (C21wx + C22wy)) |y=0dx

− 2ε

∫
Ω

[
wx
wy

]T [
C11 C12

C21 C22

] [
wx
wy

]
dΩ.

(10)

The east, west and north boundaries are omitted and we consider the south boundary
as a solid wall.

A solid wall requires 3 boundary conditions [2, 4]. Since we do not want any
penetration through the wall we require that

v(x, 0, t) = 0. (11)

A Robin boundary condition does not apply to the v-velocity since it is not a well-
posed boundary condition for the Euler equations. When inserting (11) into (10)
and considering only the south boundary at y = 0 we get

||w||2t ≤ −2ε

1∫
0

(
µ

ρ̄
uuy +

γµ

ρ̄c̄2γ(γ − 1)Pr
TTy

)
dx. (12)

Note that the dissipative term has been omitted and the equality has been replaced
by an inequality.

We are allowed to use 2 more boundary conditions. The boundary conditions
we consider are the Robin conditions

αu− βuy = g1, φT − ψTy = g2, (13)

where any combiation of α, β, φ and ψ are allowed as long as no boundary condition
is removed. This allows us to study all physically relevant boundary conditions in
one uniform formulation. In particular we can include the standard no-slip boundary
conditions with prescribed temperature or temperature gradient and the first order
slip-flow boundary conditions.

Remark 2.1. Note that if u(x, 0, t) 6= 0 then we need to use that v(x, 0, t) = 0 imply
vx(x, 0, t) = 0 to obtain (12). As we shall see later, the relation vx(x, 0, t) = 0 must
be explicitly included in the discrete case in order to obtain stability.

Depending on how we chose α, β, φ and ψ in (13) we obtain different energy
estimates. Assume that g1,2 = 0. If we restrict ourselves to the case where β, ψ 6= 0
and insert (13) into (12) we obtain the energy estimate

||w||2t ≤ −2ε

1∫
0

(
µ

ρ̄

α

β
u2 +

γµ

ρ̄c̄2γ(γ − 1)Pr

φ

ψ
T 2

)
dx. (14)

We can see that the energy is bounded if

αβ ≥ 0, φψ ≥ 0. (15)
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We can now let α, φ→ 0 and obtain the Neumann boundary conditions which have
the energy estimate ||w||2t ≤ 0. By restricting ourselves to the case where α, φ 6= 0
we get the energy estimate

||w||2t ≤ −2ε

1∫
0

(
µ

ρ̄

β

α
u2
y +

γµ

ρ̄c̄2γ(γ − 1)Pr

ψ

φ
T 2
y

)
dx (16)

which gives an energy estimate if (15) hold. If we let β, ψ → 0 we recover the
standard no-slip boundary conditions which have the energy estimate ||w||2t ≤ 0.
Compared to the Robin boundary conditions (13), the no-slip boundary conditions
are less damping than if we keep α, β, φ and ψ non-zero.

2.2. Discrete case

To extend the SBP and SAT technique to systems in higher dimensions it is con-
venient to introduce the Kronecker product, which is defined for arbitrary matrices
A ∈ Rm×n and B ∈ Rp×q by

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (17)

As a special case of a tensor product, the Kronecker product is bilinear and associa-
tive, and one can prove the mixed product property (A⊗B) (C ⊗D) = (AC ⊗BD)
if the usual matrix products are defined. For inversion and transposing we have

(A⊗B)−1,T =
(
A−1,T ⊗B−1,T

)
(18)

if the usual inverse exist. The mixed product property is particularly useful since it
allows the operators to operate in each coordinate direction independently of each
other.

Let the domain 0 ≤ x, y ≤ 1 be discretized by M + 1 and N + 1 equidistant grid
points respectively. We define the following operators:

Dx = P−1
x Qx, Dy = P−1

y Qy, Qx,y +QT
x,y = Bx,y = diag(−1, 0, . . . , 0, 1) (19)

where Px,y is symmetric and positive definite. In this paper a diagonal Px,y is used
but there are more general forms available [10, 11]. The details for the second order
case are found in Appendix B.

