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Abstract

This paper analyzes well-posedness and stability of a conjugate heat transfer problem in
one space dimension. We study a model problem for heat transfer between a fluid and
a solid. The energy method is used to derive boundary and interface conditions that
make the continuous problem well-posed and the semi-discrete problem stable. The nu-
merical scheme is implemented using 2nd-, 3rd- and 4th-order finite difference operators
on Summation-By-Parts (SBP) form. The boundary and interface conditions are imple-
mented weakly. We investigate the spectrum of the spatial discretization to determine
which type of coupling that gives attractive convergence properties. The rate of conver-
gence is verified using the method of manufactured solutions.

Keywords: Conjugate heat transfer, Well-posedness, Stability, High order accuracy,
Summation-By-Parts, Weak boundary conditions

1. Introduction

The coupling of fluid and heat equations is an area that has many interesting scientific
and engineering applications. From the scientific side it is interesting to mathemati-
cally derive conditions to make the coupled system well-posed and compare with actual
physics. The applications for conjugate heat transfer ranges between cooling of turbine
blades, electronic components, nuclear reactors or spacecraft re-entry just to name a few.
The particular application we are working towards here is a microscale satellite cold gas
propulsion system with heat sources that will be used for controlling the flow rate [1]. See
Figure 1.

This paper is the first step of understanding the coupling procedure within our frame-
work. The computational method that we are using is a finite difference method on
Summation-By-Parts (SBP) form with the Simultaneous Approximation Term (SAT), a
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Figure 1: A micro machined nozzle with three heater coils positioned just before the nozzle throat. The
nozzle throat is approximately 30µm in a heat exchange chamber.

weak coupling at the fluid-solid interface. This method has been developed in many papers
[2, 3, 4, 5, 6, 7] and used for many difficult problems where it has proven to be robust
[8, 9, 10, 11]. The extensions to multiple dimensions is relatively straightforward once
the one-dimensional case has been investigated. The difficulty in extending to multiple
dimensions lies rather in a high performance implementation than in the theory.

The main idea of the SBP and SAT framework is that the difference operators should
mimic integration by parts in the continuous case. This framework makes the discrete
equations closely related to the PDE:s themselves. The difference operators are con-
structed such that they shift to one-sided close to the boundaries. This results in an
energy estimate which gives stability for a well-posed Cauchy problem. The SAT method
implements the boundary conditions weakly and an energy estimate, and hence stability,
can be obtained for a well-posed initial boundary value problem.

Since the operators shift to one-sided close to boundaries and interfaces there is no
need to introduce ghost points or extrapolate values which in general causes stability
issues. Once the scheme is correctly written and all coefficients determined the order of
the scheme depends only on the order of the difference operators. In this paper we will
present 2nd-, 3rd- and 4th-order operators and study their performance. The details of
these operators can be found in for example [2, 3, 12].

2. The continuous problem

The equations we are studying in this paper are motivated by a gas flow in a long
channel with heat sources. The channel is long compared to the height and hence the
changes in the tangential direction are small in comparison to the changes in the normal
direction, see Figure 2.
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Figure 2: By assuming an infinitely long channel with homogenicity in the tangential direction y we get a
one-dimensional problem in the normal direction x for the conjugate heat transfer problem

The equations are an incompletely parabolic system of equations for the flow and the
scalar heat equation for the heat transfer,

wt +Awx = εBwxx, −1 ≤ x ≤ 0, (1)

and
Tt = kTxx, 0 ≤ x ≤ 1, (2)

where

w =

 ρ
u
T

 , A =

 a b 0
b a c
0 c a

 , B =

 0 0 0
0 α 0
0 0 β

 . (3)

We can view (1) as the Navier-Stokes equations linearized and symmetrized around a
constant state. In that case we would have

a = ū, b =
c̄
√
γ
, c = c̄

√
γ − 1
γ

, α =
λ+ 2µ
ρ̄

, β =
γµ

Prρ̄
, (4)

where ū, ρ̄ and c̄ is the mean velocity, density and speed of sound. γ is the ratio of
specific heats, Pr the Prandtl number and λ and µ are the second and dynamic viscosities,
[8, 13, 14]. At this point the only assumption on the coefficients is that α, β > 0.

Our main objective is to couple (1) and (2) at x = 0 and investigate which boundary
and interface conditions that will lead to a well-posed coupled system.

To simplify, we assume for the rest of the paper that a > 0. We are allowed to use three
boundary conditions at x = −1, three interface conditions at x = 0 and one boundary
condition at x = 1. See e.g. [8, 9, 13, 15].

