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Abstract

This paper deals with conjugate heat transfer problems for the time-dependent com-
pressible Navier-Stokes equations. One way to model conjugate heat transfer is to
couple the Navier-Stokes equations in the fluid with the heat equation in the solid.
This requires two different physics solvers. Another way is to let the Navier-Stokes
equations govern the heat transfer in both the solid and in the fluid. This simplifies
calculations since the same physics solver can be used everywhere.

We show by energy estimates that the continuous problem is well-posed when
imposing continuity of temperature and heat fluxes by using a modified L2-equivalent
norm. The equations are discretized using finite difference on summation-by-parts
form with boundary- and interface conditions imposed weakly by the simultaneous
approximation term. It is proven that the scheme is energy stable in the modified
norm for any order of accuracy.

We also show what is required for obtaining the same solution as when the un-
steady compressible Navier-Stokes equations are coupled to the heat equation. The
differences between the two coupling techniques are discussed theoretically as well
as studied numerically, and it is shown that they are indeed small.
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1. Introduction

Heat transfer is an important factor in many fluid dynamics applications. Flows
are often confined within some material with heat transfer properties. Whenever
there is a temperature difference between the fluid and the confining solid, heat will
be transferred and change the flow properties in a non-trivial way. This interaction
and heat exchange is referred to as the conjugate heat transfer problem [1, 2, 3, 4].
Examples of application areas include cooling of turbine blades and nuclear reactors,
atmospheric reentry of spacecrafts and gas propulsion micro thrusters for precise
satellite navigation.

Conjugate heat transfer problems have been computed using a variety of methods.
For stationary problems, methods include the finite volume method [5], the finite
element method [6, 7] and the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) [8]. For unsteady problems, overlapping grids [3] and finite difference
methods [1] have been used. The interface conditions have been imposed either
strongly, weakly or by a mixture of both.

There are many ways in which conjugate heat transfer problems can be analyzed
and computed. Giles [1] considered the simplified case of two coupled heat equations
and performed a stability analysis which put restrictions on how to chose the interface
conditions. Henshaw and Chand [3] performed numerical simulations of incompress-
ible, temperature dependent fluids with the Boussinesq approximation coupled with
the heat equation. The stability analysis was restricted to the case of two coupled
heat equations. Stability and second order accuracy for the coupled model problem
was proven, together with a numerical accuracy study of the full coupled problem
showing second order accuracy, as expected. In [7] a steady, compressible fluid with
heat transfer properties is considered and it is stated that accuracy is a key element
in computational heat transfer. The authors develop an adaptive strategy with error
estimators, showing at most second order accuracy.

When reviewing the literature on conjugate heat transfer problems, one can con-
clude that for incompressible problems, the heat transfer part is either modeled by
the heat equation, or by using the incompressible Navier-Stokes equations also in
the solid region. The latter strategy is possible since the energy equation in the in-
compressible Navier-Stokes equations decouples from the continuity- and momentum
equations. In the compressible flow case, the situation is different and more compli-
cated. Two major differences exist. Firstly, the energy equation does not decouple
from the continuity- and momentum equations. Secondly, for compressible fluids,
steady problems are mostly considered since the stability of the coupling becomes
an issue.
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The numerical methodology presented in this paper is based on a finite differ-
ence on Summation-By-Parts (SBP) form with the Simultaneous Approximation
Term (SAT) for imposing the boundary and interface conditions weakly. The SBP-
SAT method has been used for a variety of problems and has proven to be robust
[9, 10, 11, 12, 13, 14, 15]. The SBP finite difference operators were originally con-
structed by Kreiss and Schearer [16] with the purpose of constructing an energy
stable finite difference method [17]. Together with the weak imposition of boundary
[18] and interface [19] conditions, the SBP-SAT provides a method for constructing
energy stable schemes for well-posed initial-boundary value problems [20]. There
are SBP operators based on diagonal norms for the first [21] and second [22, 23]
derivative accurate of order 2, 3, 4 and 5, and the stability analysis we will present
is independent of the order of accuracy.

From an implementational point of view, coupling the compressible Navier-Stokes
equations to the heat equation is complicated as different solvers are required in the
fluid and solid domains. With two different solvers, two different codes, are required
and data has to be transferred between them by using possibly a third code [24].

A less complicated method would be to only use the Navier-Stokes equations
everywhere and modify an already existing multi-block coupling [12] such that heat
is transferred between the fluid and solid domains. In the blocks marked as solids,
it is possible to construct initial and boundary conditions such that the velocities
and density gradients are small. The difference between the energy component of
the compressible Navier-Stokes equations and the heat equation should then also be
small.

We will show how to scale and choose the coefficients of the energy part of the
Navier-Stokes equations, such that it is as similar to the heat equation as possible.
Numerical simulations of heat transfer in solids are performed to show the similari-
ties, and differences, of the temperature distributions obtained by the Navier-Stokes
equations and the heat equation. We will not overwrite, or strongly force, the veloc-
ities in the Navier-Stokes equations to zero in each time integration stage since that
would ruin the stability of the numerical method that we use. Instead, the velocities
will be enforced weakly at the boundaries and interfaces only.