The extension to the two-dimensional domain is done using the Kronecker prod-
uct. The following matrices will be used:

D̄x = (Dx ⊗ Iy ⊗ I4) , D̄y = (Ix ⊗Dy ⊗ I4) , P̄x = (Px ⊗ Iy ⊗ I4)

P̄y = (Ix ⊗ Py ⊗ I4) P̄ = (Px ⊗ Py ⊗ I4) B̄x = (Bx ⊗ Iy ⊗ I4)

B̄y = (Iy ⊗By ⊗ I4) C̄11 = (Ix ⊗ Iy ⊗ C11) C̄12 = (Ix ⊗ Iy ⊗ C12)

C̄21 = (Ix ⊗ Iy ⊗ C21) C̄22 = (Ix ⊗ Iy ⊗ C22) Ē0 = (Ix ⊗ E0 ⊗ I4)

(20)

whereE0 = diag(1, 0, . . . , 0). The solution vector is aligned as w = [w0, . . . , wM×N ]T =
[ρ0, (ρu)0, (ρv)0, e0, . . . , ρM×N , (ρu)M×N , (ρv)M×N , eM×N ]T .
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With the definitions given in (20) we can discretize (1) as

wt + D̄xF + D̄yG = 0 (21)

where w, F and G are the discrete grid function and fluxes. In order to analyze (21)
we need to use the linear, symmetric formulation (6). After linearizing, freezing the
coefficients and transforming to symmetric variables, we apply the energy method
to (21) by multiplying with wT P̄ and using the SBP properties of the operators.
For a thorough derivation, see [1, 4]. The result is

||w||2t + wT B̄xP̄y
(
FI
s − 2εFV

s

)
+ wT B̄yP̄x

(
GI
s − 2εGV

s

)
+ 2ε

[
D̄xw
D̄yw

]T [
P̄ 0
0 P̄

] [
C̄11 C̄12

C̄21 C̄22

] [
D̄xw
D̄yw

]
= 0.

(22)

where the norm is defined by ||w||2 = wT P̄w and

FI
s = Āw, FV

s = C̄11wx + C̄12wy

GI
s = B̄w, GV

s = C̄21wx + C̄22wy
(23)

with Ā = (Ix ⊗ Iy ⊗ A) and B̄ = (Ix ⊗ Iy ⊗B). The last term in (22) is dissipative
and we need to construct a SAT which bounds the indefinite boundary terms.

To simplify we consider only the terms related to the south boundary at y = 0.
Equation (22) becomes

||w||2t − wT P̄xĒ0

(
GI
s − 2εGV

s

)
+ 2ε

[
D̄xw
D̄yw

]T [
P̄ 0
0 P̄

] [
C̄11 C̄12

C̄21 C̄22

] [
D̄xw
D̄yw

]
= 0.

(24)

Denote the last term in (24) by DI and expand the fluxes according to the the
definitions in (23). Equation (24) then simplifies to

||w||2t − wT P̄xĒ0B̄w + 2εwT P̄xĒ0

(
C̄21wx + C̄22wy

)︸ ︷︷ ︸
BT

+DI = 0. (25)

Based on (25) we will construct a SAT which we add to the right-hand-side of (21)
that will bound the indefinite terms and implement the correct boundary conditions.

Remember that the boundary conditions being imposed are

αu− βuy = g1, φT − ψTy = g2, v = g3 (26)

where g3 will be set to zero at a solid wall. In order to obtain stability we also need
to include the discrete version of

vx =
∂g3

∂x
(27)

which does not automatically follow from (26) as it does in the continuous case.
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Due to the different forms of the boundary conditions we split the SAT into 5
different terms. One term for the inviscid part and one additional term for each
condition in (26) and (27). The SAT we will use is