2.1. Boundary conditions at x = −1
The boundary and interface conditions will be derived using the energy method. Define

the energy norm of w as

||w||2 =

0∫
−1

wTwdx. (5)
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By multiplying (1) with wT and integrating over the domain we get

||w||2t = −wTAw
∣∣0
−1

+ 2εwTBwx
∣∣0
−1
− 2ε

0∫
−1

wTxBwxdx. (6)

Let

X =
1√
2d

 −√2c b b
0 d d√
2b c c

 , d =
√
b2 + c2, (7)

be the diagonalizing matrix of A. We have X−1 = XT and A = XΛXT where

Λ =

 a 0 0
0 a+ d 0
0 0 a− d

 (8)

contains the eigenvalues of A. Using these relations we can write (6) as

||w||2t = (XTw)TΛ(XTw)− 2εwTBwx − 2ε

0∫
−1

wTxBwxdx (9)

where all boundary terms are evaluated at x = −1. We make the change of variables

XTw =
1√
2d

 −√2cρ+
√

2bT
bρ+ du+ cT
bρ− du+ cT

 =

 c1

c2

c3

 (10)

which are the characteristic variables for the hyperbolic part, cf. [13, 15]. In order to
bound the energy for the hyperbolic part we need to put boundary conditions on the
characteristic variables that are related to the positive eigenvalues of A. If we assume that
a < d which corresponds to subsonic inflow, then A has two positive eigenvalues and we
need to use two boundary conditions on the corresponding characteristic variables. Thus
we need to impose the boundary conditions

c1 =
1√
2d

(−
√

2cρ+
√

2bT ) = f1(t), (11)

c2 =
1√
2d

(bρ+ du+ cT ) = f2(t) (12)

to bound the hyperbolic part.
We are allowed to use one more boundary conditions that will need to bound the

parabolic term −2εwTBwx. Assume f1 = f2 = 0. By taking linear combinations of (11)
and (12) we can eliminate ρ and obtain

cu+ dT = 0. (13)

The parabolic term is expanded using relation (13) to obtain

−2εwTBwx = −2εu(αux −
βc

d
Tx). (14)

If we put
αdux − βcTx = f3(t) (15)

as the final boundary condition for (1) at x = −1, then with f3 = 0 the parabolic term
(14) is zero and all the boundary terms are bounded.
Remark 2.1. The assumption of zero boundary data is necessary to obtain Eq. (15). If we
could have bounded the left boundary terms with non-zero boundary data, it could lead
to a strongly well-posed problem [16].
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2.2. Boundary conditions at x = 1
At x = 1 we have the scalar heat equation. By applying the energy method we get

||T ||2t = 2kTTx − 2k||Tx||2, (16)

from which it is easy to see that either

T = h1(t), Tx = h2(t) or α1T + β1Tx = h3(t) (17)

will result in an energy estimate (for suitable choices of the constants α1 and β1). In the
rest of the paper and in the numerical experiments we have used T = h1(t).

2.3. Interface conditions at x = 0
At the interface we apply the energy method to both equations and add them together

to get (when ignoring boundary terms)

d

dt
(||w||2 + ||T ||2) = −wTAw + 2εwTBwx − 2kTTx − 2ε

0∫
−1

wTxBwxdx− 2k

1∫
0

T 2
xdx. (18)

Since we are considering the interface as a solid wall which separates the fluid from the
solid and since we want a continuous heat transfer we impose

u = 0, T = T. (19)

Using the interface conditions (19), equation (18) reduces to

d

dt
(||w||2 + ||T ||2) = −a(ρ2 + T 2) + 2T (βεTx − kTx)− 2ε

0∫
−1

wTxBwxdx− 2k

1∫
0

T 2
xdx

(20)

and we can easily see that if we impose

βεTx − kTx = 0 (21)

as the final interface condition we get an energy estimate. Without (21), the interface can
act as an unphysical heat source.

Using all these boundary and interface conditions we can conclude the following.

Proposition 2.1. Equations (1) and (2) coupled at x = 0 are well-posed with boundary
conditions (11), (12), (15) and (17) and interface conditions (19) and (21).

Remark 2.2. Note that in arriving at Proposition 2.1 we have assumed that the data is
identically zero. If we had been able to obtain an energy estimate for non-zero data the
problem would have been strongly well-posed [16].
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3. The semi-discrete problem

Equation (1) is discretized on the single domain [−1, 0] on a uniform grid of M + 1
grid points. The vector w = [w0, w1, . . . , wM ]T = [ρ0, u0, T0, ρ1, u1, T1, . . . , ρM , uM , TM ]T

is the discrete approximation of w. The derivatives are approximated by the operators on
SBP form

wx ≈ (DL
1 ⊗ I3)w = (P−1

L QL ⊗ I3)w (22)

wxx ≈ (DL
2 ⊗ I3)w = (P−1

L QL ⊗ I3)2w (23)

where PL is a symmetric positive definite matrix and QL is an almost skew symmetric
matrix satisfying QL + QTL = BL = diag(−1, 0, . . . , 0, 1) [2, 3]. I3 is the 3 × 3 identity
matrix. Equation (2) is similarly discretized on a uniform grid of N + 1 grid points.

Remark 3.1. The approximation (23) has the drawback that the computational stencil is
wide. This is however necessary for variable coefficients. Compact formulations that uses
minimal bandwidth does however exist for constant coefficient problems [3].