In the previous literature, a mathematical investigation of the interface conditions
in terms of well-posedness of the continuous equations, stability of the resulting
numerical scheme and high order accuracy has not been performed to our knowledge.
We shall in this paper hence focus on the mathematical treatment of the fluid-solid
interface rather than computing physically relevant scenarios.
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2. The compressible Navier-Stokes equations

The two-dimensional compressible Navier-Stokes equations in dimensional, con-
servative form are

qt + Fx +Gy = 0 (1)

where the conserved variables, q = [ρ, ρu, ρv, e]T , are the density, x- and y-directional
momentum and energy, respectively. The energy is given by

e = cV ρT +
1

2
ρ(u2 + v2), (2)

where cV is the specific heat capacity under constant volume and T is the tempera-
ture. Furthermore, we have F = F I − F V and G = GI −GV , where the superscript
I denotes the inviscid part of the flux and V the viscous part. The components of
the flux vectors are given by

F I = [ρu, p+ ρu2, ρuv, u(p+ e)]T ,

GI = [ρv, ρuv, p+ ρv2, v(p+ e)]T ,

F V = [0, τxx, τxy, uτxx + vτxy + κTx]
T ,

GV = [0, τxy, τyy, uτyx + vτyy + κTy]
T ,

(3)

where we have the pressure p and the thermal conductivity coefficient κ. The stress
tensor is given by

τxx = 2µ
∂u

∂x
+λ

(
∂u

∂x
+
∂v

∂y

)
, τyy = 2µ

∂v

∂y
+λ

(
∂u

∂x
+
∂v

∂y

)
, τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

(4)
where µ and λ are the dynamic and second viscosity, respectively. To close the
system we need to include an equation of state, for example the ideal gas law

p = ρRT. (5)

Here R = cP − cV is the specific gas constant and cP the specific heat capacity under
constant pressure. Both cP and cV are considered constants in this paper.

Since the aim is to model heat transfer in a solid using the Navier-Stokes equa-
tions, we study the equations with vanishing velocities. If we let u = v = 0, all the
convective terms and viscous stresses are zero and by using (2) and (5), equation (1)
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reduces to

ρt = 0

px = 0

py = 0

Tt =
1

cV ρ

(
(κTx)x + (κTy)y

)
.

(6)

The last equation is similar, but not identical, to the variable coefficient heat equa-
tion.

For ease of comparison with the heat equation we transform to non-dimensional
form as follows (note the slight abuse of notation since we let the dimensional and
non-dimensional variables have the same notation. Hereafter, all quantities are non-
dimensional):

u =
u∗

c∗∞
, v =

v∗

c∗∞
, ρ =

ρ∗

ρ∗∞
, T =

T ∗

T ∗∞
, (7)

p =
p∗

ρ∗∞(c∗∞)2
, e =

e∗

ρ∗∞(c∗∞)2
, λ =

λ∗

µ∗∞
, µ =

µ∗

µ∗∞
, (8)

cP =
c∗P
c∗P∞

, cV =
c∗V
c∗P∞

, R =
R∗

c∗P∞
, κ =

κ∗

κ∗∞
, (9)

x =
x∗

L∗∞
, y =

y∗

L∗∞
, t =

c∗∞
L∗∞

t∗, (10)

where the ∗-superscript denotes a dimensional variable and the ∞-subscript the
reference value. L∗∞ is a characteristic length scale and c∗∞ is the reference speed of
sound. The equation of state (5) becomes in non-dimensional form

γp = ρT. (11)

and the energy equation can be written as

e =
p

γ − 1
+

1

2
ρ(u2 + v2). (12)

By using (7)-(10), the last equation in (6) becomes

Tt =
1

Pec

1

cV ρ

(
(κTx)x + (κTy)y

)
(13)
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where

Pec =
c∗∞L

∗
∞

α∗∞
, α∗∞ =

κ∗∞
ρ∗∞c

∗
P∞

(14)

are the Péclet number based on the reference speed of sound and the thermal diffu-
sivity, respectively.

3. Similarity conditions

Since the fluid is compressible, the density in (6) is non-constant and the energy
component in the Navier-Stokes equations will differ from the constant coefficient
heat equation. We can however quantify in which way the equations differ and which
terms that have to be minimized in order for the two equations to be as similar as
possible. The heat equation, non-dimensionalized using (7)-(10), can be written as

T̃t =
1

Pec

1

csρs

((
κsT̃x

)
x

+
(
κsT̃y

)
y

)
(15)

where Pec is defined in (14) and cs, ρs, κs are the specific heat capacity, density
and thermal conductivity of the solid, respectively. In this case, all coefficients are
constant but rewritten in a form which resembles (13).

In order to compare (13) and (15), we define β = PecρcV , βs = Pecρscs and
rewrite (13) and (15) as

βTt = (κTx)x + (κTy)y , (16)

βT̃t =
β

βs

((
κsT̃x

)
x

+
(
κsT̃y

)
y

)
. (17)

Note that βs is constant for the solid. Furthermore, since β > 0 and (6) yields
∂β
∂t

= 0, we can estimate the difference T − T̃ in the β-norm defined by

||T − T̃ ||2β =

∫
Ω

(
T − T̃

)2

βdΩ (18)

where Ω is the computational domain. By subtracting (17) from (16), multiplying
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with T − T̃ and integrating over Ω we obtain

1

2

d

dt
||T − T̃ ||2β = −

∫
Ω

(
κ∇T · ∇T +

κs
βs
β∇T̃ · ∇T̃

)

+

∮
∂Ω

(
T − T̃

)(
κ∇T − κs

βs
β∇T̃

)
· nds

+

∫
Ω

κs
βs

(
T − T̃

)
∇β · ∇T̃ dΩ +

∫
Ω

(
κ+

κs
βs
β

)
∇T · ∇T̃ dΩ.