S = P̄−1
y Ē0Σ̄

(
w − gI

)
+ εσ2P̄

−1
y Ē0

(
αH̄2w − βD̄yH̄2w − g1

)
+ εσ3P̄

−1
y Ē0

(
H̄3w − g3

)
+ εP̄−1

y Ē0Θ̄

(
D̄xw −

∂g3

∂x

)
+ εσ4P̄

−1
y Ē0

(
φH̄4w − ψD̄yH̄4w − g2

)
(28)

where H̄i = (Ix ⊗ Iy ⊗Hi) and Hi are 4 × 4 matrices that have the only non-
zero element 1 at the (i, i) position on the diagonal. We have Σ̄ = (Ix ⊗ Iy ⊗ Σ)
where Σ is an undetermined 4 × 4 matrix that will be determined for stability.
Θ̄ = (Ix ⊗ Iy ⊗Θ) where Θ is a 4× 4 penalty matrix that acts on v only and hence
has the structure

Θ =


0 0 θ1 0
0 0 θ2 0
0 0 θ3 0
0 0 θ4 0

 . (29)

Both Σ̄ and Θ̄ will be determined for stability.
The first row in (28) is used to bound the inviscid part and the three last rows are

scaled with ε and enforces each of the boundary conditions in (26) and (27). This
construction will ensure that the solution converges to that of the Euler equations
as ε → 0. The Robin boundary conditions does not apply to the Euler equations.
Hence as ε→ 0, the viscous terms mush vanish and leave v = 0 as the only boundary
condition for the Euler equations at a solid wall.

By considering zero boundary data and carrying (28) through the derivations in
the energy estimate it will appear on the right-hand-side of (24) as

2wT P̄S = 2wT P̄xĒ0Σ̄w

+ 2εσ2w
T P̄xĒ0

(
αH̄2w − βD̄yH̄2w

)
+ 2εσ3w

T P̄xĒ0H̄3w + 2εP̄xĒ0D̄xΘ̄w

+ 2εσ4w
T P̄xĒ0

(
φH̄4w − ψD̄yH̄4w

)
.

(30)

By moving all terms to the right hand side we get

||w||2t = BT + SAT - DI (31)

and we have to choose the coefficients in (28) such that ||w||2t ≤ 0. In order to
proceed we split the BT and SAT into inviscid and viscous parts respectively.

By considering only the inviscid terms we have

||w||2t = wT P̄xĒ0B̄w + 2wT P̄xĒ0Σ̄w (32)

= wT P̄xĒ0

(
B̄ + 2Σ̄

)
w (33)

and we have to choose Σ̄ such that B̄ + 2Σ̄ ≤ 0. Since the Kronecker product
preserves positive semi-definiteness it is sufficient to determine the 4 × 4 matrix Σ
such that

B + 2Σ ≤ 0. (34)
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This is easily accomplished by diagonalizing B = XΛXT and rewriting (34) as

Λ+ + Λ− + 2Σc ≤ 0 (35)

where Λ+,− holds the positive and non-positive eigenvalues of B respectively and
Σc = XTΣX. We have Λ+ = diag(0, 0, c̄, 0) and hence we construct Σc = diag(0, 0, σ, 0)
with σ ≤ − c̄

2
. By transforming back we get

Σ = XΣcX
T =

σ

2γ


1 0

√
γ

√
γ(γ − 1)

0 0 0 0
√
γ 0 γ

√
γ(γ − 1)√

γ(γ − 1) 0
√
γ(γ − 1) γ − 1

 . (36)

With Σ given by (36) the inviscid boundary terms are bounded and implements the
wall normal velocity boundary condition for the Euler equations.

Remark 2.2. The transformation from conservative to primitive to symmetric to
characteristic variables and back is used only for the purpose of analysis. In a code
the transformation from conservative to characteristic variables and back can be
done directly by following the transformations given in [15].