In (22) and (23) we have introduced the Kronecker product, defined as

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (24)

for the m × n and p × q matrices A and B respectively. It is a special case of a tensor
product so it is bilinear and associative. Some of its important properties are

(A⊗B)(C ⊗D) = (AC ⊗BD), (25)

(A⊗B)−1 = (A−1 ⊗B−1) (26)

if the usual matrix products and inverses are defined.
Given a partial differential equation,

vt = P(x, t, v), x ∈ Ω, t ≥ 0,
v(x, 0) = f(x), x ∈ Ω, t = 0,
Lv = g(t), x ∈ ∂Ω, t ≥ 0,

(27)

the SAT method will be used to implement the boundary condition Lv = g weakly. This
means that Lv−g = O(hp) in the discrete case. The discretization of (27) using the SAT
method would schematically look like

vt = Dv + (P−1E ⊗ Σ)(Lv − g) (28)

where D is a discrete SBP approximation of P and L is a matrix that approximates the
continuous operator L. E is a matrix which picks the correct boundary terms at the
correct positions in space. Σ is an unknown matrix of the same size as the system of
PDE:s to be determined for stability.

With these tools and the boundary and interface conditions derived in Proposition 2.1
we can discretize (1) and (2) using the SAT method as
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wt =− (DL
1 ⊗A)w + ε(DL

2 ⊗B)w

+ (P−1
L EL0 ⊗ Σ0

1)(XTw0 − g0
1)

+ (P−1
L EL0 ⊗ Σ0

3)(αd(DL
1 u)0 − βc(DL

1 T )0 − g0
3)

+ (P−1
L (DL

1 )TEL0 ⊗ Σ0
5)(cu0 + dT0 − g0

5)

+ (P−1
L ELM ⊗ ΣM

1 )(wM − gM1 )

+ (P−1
L ELM ⊗ ΣM

2 )(wM − gM1 ) (29)

+ (P−1
L ELM ⊗ ΣM

3 )(TM − T0)

+ (P−1
L (DL

1 )TELM ⊗ ΣM
4 )(TM − T0)

+ (P−1
L ELM ⊗ ΣM

5 )(βε(DL
1 T )M − k(DR

1 T )0)

− (P−1
L ⊗ I3)(D̃T

LB̃LD̃L ⊗ I3)

Tt =kDR
2 T

+ τ0
1P
−1
R ER0 (T0 − TM )

+ τ0
2P
−1
R (DR

1 )TER0 (T0 − TM ) (30)

+ τ0
3P
−1
R ER0 (k(DR

1 T )0 − βε(DL
1 T )M )

+ τN1 P
−1
R ERN (TN − hN1 )

− P−1
R D̃T

RB̃RD̃R.

The matrices EL0 = diag(1, 0, . . . , 0), ELM = diag(0, . . . , 0, 1) and ER0,N similarly defined,
are used to select boundary elements. The 3 × 3 matrices Σ0,M

i and coefficients τ0,N
j are

called penalty matrices and penalty coefficients which have to be determined for stability
[2, 3, 4]. All g0,M

i and hN1 are arbitrary boundary data, except for g0
5 = bg01+

√
2cg03√

2d
which

was derived as a linear combination of the other boundary conditions.
Remark 3.2. In (29) we have XTw0 − g0

1 = [c1 − f1, c2 − f2, c3 − f3]T where c1, c2 and
c3 are the characteristic variables. Moreover wM − gM1 = [ρM − g1, uM − g2, TM − g3]T .
The rest of the SAT boundary and interface terms are 3× 1 vectors with the scalar values
given on each row. The penalty matrices are constructed such that they select the correct
entries and cancels the rest.

The terms D̃T
L,RB̃L,RD̃L,R are artificial dissipation operators which reduce spurious

oscillations. The matrices D̃L,R are undivided forward or backward difference operators
and BL,R are diagonal matrices which make the dissipation operator symmetric and de-
termines the amount and location of the dissipation. In this case we have for 2nd-order
the dissipation operators

D̃L,R =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 −1 1
0 · · · 0 0 −1

 , B̃L,R = diag(γL,R, γL,R, . . . , γL,R, 0)

D̃T
L,RB̃L,RD̃L,R = γL,R


1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −1 2 −1
0 · · · 0 0 −1 1

 (31)
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where γL,R is a positive parameter determining the amount of dissipation. These operators
lead to an energy estimate and does not reduce the order of the scheme. An extensive
study of these dissipation operators can be found in [12].

3.1. Stability conditions at x = −1
We will use the discrete analogue of the energy method to show that the scheme is

stable. Define the discrete energy norm

||w||2PL
= wT (PL ⊗ I3)w, (32)

where I3 is the 3 × 3 identity matrix. Omit all terms which are not related to the left
boundary, and multiply (29) with wT (P ⊗ I3). Since DL

1 and DL
2 are on SBP form we

obtain after some algebra

d

dt
||w||2PL

= wT0 Aw0 − 2εwT0 B(DL
1w)0 − 2ε(DL

1 w)T (IN+1 ⊗B)(DL
1 w)

+ 2wT0 Σ0
1(XTw0 − g0

1) (33)

+ 2wT0 Σ0
3(αd(DL

1 u)0 − βc(DL
1 T )0 − g0

3)

+ 2(DL
1w)T0 Σ0

5(cu0 + dT0 − g0
5).