(19)

In order to obtain as similar temperature distributions from the heat equation and
Navier-Stokes equation as possible, the right-hand-side of (19) has to be less than or
equal to zero. Note that we specify the same boundary data for T and T̃ , in which
case the boundary integral is zero. By further assuming that ∇β = 0 we can rewrite
(19) as the quadratic form

d

dt
||T − T̃ ||2β = −

∫
Ω

[
∇T
∇T̃

]T  2κ −
(
κ+

κs
βs
β

)
−
(
κ+

κs
βs
β

)
2
κs
βs
β

[ ∇T∇T̃
]
. (20)

By computing the eigenvalues of the matrix in (20) and requiring that they be non-
negative, we can conclude that we need κ− κs

βs
β = 0. Thus, if the relations

κ

β
− κs
βs

= 0, ∇β = 0 (21)

hold, then
d

dt
||T − T̃ ||2β ≤ 0 (22)

and the Navier-Stokes equations and the heat equation produces the exact same
solution for the temperature if given identical initial data.

Remark 1. The heat equation and energy component in the Navier-Stokes equations
produces exactly the same results only if the relations in (21) hold. In a numerical
simulation, the initial, and boundary, data are chosen such that (21) holds exactly to
begin with. Because of the weak imposition of the boundary and interface conditions,
the relations will no longer hold as time passes. Small variations in the velocities
at the boundaries and interfaces will produce small variations in the density which
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propagate into the domain. These deviations are however very small and the effects
are studied in later sections.

4. SBP-SAT discretization

In the basic formulation, the first derivative is approximated by an operator on
SBP form

ux ≈ Dv = P−1Qv, (23)

where v is the discrete grid function approximating u. The matrix P is symmetric,
positive definite and defines a discrete norm by ||v||2 = vTPv. In this paper, we
consider diagonal norms only. The matrix Q is almost skew-symmetric and satisfies
the SBP property Q+QT = diag[−1, 0, . . . , 0, 1]. There are SBP operators based on
diagonal norms with 2nd, 3rd, 4th and 5th order accuracy, and the stability analysis
does not depend on the order of the operators [21, 25]. The second derivative is
approximated either using the first derivative twice, i.e.

uxx ≈ D2v = (P−1Q)2v. (24)

or a compact formulation with minimal bandwidth [22, 23]. In the conservative
formulation of the Navier-Stokes equations, the second derivative operator is not
used.

In order to extend the operators to higher dimensions, it is convenient to intro-
duce the Kronecker product. For arbitrary matrices A ∈ Rm×n and B ∈ Rp×q, the
Kronecker product is defined as

A⊗B =

 a1,1B . . . a1,mB
...

. . .
...

an,1B . . . am,nB

 . (25)

The Kronecker product is bilinear, associative and obeys the mixed product property

(A⊗B)(C ⊗D) = (AC ⊗BD) (26)

if the usual matrix products are defined. For inversion and transposing we have

(A⊗B)−1,T = A−1,T ⊗B−1,T (27)

if the usual matrix inverse is defined. The Kronecker product is not commutative in
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general, but for square matrices A and B there is a permutation matrix R such that

A⊗B = RT (B ⊗ A)R. (28)

Let Px,y, Qx,y and Dx,y denote the difference operators in the coordinate direction
indicated by the subscript. The extension to multiple dimensions is done by using
the Kronecker product as follows:

P̄x = Px ⊗ Iy, Q̄x = Qx ⊗ Iy,

P̄y = Ix ⊗ Py, Q̄y = Ix ⊗Qy,

D̄x = Dx ⊗ Iy, D̄y = Ix ⊗Dy.

(29)

Due to the mixed product property (26), the operators commute in different co-
ordinate directions and hence differentiation can be performed in each coordinate
direction independently. The norm is defined by

||u||2 = uT P̄ u (30)

where P̄ = P̄xP̄y = Px ⊗ Py.

5. Temperature coupling of the Navier-Stokes equations

The compressible Navier-Stokes equations in two space dimensions requires three
boundary conditions at a solid wall [20]. Since we are aiming for modelling heat
transfer in a solid using (1), both the tangential and normal velocities are zero. The
third condition is used to couple the temperature in the fluid and solid domain.

We consider the Navier-Stokes equations in the two domains Ω1 = [0, 1] × [0, 1]
and Ω2 = [0, 1] × [−1, 0] with an interface at y = 0. Denote the solution in Ω1 by
q = [ρ, ρu, ρv, e] and in Ω2 by q̃ = [ρ̃, ρ̃ũ, ρ̃ṽ, ẽ].

The interface will be considered as a solid wall and hence we impose no-slip
interface conditions for the velocities

u = 0, v = 0,
ũ = 0, ṽ = 0.

(31)

More general interface conditions can be imposed by considering Robin conditions
as described in [26].