By considering only the viscous terms we have

||w||2t = −2εwT P̄xĒ0

(
D̄xC̄21w + D̄yC̄22w

)
+ 2εσ2w

T P̄xĒ0

(
αH̄2w − βD̄yH̄2w

)
+ 2εσ3w

T P̄xĒ0

(
H̄3w

)
+ 2εP̄xĒ0D̄xΘ̄w

+ 2εσ4w
T P̄xĒ0

(
φH̄4w − ψD̄yH̄4w

)
−DI

(37)

which can be written as a quadratic form

||w||2t = −εW T P̄0M̄0W −DI (38)

where

W =

 w
D̄xw
D̄yw

 , P̄0 =

 P̄xĒ0 0 0
0 P̄xĒ0 0
0 0 P̄xĒ0

 , M̄0 =

 m̄1 m̄2 m̄3

m̄T
2 0 0

m̄3 0 0


(39)

where m̄3 and M̄0 are symmetric and

m̄1 = −2 (Ix ⊗ Iy ⊗ σ2αH2 + σ3H3 + σ4φH4)

m̄2 = (Ix ⊗ Iy ⊗ C21 −Θ)

m̄3 = (Ix ⊗ Iy ⊗ C22 + σ2βH2 + σ4ψH4) .

(40)

In order to stabilize the viscous terms we need to choose our coefficients σ2,3,4

and Θ such that M̄0 ≥ 0. Note that only the positive semi-definiteness of M̄0 is
required since P̄0 is positive semi-definite and commutes with M̄0. Hence if M̄0 is
positive semi-definite, so is the product P̄0M̄0.
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Unfortunately though, there is no choice of σ2,3,4 and Θ such that m̄1 = m̄2 =
m̄3 = 0 which would give M̄0 = 0. Hence in the current form we will always end up
with an indefinite M̄0.

To remedy this fact we can use a part of the dissipation term DI in (38),

DI = 2ε

[
D̄xw
D̄yw

]T [
P̄ 0
0 P̄

] [
C̄11 C̄12

C̄21 C̄22

] [
D̄xw
D̄yw

]
. (41)

The matrix P̄ can be rewritten as

P̄ = (Px ⊗ Py ⊗ I4) =
(
Px ⊗ P̃y + rE0 ⊗ I4

)
=
(
Px ⊗ P̃y ⊗ I4

)
︸ ︷︷ ︸

P̃

+rP̄xĒ0 (42)

where r is small enough such that Py(1, 1) − r ≥ 0 [16, 17]. If we choose r such
that strict inequality holds, the remainder P̃ is still a full norm. Note that r is
proportional to ∆y. The dissipation term can thus be rewritten as

DI = 2ε

[
D̄xw
D̄yw

]T [
P̃ 0

0 P̃

] [
C̄11 C̄12

C̄21 C̄22

] [
D̄xw
D̄yw

]
+ 2εr

[
D̄xw
D̄yw

]T [
P̄xĒ0 0

0 P̄xĒ0

] [
C̄11 C̄12

C̄21 C̄22

] [
D̄xw
D̄yw

]
.

(43)

The second term in (43) can be used to fill in the empty 2× 2 bottom block in M̄0

to obtain

M̄ =

 m̄1 m̄2 m̄3

m̄T
2 2rC̄11 2rC̄12

m̄3 2rC̄21 2rC̄22

 . (44)

To determine positive semi-definiteness of M̄ it is sufficient to only consider the
reduced matrix

M =

 −2(σ2αH2 + σ3H3 + σ4φH4) C21 −Θ C22 + σ2βH2 + σ4ψH4

C21 −ΘT 2rC11 2rC12

C22 + σ2βH2 + σ4ψH4 2rC21 2rC22

 (45)

where we have removed the Kronecker products. This can be done since the Kro-
necker product is permutation similar, i.e. there exist a permutation matrix Y such
that for arbitrary square matrices A and B we have A⊗B = Y T (B ⊗ A)Y . Hence
we can rewrite (38) as

||w||2t = −ε(YW )T (M ⊗ P0)YW − D̃I (46)

where P0 = Px ⊗ E0 is positive semi-definite.
In order to proceed we chose

Θ =


0 0 0 0

0 0 λ+µ
2ρ̄

0

0 0 0 0
0 0 0 0

 . (47)
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The matrix M in (45) is of size 12×12 but with the 1st, 5th and 9th row and column
being zero. We can hence remove these rows and columns and condense (45) into
the 9× 9 matrix