As in the continuous case we let g0
1 = g0

3 = g0
5 = 0 and consider the hyperbolic and

parabolic parts separately.
The hyperbolic part with the corresponding penalty term is

wT0 Aw0 + 2wT0 Σ0
1X

Tw0. (34)

By diagonalizing A and make a change of variables in the same way as in the continuous
case we obtain that with

Σ0
1 =

1√
2d

 −√2cσ0
1 bσ0

2 0
0 dσ0

2 0√
2bσ0

1 cσ0
2 0

 (35)

where
a+ 2σ0

1 ≤ 0, a+ d+ 2σ0
2 ≤ 0, (36)

the hyperbolic part is bounded.
The parabolic part with the corresponding penalty terms is

−2εwT0 B(DL
1w)0 + 2wT0 Σ0

3(αd(DL
1 u)0 − βc(DL

1 T )0) + 2(DL
1w)T0 Σ0

5(cu0 + dT0) (37)

and again we have to choose Σ0
3 and Σ0

5 such that (37) is negative semi-definite. Let

Σ0
3 =

 0 0 0
0 εσ0

3 0
0 0 εσ0

4

 , Σ0
5 =

 0 0 0
0 εσ0

5 0
0 0 εσ0

6

 . (38)

We formulate (37) as a quadratic form εvT0 M0v0 with v0 = [u0, (DL
1 u)0, T0, (DL

1 T )0]T and

M0 =


0 −α+ αdσ0

3 + cσ0
5 0 −βcσ0

3 + cσ0
6

−α+ αdσ0
3 + cσ0

5 0 αdσ0
4 + dσ0

5 0
0 αdσ0

4 + dσ0
5 0 −β − βcσ0

4 + dσ0
6

−βcσ0
3 + cσ0

6 0 −β − βcσ0
4 + dσ0

6 0

 .
(39)
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In order for (37) to be negative semi-definite we need to choose the coefficients σ0
i such

that M0 ≤ 0. Since all diagonal entries of M0 is zero, all other entries must also be zero.
This results in a system of equations with a one parameter family of solutions

r ∈ R, σ0
3 =

1 + cr

d
, σ0

4 = r, σ0
5 = −αr, σ0

6 =
β(1 + cr)

d
. (40)

The arbitrary parameter r will later be used in the analysis of the discrete spectrum when
we study convergence and stiffness properties of the discretization. With these choices
M0 = 0 and we obtain an energy estimate and hence the left boundary is stable.

3.2. Stability conditions at x = 1
Consider the semi-discrete scheme (30) at x = 1, where all interface terms have been

neglected,
Tt = kDR

2 T + τN1 P
−1
R ERN (TN − hN1 ). (41)

By assuming hN1 = 0 and multiplying with TTPR we get (when ignoring interface terms)

d

dt
||T||2PR

= 2kTN (DR
1 T )N + 2τN1 T

2
M − 2k(DR

1 T)TPR(DR
1 T). (42)

Define pRN as the last entry on the diagonal of PR, that is pRN = P
(N,N)
R . Then (42) is

bounded by choosing

τN1 ≤
−k
4pRN

. (43)

This means that τN1 is proportional to 1
∆x , and in particular we have k

4pR
N

= k
2∆x , 12k

17∆x ,
10800k

13649∆x for 2nd-, 3rd- and 4th-order operators respectively. This technique is discussed in
e.g. [5, 6].

3.3. Stability conditions at x = 0
At x = 0 we have the two interface schemes

wt =− (DL
1 ⊗A)w + ε(DL

2 ⊗B)w

+ (P−1ELM ⊗ ΣM
1 )(wM − gM1 )

+ (P−1ELM ⊗ ΣM
2 )(wM − gM1 ) (44)

+ (P−1ELM ⊗ ΣM
3 )(TM − T0)

+ (P−1(DL
1 )TELM ⊗ ΣM

4 )(TM − T0)

+ (P−1ELM ⊗ ΣM
5 )(βε(DL

1 T )M − k(DR
1 T )0)

Tt =kDR
2 T

+ τ0
1P
−1
R ER0 (T0 − TM ) (45)

+ τ0
2P
−1
R (DR

1 )TER0 (T0 − TM )

+ τ0
3P
−1
R ER0 (k(DR

1 T )0 − βε(DL
1 T )M ).

The penalty terms related to the outer boundares are omitted.
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A formulation which clearly shows the coupled system can be written[
w
T

]
t

=
[
DL

1 ⊗ (−A) 0
0 0

] [
w
T

]
+
[
DL

1 ⊗ εB 0
0 kDR

2

] [
w
T

]
+ P̄−1

[
eLM ⊗ Σ̃M

3

−τ0
1 e
R
0

] [
eLM ⊗ f3

−eR0

]T
︸ ︷︷ ︸

J1

[
w
T

]
(46)

+ P̄−1

[
(DL

1 )T eLM ⊗ Σ̃M
4

−τ0
2 (DR

1 )T eR0

] [
eLM ⊗ f3

−eR0

]T
︸ ︷︷ ︸

J2

[
w
T

]

+ P̄−1

[
eLM ⊗ Σ̃M

5

−τ0
3 e
R
0

] [
βε(DL

1 ⊗ I3)T (eLM ⊗ f3)
−k(DR

1 )T eR0

]T
︸ ︷︷ ︸

J3

[
w
T

]

where

P̄−1 =
[
P−1
L ⊗ I3 0

0 P−1
R

]
, Σ̃M

i = [0, 0, σMi ]T , f3 = [0, 0, 1]T . (47)

The interface matrices Ji are sparse with entries only close to the interface. For 2nd-order
difference operators they are

J1 =



0 · · · · · · 0
...