To couple the temperature of the two equations we will use continuity of temper-
ature and heat fluxes,

T = T̃ , κ1Ty = κ2T̃y. (32)
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For the purpose of analysis, we consider the linearized, frozen coefficient and sym-
metric Navier-Stokes equations

wt + (A1w)x + (A2w)y = ε
(

(A11wx + A12wy)y + (A21wx + A22wy)y

)
,

w̃t + (B1w̃)x + (B2w̃)y = ε
(

(B11w̃x +B12w̃y)y + (B21w̃x +B22w̃y)y

)
,

(33)

where ε = Ma
Re

, Re is the Reynolds number and Ma is the Mach number. The
coefficient matrices can be found in [20, 27]. The symmetrized variables are

w =

[
c̄
√
γρ̄
ρ, u, v,

1

c̄
√
γ(γ − 1)

T

]T
, (34)

where an overbar denotes the constant state which we have linearized around. More
details can be found in [28, 20, 27]. This procedure is motivated by the principle of
linearization and localization [29]. Note that the linerarization around u = v = 0,
and hence ū = v̄ = 0, is exact at the interface due to the interface conditions. The
well-posedness of (33) with the conditions (31) and (32) are shown in

Proposition 1. The coupled compressible Navier-Stokes equations are well-posed
using the interface conditions (31) and (32).

Proof. The energy estimates of w and w̃ will be derived in the L2-equivalent norms

||w||2H1
=

∫
Ω1

wTH1wdΩ, ||w̃||2H2
=

∫
Ω2

w̃TH2w̃dΩ (35)

where
H1,2 = diag[1, 1, 1, δ1,2], δ1,2 > 0 (36)

are to be determined. We apply the energy method and consider only the terms at
the interface y = 0. We get by using the conditions (31) that

d

dt

(
||w||2H1

+ ||w̃||2H2

)
≤ −2ε

1∫
0

(
δ1µ̄1

ρ̄1c̄2
1(γ1 − 1)Pr1

TTy −
δ2µ̄2

ρ̄2c̄2
2(γ2 − 1)Pr2

T̃ T̃y

)
dx,

(37)
where the bar denotes the state around which we have linearized and the subscript
1 or 2 refer to values from the corresponding subdomain Ω1 or Ω2. By requiring
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continuity of temperature (T = T̃ ) equation (37) reduces to

d

dt

(
||w||2H1

+ ||w̃||2H2

)
≤ −2ε

1∫
0

T

(
δ1κ̄1

ρ̄1c̄2
1(γ1 − 1)cP1

Ty −
δ2κ̄2

ρ̄2c̄2
2(γ2 − 1)cP2

T̃y

)
dx.

(38)
In order to obtain an energy estimate by using continuity of the heat fluxes, we need
to choose the weights

δ1 = ρ̄1c̄
2
1(γ1 − 1)cP1 , δ2 = ρ̄2c̄

2
2(γ2 − 1)cP2 (39)

since then

d

dt

(
||w||2H1

+ ||w̃||2H2

)
≤ −2ε

1∫
0

T
(
κ̄1Ty − κ̄2T̃y

)
dx = 0. (40)

Hence the interface conditions (32) gives an energy estimate and no unbounded
energy growth can occur.

Remark 2. The physical interface conditions (32) requires an estimate in a different
norm than the standard L2-norm. The norm defined by the (positive) weights in
(39) is, however, only a scaling of the L2-norm and they are hence equivalent. From
a mathematical point of view, any interface condition which give positive weights
will result in a well-posed coupling.

5.1. The discrete problem and stability

In [12], a stable and conservative multi-block coupling of the Navier-Stokes equa-
tions was developed. The coupling was done by considering continuity of all quanti-
ties and of the fluxes with the purpose of being able to handle different coordinate
transforms in different blocks. In our case, the velocities are uncoupled and the equa-
tions are coupled only by continuity of temperature and heat fluxes. This enable us
to compute conjugate heat problems by modifying the interface conditions for the
multi-block coupling.

We consider again the formulation (33) and discretize using SBP-SAT for impos-
ing the interface conditions (31) and (32) weakly. We let for simplicity the subdo-
mains be discretized by equally many uniformly distributed gridpoints which allow
us to use the same difference operators in both subdomains. We stress that the sub-
domains can have different discretizations [12, 30], this assumption merely simplifies
the notation and avoids the use of too many subscripts.
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We discretize (33) using the SBP-SAT technique as

wt + D̂xF + D̂yG = S,
w̃t + D̂xF̃ + D̂yG̃ = S̃,

(41)

where the discrete fluxes are given by

F = Â1w − ε
(
Â11D̂xw + Â12D̂yw

)
,

G = Â2w − ε
(
Â21D̂xw + Â22D̂yw

)
,

F̃ = B̂1w̃ − ε
(
B̂11D̂xw̃ + B̂12D̂yw̃

)
,

G̃ = B̂2w̃ − ε
(
B̂21D̂xw̃ + B̂22D̃yw̃

)
.