M̃ =

 −2(σ2αH̃2 + σ3H̃3 + σ4φH̃4) C̃21 − Θ̃ C̃22 + σ2βH̃2 + σ4ψH̃4

C̃21 − Θ̃T 2rC̃11 2rC̃12

C̃22 + σ2αH̃2 + σ4ψH̃4 2rC̃21 2rC̃22

 . (48)

By defining the matrices

Ã = σ2αH̃2 + σ3H̃3 + σ4φH̃4,

B̃ = C̃22 + σ2βH̃2 + σ4ψH̃4,

C̃ =

[
C̃11 C̃12

C̃21 C̃22

]
,

J̃ =
[
C̃21 − Θ̃ B̃

]
(49)

we can rewrite (48) as

M̃ =

[
−2Ã J̃

J̃T 2rC̃

]
(50)

which can be rotated into block-dagonal form. The rotation matrix is defined by

S̃ =

[
I3 − 1

2r
J̃C̃−1

06×3 I6

]
. (51)

where 0p×q is a zero matrix of size indicated by the subscript. Note that C̃−1 is
well-defined since we have removed the zero rows and columns. Using (51) we can
rotate (50) by

S̃M̃ S̃T =

[
−2Ã− 1

2r
J̃C̃−1J̃T 03×6

06×3 2rC̃

]
(52)

and it is clear that a sufficient condition for positive semi-definiteness is that the
Schur complement of 2rC̃ in M̃ satisfies

Q = −2Ã− 1

2r
J̃C̃−1J̃T ≥ 0. (53)

Equation (53) leads to the main result of this paper which is

Theorem 2.3. The scheme for the compressible Navier-Stokes equations

wt + D̄xF + D̄yG = S (54)

with Robin boundary conditions given in (26) and (27), where S is given by (28),
can be made stable for all choices of α, β, φ and ψ using (36), (47) and appropriate
choices of σ2,3,4.

Proof. The inviscid part that implements the wall normal velocity boundary condi-
tion for the Euler equations is bounded using (36). Using (47), the matrix Q in (53)
is a 3× 3 diagonal matrix

Q =

 λ1(σ2) 0 0
0 λ2(σ3) 0
0 0 λ3(σ4)

 (55)
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where the diagonal entries are given by

λ1(σ2) = −2σ2α−
2µ(µ+ σ2βρ̄)2

r(λ+ 3µ)(µ− λ)ρ̄
,

λ2(σ3) = −2σ3 −
1

2

λ+ 2µ

rρ̄
,

λ3(σ4) = −2σ4φ−
1

2

(γµ+ σ4ψPrρ̄)2

rγµPrρ̄
.

(56)

For any choice of α, β, φ and ψ such that no boundary condition is removed and
(15) holds, it is possible to determine σ2,3,4 such that λ1,2,3 ≥ 0. The actual values
of σ2,3,4 are determined once the choices of α, β, φ and ψ has been made.

The standard no-slip boundary conditions with prescribed temperature

u = 0, v = 0, T = Tw (57)

where Tw is the wall temperature follows as a corollary.

Corollary 2.4. The standard no-slip boundary conditions with prescribed tempera-
ture given by

u = 0, v = 0, T = Tw (58)

are stable using (36), (47) and

σ2 ≤ −
µ3

r(λ+ 3µ)(µ− λ)ρ̄
,

σ3 ≤ −
1

4

λ+ 2µ

rρ̄
,

σ4 ≤ −
1

4r

γµ

Prρ̄
.