...
...

...
· · · σM3 −σM3 · · ·
· · · −τ0

1 τ0
1 · · ·

...
...

...
...

0 · · · · · · 0


, (48)

J2 =



0 · · · · · · 0
...

...
...

...

· · · − σM
4

∆xL

σM
4

∆xL
· · ·

· · · 0 0 · · ·
· · · 0 0 · · ·
· · · σM

4
∆xL

− σM
4

∆xL
· · ·

· · · − τ0
2

∆xR

τ0
2

∆xL
· · ·

· · · τ0
2

∆xR
− τ0

2
∆xL

· · ·
...

...
...

...
0 · · · · · · 0



, (49)

J3 =



0 · · · · · · 0
...

...
...

...

· · · −σM
5 βε

∆xL
0 0 σM

5 βε
∆xL

−σM
5 βε

∆xL

σM
5 βε

∆xL
· · ·

· · · − τ0
3 k

∆xR
0 0 τ0

3 k
∆xR

− τ0
3 k

∆xR

τ0
3 k

∆xR
· · ·

...
...

...
...

0 · · · · · · 0


. (50)

By letting gM1 = 0, applying the energy method to both equations and adding together
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we get (when ignoring the outer boundary terms)

d

dt
(||w||2PL

+ ||T||2PR
) = −wTMAwM + 2εwTMB(DL

1w)M − 2ε(DL
1 w)T (IN ⊗B)(DL

1 w)

+ 2wTMΣM
1 wM + 2wTMΣM

2 wM

+ 2wTMΣM
3 (TM − T0) + (DL

1w)TNΣM
4 (TM − T0)

+ 2wTMΣM
5 (βε(DL

1w)M − k(DR
1 T )0) (51)

− 2kT0(DR
1 T )0 − 2k(DR

1 T)TPR(DR
1 T)

+ 2τ0
1T0(T0 − TM ) + 2τ0

2 (DR
1 T )0(T0 − TM )

+ 2τ0
3T0(k(DR

1 T )0 − βε(DL
1 T )M ).

As in the continuous case we have the hyperbolic part with the corresponding penalty
term

−wTMAwM + 2wTMΣM
1 wM = wTM (−A+ 2ΣM

1︸ ︷︷ ︸
MH

)wM (52)

which we want to bound by making MH negative semi-definite. Note that A is symmetric
by assumtion. By choosing

ΣM
1 =

 0 σH1 0
0 σH2 0
0 σH3 0

 (53)

we can explicitly compute the eigenvalues of MH and see that with

σH1 =
b

2
, σH2 ≤ 0, σH3 =

c

2
, (54)

we have MH ≤ 0. Note that ΣM
1 acts on u only.

The parabolic part is split into parts containing u and T separately. For the interface
condition on u at x = 0 we get by expanding (51)

2αεuM (DL
1 u)M + 2wTMΣM

2 wM − 2αε(DL
1 u)TPL(DL

1 u). (55)

We choose

ΣM
2 =

 0 0 0
0 σM2 0
0 0 0

 (56)

and rewrite (55) as

2αεuM (DL
1 u)M + 2σM2 u2

M − 2αε||DL
1 u||2PL

. (57)

This expression is bounded by choosing

σM2 ≤
−αε
4pLM

(58)

where pLM is defined analogously to pRN in (43).
The remaining terms are used for coupling the two equations. Let the penalty matrices

have the form

ΣM
3 =

 0 0 0
0 0 0
0 0 σM3

 , ΣM
4 =

 0 0 0
0 0 0
0 0 σM4

 , ΣM
5 =

 0 0 0
0 0 0
0 0 σM5

 , (59)
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and expand the remaining terms. This gives us the expression

2βεTM (DL
1 T )M − 2βε(DL

1 T )TPL(DL
1 T )

+ 2σM3 TM (TM − T0) + 2σM4 (DL
1 T )M (TM − T0)

+ 2σM5 TM (βε(DL
1 T )M − k(DR

1 T )0) (60)
− 2kT0(DR

1 T )0 − 2k(DR
1 T)TPR(DR

1 T)
+ 2τ0

1T0(T0 − TM ) + 2τ0
2 (DR

1 T )0(T0 − TM )
+ 2τ0

3T0(k(DR
1 T )0 − βε(DL

1 T )M )

which we need to bound by choosing appropriate penalty coefficients. Expression (60) can
be written in matrix form as

vTI MIvI − 2βε||DL
1 T ||2PL

− 2k||DR
1 T||2PR

(61)

where vI = [TM , (DL
1 T )M , T0, (DR

1 T )0]T and

MI =


2σM3 βε+ αεσM5 + σM4 −(σM3 + τ0

1 ) −(βkσM5 + τ0
2 )

βε+ αεσM5 + σM4 0 −(σM4 + αεσM3 ) 0
−(σM3 + τ0

1 ) −(σM4 + αεσM3 ) 2τ0
1 −k + βkτ0

3 + τ0
2

−(βkσM5 + τ0
2 ) 0 −k + βkτ0

3 + τ0
2 0

 .
(62)

In order for the coupling terms to be bounded we need MI ≤ 0. The columns which
have zero on the diagonal must be cancelled. This gives a system of equations with a one
parameter family of solutions

s ∈ R, σM4 = −βε(1 + s), σM5 = s, τ0
2 = −ks, τ0

3 = 1 + s. (63)

Using relations (63), MI reduces to

MI =


2σM3 0 −(σM3 + τ0

1 ) 0
0 0 0 0

−(σM3 + τ0
1 ) 0 2τ0

1 0
0 0 0 0

 (64)

and by choosing
σM3 = τ0

1 ≤ 0 (65)

we have MI ≤ 0 and all coupling terms are bounded. The parameter s will be of particular
interest in later sections since it determines the type of the coupling.