(42)

The hat notation denotes that the matrix has been extended to the entire system as

D̂x = Dx ⊗ Iy ⊗ I4, D̂y = Ix ⊗Dy ⊗ I4,

Âξ = Ix ⊗ Iy ⊗ Aξ, B̂ξ = Ix ⊗ Iy ⊗Bξ,
(43)

where ξ is a generic index ranging over the indicies which occur in (42).
The SATs imposing the interface conditions (31) and (32) can be written as

S = P̂−1
y Êx,yN Σ̂1

(
w − gI

)
+ εσ2P̂

−1
y Êx,yN

(
Ĥ2w − g1

)
+ εσ3P̂

−1
y Êx,yN

(
Ĥ3w − g2

)
+ εP̂−1

y Êx,yN Θ̂1

(
Ĥ3D̂xw −

∂g2

∂x

)
+ εσ4P̂

−1
y Êx,yN

(
ÎT1 w − ÎT2 w̃

)
+ εσ5P̂

−1
y D̂T

y Êx,yN

(
ÎT1 w − ÎT2 w̃

)
+ εσ6P̂

−1
y Êx,yN

(
κ̄1Î

T
1 D̂yw − κ̄2Î

T
2 D̂yw̃

)
(44)
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and

S̃ = P̂−1
y Êx,y0Σ̂2

(
w̃ − g̃I

)
+ εσ̃2P̂

−1
y Êx,y0

(
Ĥ2w̃ − g̃1

)
+ εσ̃3P̂

−1
y Êx,y0

(
Ĥ3w̃ − g̃2

)
+ εP̂−1

y Êx,y0Θ̂2

(
Ĥ3D̂xw̃ −

∂g̃2

∂x

)
+ εσ̃4P̂

−1
y Êx,y0

(
ÎT2 w̃ − ÎT1 w

)
+ εσ̃5P̂

−1
y D̂T

y Êx,y0

(
ÎT2 w̃ − ÎT1 w

)
+ εσ̃6P̂

−1
y Êx,y0

(
κ̄2Î

T
2 D̂yw̃ − κ̄1Î

T
1 D̂yw

)
.

(45)

Here P̂ = P̄⊗I4, Êx,y0 = Ēx,y0⊗I4, Ĥj = Ix⊗Iy⊗Hj and Hj is a 4×4 matrix with the
only non-zero element 1 at the (j, j)th position on the diagonal and the operators
Î1,2 selects the interface elements. The penalty matrices Σ̂1,2 = Ix ⊗ Iy ⊗ Σ1,2,

Θ̂1,2 = Ix⊗Iy⊗Θ1,2, and the penalty coefficients σ2,...,6 and σ̃2,...,6 has to be determined
such that the scheme is stable.

Remark 3. The terms which involve Θ̂1,2 originate from the fact that the boundary
condition v = 0 implies that vx = 0, which is used to obtain an energy estimate
in the continuous case. The terms hence represent the artificial boundary condition
vx = 0 which is needed to obtain an energy estimate in the discrete case.

Remember that in the energy estimates for the continuous coupling, a non-
standard L2-equivalent norm was used. The same modification to the norms has
to be done in the discrete case. Thus, the discrete energy estimates will be derived
in the norms

||w||2
Ĵ1

= wT P̂ Ĵ1w, ||w̃||2Ĵ2 = w̃T P̂ Ĵ2w̃, (46)

where,
Ĵ1 = Ix ⊗ Iy ⊗H1, Ĵ2 = Ix ⊗ Iy ⊗H2, (47)

and the matrices H1,2 are defined in (36) with the weights given in (39). Note that

P̂ Ĵ1,2 = Ĵ1,2P̂ .
By applying the energy method to (41) and adding up we get

d

dt
||w||2

Ĵ1
+
d

dt
||w̃||2

Ĵ2
+DI = IT (48)
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where the dissipation term, DI, is given by

DI = 2ε

[
D̂xw

D̂yw

]T [
P̂ Ĵ1 0

0 P̂ Ĵ1

] [
Â11 Â12

Â21 Â22

] [
D̂xw

D̂yw

]
+ 2ε

[
D̂xw̃

D̂yw̃

]T [
P̂ Ĵ2 0

0 P̂ Ĵ2

] [
B̂11 B̂12

B̂21 B̂22

] [
D̂xw̃

D̂yw̃

]
.

(49)

The interface terms can be split into three parts as IT = IT1 + IT2 + IT3 where IT1

are the inviscid terms, IT2 the velocity terms and IT3 the coupling terms related to
the temperature.

In [26] it is shown how to choose Σ1,2, Θ1,2, σ2,3 and σ̃2,3, with small modifications,
such that the inviscid and velocity terms are bounded. Here we focus on the coupling
terms. With appropriate choices of Σ1,2, Θ1,2, σ2,3 and σ̃2,3 as described in [26] we
get

d

dt
||w||2H1

+
d

dt
||w̃||2H2

+DI ≤ IT3, (50)

where IT3 can be written as the quadratic form

IT3 = −ε(Rξ)T (Px ⊗M)Rξ. (51)

To obtain (51), we have used the permutation similarity property of the Kronecker
product, R is a permutation matrix and ξ = [Ti, T̃i, (DyT)i, (DyT̃)i]

T where the
subscript i denotes the values at the interface. Note that we do not need the specific
form of R, it is sufficient to know that such a matrix exists. Furthermore, we have

Px = diag[δ1Px, δ2Px, δ1Px, δ2Px], (52)

with δ1,2 from (39), and

M =


−2σ4 σ4 + σ̃4 κ̄1γ1 − σ5 − κ̄1σ6 κ̄2σ6 + σ̃5

σ4 + σ̃4 −2σ̃4 σ5 + κ̄1σ̃6 −κ̄2γ1 − σ̃5 − κ̄2σ̃6

κ̄1γ1 − σ5 − κ̄1σ6 σ5 + κ̄1σ̃6 0 0
κ̄2σ6 + σ̃5 −κ̄2γ1 − σ̃5 − κ̄2σ̃6 0 0

 .
(53)

Since Px is positive definite and the Kronecker product preserves positive definite-
ness, the necessary requirement for (50) to be bounded is that the penalty coefficients
are chosen such that M ≥ 0. The penalty coefficients are given in
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Theorem 1. The coupling terms IT3 in (50) are bounded using

σ̃4 = σ4 ≤ 0, σ5 = −κ̄1r, σ6 = γ + r, σ̃5 = −κ̄2(γ1 + r), σ̃6 = r, r ∈ R (54)

and hence the scheme (41) is stable.