(59)

Proof. The no-slip boundary conditions with prescribed temperature, which are
thoroughly discussed in [2], are obtained by putting

α = 1, β = 0, φ = 1, ψ = 0 (60)

in which case (56) reduces to

λ1(σ2) = −2σ2 −
2µ3

r(λ+ 3µ)(λ− µ)ρ̄
,

λ2(σ3) = −2σ3 −
1

2

λ+ 2µ

rρ̄
,

λ3(σ4) = −2σ4 −
1

2

γµ

rPrρ̄
.

(61)

By demanding
λi ≥ 0, i = 1, 2, 3 (62)

we obtain (59).

11



Note that the estimates (59) are sharp since there are no approximations or
embeddings involved in the derivation of (53) as in contrast to the result in [2]. The
results in [2] are obtained in this setting by having

Θ = 04×4 (63)

and taking

σ1,2,3 = σ ≤ − 1

4r
λmax (64)

where λmax is the maximum eigenvalue of J̃C̃−1J̃T . Since the system becomes stiffer
with increasing magnitude of the coefficients it is desirable with sharp estimates to
minimize the magnitudes. If we compare (59) and (64) we get

σ2

σ
=

4µ2Pr

γ(λ+ 3µ)(µ− λ)
,

σ3

σ
=

(λ+ 2µ)Pr

γµ
,

σ4

σ
= 1.

(65)

With some reasonable numerical values, ρ = 1, γ = 1.4, Pr = 0.72, µ = 1 and
λ = −2

3
µ, the ratios become

σ2

σ
≈ 0.53,

σ3

σ
≈ 0.69,

σ4

σ
= 1 (66)

which is an improvement for the velocity components.
The proof of stability using (63) and (64) does not extend to the case where

β 6= 0 in which case Θ 6= 04×4 is required.
For the adiabatic solid wall boundary conditions we have

Corollary 2.5. The adiabatic boundary conditions

u = 0, v = 0, Ty = 0 (67)

are stable using (36), (47) and

σ2 ≤ −
µ3

r(λ+ 3µ)(µ− λ)ρ̄
,

σ3 ≤ −
1

4

λ+ 2µ

rρ̄
,

σ4 = − γµ

Prρ̄
.

(68)

Proof. The adiabatic boundary conditions are obtained by having

α = 1, β = 0, φ = 0, ψ = 1 (69)

in which case (56) reduces to

λ1(σ2) = −2σ2 −
2µ3

r(λ+ 3µ)(λ− µ)ρ̄
,

λ2(σ3) = −2σ3 −
1

2

λ+ 2µ

rρ̄
,

λ3(σ4) = −1

2

(γµ+ σ4Prρ̄)2

rγµPrρ̄
.

(70)
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By demanding
λi ≥ 0, i = 1, 2, 3 (71)

we obtain (68).

Remember that r is proportional to ∆y. As the mesh is refined, the penalty
coefficients will increase in magnitude and make the discretization stiffer. If β, ψ 6= 0
we can cancel the 1/r dependence in σ2,4 by choosing

σ2 = − 1

β

µ

ρ̄
, σ4 = − 1

ψ

γµ

Prρ̄
(72)

in which case (56) reduces to

λ1 =
2µ

ρ̄

α

β
,

λ2(σ3) = −2σ3 −
1

2

λ+ 2µ

rρ̄
,

λ3 =
2γµ

Prρ̄

φ

ψ
.

(73)

It is easy to see from (73) that the continuous well-posedness conditions (15) are
required in order for λ1,3 ≥ 0. The 1/r dependence in σ3 is not possible to remove
unless a different form of the SAT is used.

Remark 2.6. For the north boundary at y = 1, the conditions in Theorem 2.3 and its
corollaries apply without modifications. However, the Robin boundary conditions
(26) are replaced by

αu+ βuy = g1 φT + ψTy = g2 v = g3. (74)

3. Numerical results

The stability theory developed in the previous section does not depend on the
order of accuracy of the numerical scheme. In order to verify that the scheme attains
its design order we will use the method of manufactured solutions.