Using all the above we can thus conclude.

Proposition 3.1. The schemes (29) and (30) coupled at x = 0 are stable using the SAT
boundary and interface treatment with penalty coefficients given by (35), (40), (43), (54),
(58), (63) and (65).

Remark 3.3. As in the continuous case we have assumed the boundary data to be identi-
cally zero. If we would have obtained an energy estimate with non-zero data the coupled
schemes would have been strongly stable [16].
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4. Order of convergence

The order of convergence is studied by the method of manufactured solutions. The
time step (∆t = 10−5) for all computations is chosen such that the scheme with 4th-order
operators is well below the stability limit with 256 grid points in each subdomain, and we
integrate in time until t = 0.1 using the classical 4th-order Runge-Kutta method. This
ensures that the time integration errors are negligible compared to the spatial discretization
error. We use the functions

ρ(x, t) = cos(2πx− t) + sin(2πx− t), u(x, t) = x+ cos(2πx− t),

T (x, t) =
1
ε

sin(2πx)e−κt, T (x, t) =
1
k

sin(2πx)e−κt, κ = 0.1 (66)

which inserted into (1) and (2) gives a modified system of equations with additional forcing
functions

wt +Awx = εBwxx + F,

Tt = kTxx+G, (67)

where F = [F1, F2, F3]T and

F1 =(1− 2π(a+ b)) sin(2πx− t) + (−1 + 2πa) cos(2πx− t) + b,

F2 =(1− 2π(a+ b)) sin(2πx− t) + 2π(b+ 2πεα) cos(2πx− t) +
2πc
ε

cos(2πx)e−κt + a,

(68)

F3 =− 2πc sin(2πx− t) + (−κ
ε

+ 4π2β) sin(2πx)e−κt +
2πa
ε

cos(2πx)e−κt + c,

G =(−κ
k

+ 4π2) sin(2πx)e−κt.

The functions (66) are analytic solutions to the modified system (67) and they satisfy
the interface conditions in a non-trivial way. Using (66) we create exact initial- and
time dependent boundary data where needed. The penalty parameters have been chosen
with equality sign where there are inequalities, r = −1/2c and s = −1/2. The rate of
convergence is obtained as

qij = log10

(
||uij−1 − vij−1||
||uij − vij ||

)
/ log10

(
hj
hj−1

)
(69)

where qij denotes the convergence rate for either of the variables i = ρ, u, T , T at mesh
refinement level j. uij is the exact analytic solution for either of the variables i at mesh
refinement level j and vij is the discrete solution. The ratio hj/hj−1 is the ratio between
the number of grid points at each refinement level. The coefficients in (1) and (2) have
been chosen as

a = 0.5, b =
1
√
γ
, c =

√
γ − 1
γ

, γ = 1.4, α = β = 1, ε = 0.1, k = 1 (70)

and the results are seen in Table 1.
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M = N 2nd-order 3rd-order 4th-order
ρ ρ ρ

32 1.5397 3.3169 3.9166
64 1.8835 3.3032 4.1544
128 1.9808 3.1561 4.1998
256 1.9934 3.0453 4.1291

u u u

32 2.0177 3.3919 5.7397
64 2.0123 3.2439 4.0481
128 2.0018 3.1309 3.5984
256 2.0024 3.0619 3.8251

T T T
32 1.9774 2.8456 4.3129
64 1.9868 2.9676 4.7098
128 1.9920 2.9973 4.8654
256 1.9959 3.0023 4.9148

T T T

32 1.9260 3.0821 4.2883
64 1.9529 3.0257 4.5497
128 1.9751 3.0152 4.3572
256 1.9873 3.0088 4.0936

Table 1: Order of convergence

The rates of convergence in Table 1 agree with the theoretically expected results [3, 6].
The convergence in this case can be improved by using a second derivative difference
operator on compact form (if the solution of the coupled problem is proven to be pointwise
bounded and the penalty coefficients are chosen correctly) [17]. This case is not considered
in this paper since we are aiming for the compressible Navier-Stokes equations where the
diffusive terms have variable coefficients. For this type of problem the theory for the
compact formulation is not yet satisfactory and work remains to be done.

5. Spectral analysis and convergence to steady-state

When doing flow computations one is often interested in reaching the steady-state
solution fast. From (29) and (30) we can see that we can write the fully coupled scheme
as

dv
dt

= Hv + F (71)

where the entire spatial discretization has been collected in the matrix H and F contains
the boundary data. There are mainly two ways of enhancing convergence to steady-state.
One is to make a spatial discretization which has negative real parts of the eigenvalues
with as large magnitude as possible. That will optimize the convergence to steady-state
for the ODE system (71) [18, 19, 20]. The second is to advance in time with as large time
step as possible. For an explicit time integration method, the time step is limited by the
eigenvalue with largest modulus.