Proof. With the choices of penalty coefficients given in Proposition 1, the matrix M
in (53) reduces to

M = 2σ4


−1 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

 (55)

with eigenvalues λ1,2,3 = 0 and λ4 = −4σ4. Hence if σ4 ≤ 0 we have M ≥ 0.

6. Numerical results

To verify the numerical scheme we use what is often called the method of man-
ufactured solutions [4, 31]. We chose the solution and use that to compute a right-
hand-side forcing function, initial- and boundary data. According to the principle of
Duhamel [32], the number or form of the boundary conditions does not change due
to the addition of the forcing function. We can hence test the convergence of the
scheme towards this analytical solution. The interface conditions (32) are of course
not satisfied in general by this solution and we need to modify them by adding a
right-hand-side.

We use the manufactured solution

ρ(x, y, t) = 1 + η sin(θπ(x− y)− t)2

u(x, y, t) = η cos(θπ(x+ y)− t)
v(x, y, t) = η sin(θπ(x− y)− t)
p(x, y, t) = 1 + η cos(θπ(x+ y)− t)2,

(56)

with different values of η, θ in the fluid and solid domains, to generate the solution.
The energy and temperature can be computed using (11) and (12). Since the stability
of the scheme is independent of the order of accuracy, the difference operators is the
only thing which have to be changed in order to achieve higher, or lower, accuracy.
The rate of convergence, Q, is computed as

Q(j) =
1

log
(
Ni+1

Ni

) log

(
E

(j)
i

E
(j)
i+1

)
(57)
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for each of the conserved varables q(j), j = 1, 2, 3, 4. We have used the same number
of grid points, N , in both coordinate directions for both the fluid and solid domain.
Nk denotes the number of gridpoints at refinement level k and E

(j)
k is the L2-error

between the computed and exact solution for each conserved variable. The time
integration is done with the classical 4th-order Runge-Kutta method until time t =
0.1 using 1000 time steps.

In Table 1 we list the convergence results for the conserved variables for both
the fluid and solid domains. As we can see from Table 1 we can achieve 5th-order
accuracy by simply replacing the difference operators. No other modifications to the
scheme is necessary.

Table 1: Convergence results for the conjugate heat transfer problem

2nd-order 3rd-order
N 32/64 64/96 96/128 32/64 64/96 96/128
ρ 1.8367 1.8931 2.0133 2.6222 3.0699 3.4795
ρu 2.0824 2.0803 2.1187 2.9846 3.0748 3.1927
ρv 2.0503 2.0549 2.0922 3.4222 3.7512 3.4199
e 1.8174 1.9065 1.9963 2.4639 2.7749 3.0523
ρ̃ 1.8933 1.8533 1.9628 2.5761 2.9791 3.5767
ρ̃ũ 2.0544 2.0803 2.0992 3.1094 3.0374 3.2732
ρ̃ṽ 1.9411 2.0190 2.0894 3.3928 3.7465 3.3628
ẽ 1.9483 1.9151 1.9409 2.9451 2.8399 3.2560

4th-order 5th-order
N 32/64 64/96 96/128 32/64 64/96 96/128
ρ 3.9662 4.1381 4.1138 4.4824 5.2584 5.5131
ρu 4.4531 4.3640 4.2799 4.6819 4.7521 4.6733
ρv 4.3175 4.0918 4.0284 4.9824 4.9257 4.7839
e 3.9757 4.1723 4.0957 4.3760 4.6227 4.7207
ρ̃ 3.9935 4.3902 4.5538 4.4421 5.1497 5.5388
ρ̃ũ 4.2072 4.3159 4.4366 4.9665 4.9739 4.9512
ρ̃ṽ 4.3672 4.3331 4.3212 5.1007 5.1370 4.9087
ẽ 3.9025 4.3178 4.4091 4.8746 4.8573 4.9518

6.1. Comparison of the different approaches to the conjugate heat transfer problem

When the heat transfer in the solid is governed by the compressible Navier-Stokes
equations, one does not solve the same conjugate heat transfer problem as when the
heat transfer is governed by the heat equation. This is because the relations in (21)
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holds only approximately as time passes. The exchange of heat between the fluid and
solid domains will affect the temperature and hence also the density, because of the
equation of state, and introduce small density variations in the solid domain. We can
numerically solve the conjugate heat transfer problem in both ways and determine
the difference between the two methods. Note that we do not overwrite, or enforce,
the velocities to zero inside the solid domain. The velocities are weakly enforced to
zero at the boundaries and interfaces only.

Let NS-NS denote the case when the heat transfer is governed by the compressible
Navier-Stokes equations and NS-HT the case where the heat transfer is governed by
the heat equation. The well-posedness and stability of NS-HT coupling is proven in
the appendix. The initial and boundary data are chosen such that NS-NS and NS-
HT have identical solutions initially, and we study the differences of the two methods
over time.