Any sufficiently smooth function H(x, y, t) is a solution to the modified Navier-
Stokes equations

qt + Fx +Gy = R(x, y, t) (75)

where the forcing function R(x, y, t) has to be appropriately chosen depending on
H(x, y, t). By the principle of Duhamel [18], the inhomogeneous equation (75) is
well-posed if the homogeneous equation (1) is [18]. The boundary conditions remain
unchanged and we can use the manufactured solution H(x, y, t) to create the initial
and boundary data. Thus we have an analytic solution to (75) which can be used
to test the order of accuracy of the computational scheme.

In this particular case we specify

ρ(x, y, t) = e−ν (sin(ξ π x−t))2−ν (cos(ξ π y−t))2

u(x, y, t) = cos (ξ π (x+ y)− t)
v(x, y, t) = sin (ξ π (x+ y)− t)

p(x, y, t) = e−ν (sin(ξ π (x−y)−t))2

(76)
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Table 1: Order of accuracy

# grid points 32× 32 64× 64 128× 128 256× 256
2nd-order

ρ 1.5034 1.7651 1.9666 1.9752
ρu 1.8596 2.0101 2.0594 2.0402
ρv 1.8540 2.0216 2.0643 2.0163
e 1.4702 1.8064 2.0253 1.9725

4th-order
ρ 2.1722 2.3449 2.7873 2.7933
ρu 2.5558 2.6331 2.7796 2.6916
ρv 2.5409 2.5925 2.8033 2.7474
e 2.1944 2.4076 2.7627 2.7141

6th-order
ρ 3.4865 3.6814 3.8377 3.8038
ρu 3.7509 3.7349 3.9500 3.9811
ρv 3.6202 3.8639 4.0055 4.0174
e 3.4023 4.0812 4.1063 3.9139

where ν and ξ can be used to tune the amplitude and frequency of the solution. In
this case we have chosen ν = ξ = 0.1. Using (76) we specify H(x, y, t) as

H(x, y, t) =


ρ
ρu
ρv
e

 , e =
p

γ − 1
+

1

2
ρ (u2 + v2) (77)

where γ = 1.4.
The scheme for (75) is

wt + D̄xF + D̄yG = R(x, y, t) + S (78)

and in order to obtain a higher order accurate scheme, the difference operators D̄x,y

are simply replaced with operators of the desired order of accuracy. The penalty
coefficients in Theorem 2.3 remain unchanged. The forcing function R(x, y, t) is too
tedious to write in text but can be computed using a symbolic software such as
Maple R©.

The scheme (78) was implemented using SBP operators of order 2, 4 and 6 which
gives a global accuracy of 2, 3 and 4 [10, 19]. The result can be seen in Table 1. The
order of accuracy is independent of the choices of α, β, φ and ψ and in Table 1 the
no-slip with prescribed temperature, using α = 1, β = 0, φ = 1 and ψ = 0, is seen.

4. Applications

An application of the Robin boundary condition is the slip-flow boundary condi-
tions used for moderate Knudsen numbers (Kn) in micro fluid flows. The slip-flow
boundary conditions extends the use of the Navier-Stokes equations to the slip-flow
regime where 10−3 ≤ Kn ≤ 10−1 [20].
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Computations in the slip-flow regime corresponds to having α = 1, φ = 1, ψ = 0
and β = Kn which gives a first order slip-flow boundary condition. Stability is
shown in

Corollary 4.1. The first order slip-flow boundary conditions

u = (Kn)uy, v = 0, T = Tw (79)

are stable using (36), (47) and

σ2 = − µ

(Kn)ρ̄
,

σ3 ≤ −
1

4

λ+ 2µ

rρ̄
,

σ4 ≤ −
1

4r

γµ

Prρ̄
.

(80)

Proof. The slip-flow boundary conditions are obtained by

α = 1, β = Kn, φ = 1, ψ = 0 (81)

in which case (56) reduces to

λ1(σ2) = −2σ2 −
2µ(µ+ σ2(Kn)ρ̄)2

r(λ+ 3µ)(λ− µ)ρ̄
,

λ2(σ3) = −2σ3 −
1

2

λ+ 2µ

rρ̄
,

λ3(σ4) = −2σ4 −
1

2

γµ

rPrρ̄
.