The scheme and penalty parameters are independent of the order of accuracy of the
difference operators and hence we can study the spectrum of H for different orders. The
first thing to be noticed is that there are two undetermined parameters r and s coming
from the left boundary (40) and the interface (63). Theoretically any choice of these
parameters lead to a stable scheme. With a too large magnitude they will make the
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problem stiff and a smaller time step is needed. Within a decent range it is interesting to
see how the spectrum of H changes as a function of these parameters.

In Figure 3 the minimum real part of the spectrum of H is plotted as a function of r
and s for M = N = 16. Since the scheme is stable all real parts are negative1.
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Figure 3: Minimum real part of the eigenvalues of the spatial discretization as a function of the boundary
and interface parameters r and s for M = N = 16 grid points. Note that the surfaces become flatter with
higher orders due to the improved convergence.

As the mesh is refined the dependence of the boundary and interface parameter dis-
appears and the minimum real part of the eigenvalues converge to the same value for all
choices and all orders of accuracy, see Figure 4.

1Minimum will refer to the minimum modulus of the real part of the spectrum. It is the eigenvalue
with negative real part closest to zero which will be of our interest.
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Figure 4: Minimum real part of the eigenvalues of the spatial discretization as a function of the boundary
and interface parameters r and s for M = N = 128 grid points

To see the convergence of the spectrum we compute the minimum real part of the
eigenvalues of the spatial discretization for an increasing number of grid points. The
boundary and interface parameter have been chosen as r = −0.4 and s = −0.5 for all
orders and number of grid points. The choice r = −0.4 makes the penalty coefficients at
the left boundary to be of approximately the same magnitude. All choices of r with a
magnitude of order one lead to approximately the same results. The results are shown in
Table 2 and Figure 5 where we can see that the minimum real part of the spectrum of the
discretization converges for all orders as they should.

Minimum real part of the spectrum
M = N 2nd-order 3rd-order 4th-order

16 -0.95933 -0.97811 -0.98496
32 -0.97933 -0.98540 -0.98666
64 -0.98510 -0.98681 -0.98701
128 -0.98658 -0.98703 -0.98706
256 -0.98694 -0.98706 -0.98706

Table 2: Minimum real part of the spectrum of the spatial discretization
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Figure 5: Convergence of the minimum real part of the discrete spectrum for 2nd- (circle), 3rd- (square)
and 4th-order (star) spatial discretization

The parameter s in (63) is of particular interest. In the figures and tables below
we have chosen σM3 = τ0

1 = 0 and hence the coupling depends only on s. By choosing
s = 0, Dirichlet conditions for continuity of temperature are given to the fluid domain and
Neumann conditions for continuity of heat flux to the solid domain. By choosing s = −1
we get the reversed order. By chosing s such that that no terms are canceled in (44) and
(45) we get a mixed type of interface conditions.

As can be seen from Figure 3 there are variations depending on the choice of r and s
for a coarse mesh. Since we are interested in the properties of the discretization depending
on the coupling, we fix r = −0.4 and compute the minimum real part of the spectrum as
a function of s. The result can be seen in Table 3.

2nd-order 3rd-order 4th-order
M = N s min <(λ) s min <(λ) s min <(λ)

16 0.0 -0.97367 0.0 -0.97837 -0.1 -0.98502
32 0.0 -0.98310 0.0 -0.98542 0.0 -0.98667
64 0.0 -0.98600 0.0 -0.98681 0.0 -0.98701
128 0.0 -0.98679 0.0 -0.98703 0.0 -0.98706
16 -1.0 -0.97117 -1.0 -0.97806 -1.0 -0.98495
32 -1.0 -0.98259 -1.0 -0.98540 -1.0 -0.98666
64 -1.0 -0.98589 -1.0 -0.98681 -1.0 -0.98701
128 -1.0 -0.98676 -1.0 -0.98703 -1.0 -0.98706

Table 3: The value of s which give minimal real part of the spectrum is shown in the upper part. The
lower part includes a comparison with the case s = −1.

Interface procedures for the heat equation have been considered before by eg. Giles
[21], Roe et al. [22] and recently by Henshaw and Chand [23]. Giles demonstrates a
method where giving Dirichlet conditions for continuity of temperature to the fluid do-
main and Neumann conditions for continuity of heat flux to the solid domain is necessary
for preserving stability, but that the time step restriction for certain discretizations and
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diffusion coefficients is more severe than in each of the subdomains. Roe et al. utilizes
a different discretization and is able to circumvent this restriction by deriving a set of
interface equations from the interface conditions that improve the stability characteristics
and also preserve the accuracy of the scheme. Henshaw and Chand considers many differ-
ent interface procedures and prove both stability and second order accuracy independent
of the diffusive properties in contrast to the results in [21]. They also state that more
attractive convergence results might be obtained by considering a mixed type of interface
conditions.