To quantify the difference between the two methods, NS-NS and NS-HT, we
compute two representative cases. The computational domain is Ω = Ω1 ∪Ω2 where
Ω1 = [0, 1]×[0, 1] and Ω2 = [0, 1]×[−1, 0]. All computations are done using 3rd-order
accurate SBP operators and the time integration is done using the classical 4th-order
Runge-Kutta method.

In the first case, the computations are initialized with zero velocities everywhere
and temperature T = 1 in both subdomains. In the x-direction we have chosen
periodic boundary conditions. At y = −1 we specify T = 1.5 and at y = 1 we have
T = 1. For the Navier-Stokes equations we have no-slip solid walls as described in
[26] for the velocities. These choices of boundary conditions renders the solution to
be homogeneous in the x-direction.

Under the assumption of identically zero velocities and periodicity in the x-
direction, the exact steady-state solution can be obtained as

T = − k

2(k + 1)
y +

3k + 2

2(k + 1)
,

T̃ = − 1

2(k + 1)
y +

3k + 2

2(k + 1)
,

(58)

where k = κ2/κ1 is the ratio of the steady-state thermal conductivities. We can
see from (58) that the only occurring material parameter is the ratio between the
thermal conductivity coefficients. Neither the density nor the thermal diffusivity
has any effect on the steady-state solution. The larger the ratio of the thermal
conductivities is, the stiffer the problem becomes. In the calculations below, we have
chosen the parameters such that k = 5.
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The temperature distribution at time t = 500, which is the steady-state solution,
is seen in Figure 1 when using 65 grid points in each coordinate direction and sub-
domain. In Figure 2 we show an intersection of the absolute difference along the line
−1 ≤ y ≤ 1 at x = 0.5 together with the time-evolution of the l∞- and l2-differences.
In Figure 2(b) we can see that the large initial discontinuity gives differences in the
beginning of the computation. As the velocities are damped over time, the difference
decreases rapidly towards zero.
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Figure 1: Temperatures at time t = 500 from NS-NS and NS-HT using 65 grid points in each
coordinate direction and subdomain
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Figure 2: Temperature intersection and time differences for NS-NS and NS-HT using 65 grid points
in each coordinate direction and subdomain

In Table 2 we list the results for different number of grid points.

Table 2: Difference between NS-NS and NS-HT at time t = 500
Difference

N l∞ l2 Interface
32 1.1514e-03 6.8992e-04 1.1514e-03
64 2.4612e-04 1.4491e-04 2.4612e-04
128 4.3440e-05 2.5329e-05 4.3440e-05

As we can see from Table 2, the differences are very small. Even for the coarsest
mesh, the relative maximum and interface differences are less than 0.1% while the
relative l2-difference is approximately 0.05%. Note that the differences are decreasing
with the resolution. The steady-state solutions will become identical as the mesh is
further refined.

Next, we consider an unsteady problem. The boundary data at the south bound-
ary is perturbed by the time-dependent perturbation

f(x, t) = 1 + 0.25 ∗ sin(t) ∗ sin(πx) (59)

and hence there will be no steady-state solution. In the x-direction in the solid
domain, we have changed from periodic boundary conditions to solid wall boundary
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conditions with prescribed temperature T = 1. This is a more realistic way to enclose
the solid domain, and it has the additional benefit of damping the induced velocities
in the Navier-Stokes equations.

The results can be seen in Figure (3). We plot the l∞- and l2-difference as a
function of time. As we can see, the difference does not approach zero but remains
bounded and small. The relative mean difference is less than 0.5% while the max-
imum difference is less than 1.5%. Thus, despite the rather large variation in the
boundary data, NS-NS and NS-HT produces very similar solutions.
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Figure 3: l∞- and l2-difference in time between NS-HS and NS-HT for an unsteady problem

In a CFD computation, the part of the domain which is solid is in general small
compared to the fluid domain, for example when computing the flow field around
an airfoil or aircraft. Despite the Navier-Stokes equations being significantly more
expensive to solve, the overall additional cost of solving the Navier-Stokes equations
also in the solid is in general limited.

6.2. A numerical example of conjugate heat transfer

As a final computational example, we consider the coupling of a flow over a slab
of material for which the ratio of the thermal conductivities is 100. The initial
temperature condition is T = 1 in the fluid domain and T̃ = 1.5 in the solid domain.
The boundary conditions are periodic in the x-direction. At the south boundary,
y = −1, in the solid domain we let T̃ = 1.5 and at the north boundary, y = 1, in
the fluid domain, there is a Mach 0.5 free-stream boundary condition with T = 1,
as described in [28]. Figure 4 shows a snapshot of the solution at time t = 2.5. The
velocity components in the solid domain are zero to machine precision and the heat
transfer in the solid is exclusively driven by diffusion.
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Figure 4: Temperature and velocity profiles for a flow past a slab of material using 65x65 grid
points in both domains

7. Conclusions

We have proven that a conjugate heat transfer coupling of the compressible
Navier-Stokes equations is well-posed when a modified norm is used. The equa-
tions were discretized using a finite difference method on summation-by-parts form
with boundary- and interface conditions imposed weakly by the simultaneous ap-
proximation term. It was shown that a modified discrete norm was needed in order
to prove energy stability of the scheme. The stability is independent of the order
of accuracy, and it was shown that we can achieve all orders of accuracy by simply
using higher order accurate SBP operators.