(82)

By demanding
λi ≥ 0, i = 1, 2, 3 (83)

we obtain (80).

Figures 1 to 4 shows the flow field from no-slip (β = 0) to almost full slip (β = 1).
In the computations we have used the domain 0 ≤ x ≤ 5, 0 ≤ y ≤ 1 with 512× 128
grid points. The Mach number is 0.5 and the Reynolds number is 100. All scales
are normalized with respect to the no-slip case.

The inflow and outflow boundary conditions are implemented as described in [1]
which means that there is a severe missmatch between the boundary conditions and
the boundary data at the corners. However because of the weak boundary treatment
the computations remain stable.
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(a) Momentum

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8

0

0.02

0.04

0.06

0.08

0.1

(b) Close-up of momentum field at the center of the south boundary

Figure 1: β = 0.0, corresponding to no-slip
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(b) Close-up of momentum field at the center of the south boundary

Figure 2: β = 0.01, corresponding to moderate slip
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(b) Close-up of momentum field at the center of the south boundary

Figure 3: β = 0.1, corresponding to large slip
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(b) Close-up of momentum field at the center of the south boundary

Figure 4: β = 1.0, corresponding to almost full slip

5. Summary and conclusions

We have proved stability for Robin solid wall boundary conditions for the com-
pressible Navier-Stokes equations using a finite difference method on Summation-
By-Parts (SBP) form with weak boundary conditions using the Simultaneous Ap-
proximation Term (SAT).

The formulation of the SAT allows for easy change between common boundary
conditions such as the no-slip with prescribed temperature or temperature gradient
and slip-flow or any combination thereof.
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The energy estimates were derived without using approximations or embeddings
which yields sharp estimates in contrast to previous results.

The accuracy of the numerical scheme was tested using a manufactured solution.
The computational scheme was verified to attain 2nd-, 3rd- and 4th-order of accuracy
which are the design orders of the SBP scheme.

We did computations of flows in a rectangular domain when the solid wall bound-
ary conditions were changed from no-slip to substantial slip by a simple variation of
one parameter.
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Appendix A. Matrix coefficients

The matrix coefficients in (6) are given by

A =


ū c̄√

γ
0 0

c̄√
γ

ū 0 c̄
√

γ−1
γ

0 0 ū 0

0 c̄
√

γ−1
γ

0 ū

 , B =


v̄ 0 c̄√

γ
0

0 v̄ 0 0
c̄√
γ

0 v̄ c̄
√

γ−1
γ

0 0 c̄
√

γ−1
γ

v̄



C11 =


0 0 0 0

0 λ+2µ
ρ̄

0 0

0 0 µ
ρ̄

0

0 0 0 γµ
Prρ̄

 , C22 =


0 0 0 0
0 µ

ρ̄
0 0

0 0 λ+2µ
ρ̄

0

0 0 0 γµ
Prρ̄

 ,

C12 = C21 =


0 0 0 0

0 0 λ+µ
2ρ̄

0

0 λ+µ
2ρ̄

0 0

0 0 0 0

 .

(A.1)

Appendix B. SBP operators

In the second order case the SBP operators are explicitly given by

Dξ = P−1
ξ Qξ (B.1)
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where ξ is either x or y and

Pξ =
1

∆ξ


1
2

0 0 . . . 0
0 1 0 . . . 0
...

...
. . .

...
...

0 . . . 0 1 0
0 . . . 0 0 1

2

 , Qξ =
1

2



−1 1 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 0 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 −1 0 1 0
0 . . . 0 0 −1 0 1
0 . . . 0 0 0 −1 1



Dξ =
1

2∆ξ



−2 2 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 0 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 −1 0 1 0
0 . . . 0 0 −1 0 1
0 . . . 0 0 0 −2 2


.

(B.2)

For SBP operators of higher order accuracy we refer the reader to [10, 11].
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