As can be seen from Table 3 the choice s = 0 maximizes the real part of the spectrum
and hence improves the convergence. It is also clear that the difference between the results
for s = 0 and s = −1 are small. We investigated the intermediate values as well and not
much difference in min <(λ) was found. From this point of view, the choice s = 0 is
preferable. However we shall see that when regarding the time step, it is not.

Regarding the issue of stiffness and the time step we can perform the same procedure
as above but instead compute the maximum modulus of the spectrum as a function of r
and s. The results for M = N = 16 grid points are shown in Figure 6.
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Figure 6: Maximum absolute value of the eigenvalues of the spatial discretization as a function of the
boundary and interface parameters r and s for M = N = 16 grid points

Clearly the stiffless is strongly influenced by s related to the interface coupling s but
not by r relating to the left boundary condition. As before we fix r = −0.4 and compute
the maximum modulus of the spectrum as a function of s. The result is seen in Table 4
together with a comparison with the extremal cases s = 0 and s = −1.
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2nd-order 3rd-order 4th-order
M = N s max |λ| s max |λ| s max |λ|

16 0.27 264.37212 0.26 499.93406 -0.47 835.66403
32 0.28 1048.74365 0.26 1956.96051 -0.47 3326.02711
64 0.28 4131.04022 0.26 7730.02818 -0.47 13290.63251
128 0.28 16385.84328 0.26 30875.85671 -0.47 53149.05486
16 0.0 506.90795 0.0 947.57621 0.0 1464.10848
32 0.0 2024.77672 0.0 3788.48085 0.0 5848.25739
64 0.0 8096.41699 0.0 15152.37150 0.0 23385.03672
128 0.0 32383.30564 0.0 60608.47526 0.0 93532.47649
16 -1.0 736.69526 -1.0 1427.61237 -1.0 1889.15048
32 -1.0 2941.57122 -1.0 5703.70657 -1.0 7549.01304
64 -1.0 11756.87139 -1.0 22802.26105 -1.0 30181.19951
128 -1.0 47009.65698 -1.0 91184.83169 -1.0 120695.41482

Table 4: The values of s which gives minimum largest modulo of the spectrum is shown in the upper part.
The lower parts includes a comparison with the cases s = 0 and s = −1.

As can be seen in Table 4 the stiffness can be reduced by choosing a mixed type of
interface condition, and hence bigger time steps can be used. Compared to the extremal
values s = 0 and s = −1 the optimal choices of s allows one to take almost twice as
big time step and maintain stability for an explicit time integration method. This result
is discussed in [23] for the heat equation and we can now verify it for this more general
problem.

When performing computations of (1) and (2) on separate domains given standard
boundary conditions, it was seen that the time step restriction for the coupled problem
is the same as that in the worst of the subdomain problems when the optimal value of s
was used. However, when a non-optimal value of s is used, the time step restriction for
the coupled problems will be more severe than in that of the worst subdomain problems.

6. Two applications

An example of a solution, where the coefficients are given by (70) is given in Figure
7. We start with zero initial data and at time t = 0 we let ρ = 0, u = 0.5 and T = 1
at the left boundary while T = 0 at the right boundary and u = 0 at the interface.
The values at the left boundary are transformed into data for the characteristic boundary
conditions. We can see how the influences from the left boundary travel across the domain
and reaches the interface. No external data is created for T , T , Tx or Tx but the weak
interface conditions (19) and (21) together with the fully coupled formulation (46) make
sure that the temperature is continuous across the interface and that the heat fluxes are
equal up to the order of the scheme.

To obtain a correct solution, it is not necessary to initialize with correct data. By
using the functions (66) we can initiate the computation with zero data and investigate
whether or not the computed solution converges to the analytic solution with time. Figure
8 clearly shows that it indeed does.
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Figure 7: ρ (solid), u (circle), T (triangle), T (star). A sequence of solutions for different times using
M = N = 32 grid points and 3rd-order operators. The last figure shows the steady-state solution.
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Figure 8: Computed (star), analytic (solid). A sequence of computed vs. analytic solutions with wrong
initial data for different times using M = N = 32 grid points and 3rd-order operators.
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7. Summary and conclusions

An incompletely parabolic system of equations is coupled with the heat equation in
one space dimension. The energy method is used to derive well-posed boundary and
interface conditions. The equations are discretized using finite differences on Summation-
by-Parts form where the boundary and interface conditions are weakly imposed using the
Simultaneous Approximation Term. The penalty matrices and coefficients are determined
such that we can prove that the coupled scheme is stable.

The interface conditions are derived such that we can study different interface condi-
tions as a function of one parameter. By looking at the spectrum of the spatial discretiza-
tion as a function of the interface parameter, it can be seen that there are only minor
differences between the minimun real part of the spectrum for different coupling tech-
niques. However when giving a mixed type of interface condition the stiffness is greatly
reduced and an almost twice as big time step can be used while maintaining stability for
an explicit time integration method.

The rate of convergence is verified by the method of manufactured solutions and the
result is consistent with the theory within the SBP framework. The derived numerical
schemes are independent of the order of accuracy and higher order accuracy is easily
obtained by using difference operators of higher orders. Two examples where the system
is solved using 3rd-order operators are shown and it can be seen that the correct interface
conditions are obtained.
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