We showed that the difference when the heat transfer is governed by the heat
equation, compared to the compressible Navier-Stokes equations, is small. The
steady-state solutions differed by less than 0.005% as the mesh was refined while
a perturbed, unsteady solution differed by less than 0.5% on average.

There are many multi-block codes for the compressible Navier-Stokes equations
available. To implement conjugate heat transfer is significantly easier with the
method of modifying the interface conditions, rather than coupling to a different
physics solver for the heat transfer part. While the Navier-Stokes equations are
more expensive to solve, usually only a small part of the computational domain is
solid and the heat transfer is computed at a low additional cost.
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Appendix A. Coupling of the compressible Navier-Stokes equations with
the heat equation

In [4], a model problem for conjugate heat transfer was considered. The equations
were one-dimensional, linear and symmetric. In this appendix we extend the work to
the two-dimensional compressible, non-linear Navier-Stokes equations coupled with
the heat equation in two space dimensions. The well-posedness of the coupling is
shown in

Proposition 2. The compressible Navier-Stokes equations coupled with the heat
equation, is well-posed with the interface conditions

T = T̃ , κTy = κsT̃y (A.1)

for the temperature, and the no-slip1 conditions

u = 0, v = 0 (A.2)

for the velocities.

Proof. Consider the heat equation (15) and the Navier-Stokes equations in the con-
stant, linear, symmetric formulation. The estimates of w and T̃ will be derived in
the L2-equivalent norms

||w||2J1 =

∫
Ω1

wTJ1wdΩ1, ||T̃ ||2ν2 =

∫
Ω2

T̃ 2ν2dΩ2 (A.3)

where J1 = diag[1, 1, 1, ν1] and ν1,2 > 0 are to be determined.
Remember that the symmetrized variables for the Navier-Stokes equations are

w =

[
c̄
√
γρ̄
ρ, u, v,

1

c̄
√
γ(γ − 1)

T

]T
. (A.4)

1See [26] for more general conditions.
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and note that there is a scaling coefficient in the temperature component. To simplify
the analysis, we rescale (15) by multiplying the equation with 1

c̄
√
γ(γ−1

. To apply the

energy method, we rewrite the speed of sound based Péclet number Pec in (14) as

Pec =
Pr ·Re
Ma

=
Pr

ε
(A.5)

where Pr is the Prandtl number. Then (15) becomes

T̃t

c̄
√
γ(γ − 1)

=
εκs

Prc̄
√
γ(γ − 1)ρscs

(
T̃xx + T̃yy

)
. (A.6)

By applying the energy method to each equation and adding the results we obtain

d

dt

(
||w||2J1 +

1

c̄2γ(γ − 1)
||T̃ ||2ν2

)
≤ −2ε

c̄2γ(γ − 1)Pr

1∫
0

(
ν1γµ

ρ̄
TTy −

ν2κs
ρscs

T̃ T̃y

)
dx.

(A.7)
If we choose

ν1 =
κ̄ρ̄

γµ
, ν2 = ρscs (A.8)

and apply the interface conditions (A.1) we get

d

dt

(
||w||2J1 +

1

c̄2γ(γ − 1)
||T̃ ||2ν2

)
≤ −2ε

c̄2γ(γ − 1)Pr

1∫
0

T
(
κ̄Ty − κsT̃y

)
dx = 0 (A.9)

and hence the conditions (A.1) does not contribute to unbounded energy growth.

Note again that the application of the physical interface conditions (A.1) requires
the use of a non-standard norm in the energy estimates. All quantities involved in
the weights ν1,2 are, however, always positive and they will hence always define a
norm.

The discretization of the coupled system is analogous to that which is presented in
[4], and extended to multiple dimensions as described before. We hence only present
the numerical scheme and the choice of interface penalty coefficients such that the
scheme is stable.

An SBP-SAT discretization of the Navier-Stokes equations coupled with the heat
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equation is given by, when only considering the interface terms,

wt +
(
D̄x ⊗ I4

)
F +

(
D̄y ⊗ I4

)
G = S,

T̃t −
(
D̄2
xT̃ + D̄2

yT̃
)

= S̃.
(A.10)

The penalty terms are given by

S =
(
P̄−1
y Ēx,yN ⊗ Σ̄1

) (
w − gI

)
+ εσ2

(
P̄−1
y Ēx,yN ⊗ I4

) (
H̄2w − g1

)
+ εσ3

(
P̄−1
y Ēx,yN ⊗ I4

) (
H̄3w − g2

)
+ ε

(
P̄−1
y Ēx,yN ⊗ I4

)
Θ̄1

(
H̄3

(
D̄x ⊗ I4

)
w − ∂g2

∂x

)
+ ε

(
P̄−1
y Ēx,yN ⊗ Σ4

) (
ĪT1 w − ĪT2 (T̃⊗ e4)

)
+ ε

(
P̄−1
y D̄T

y Ēx,yN ⊗ Σ5

) (
ĪT1 w − ĪT2 (T̃⊗ e4)

)
+ ε

(
P̄−1
y Ēx,yN ⊗ Σ6

) (
κ̄ĪT1

(
D̄y ⊗ I4

)
w − κsĪT2 (D̄yT̃⊗ e4)

)
,

(A.11)

where Σ4,5,6 = diag[0, 0, 0, σ4,5,6] and the term involving Θ̄1 is explained in Remark 3.
The SAT for the heat equation is given by

S̃ = ετ4P̄
−1
y Ēx,yN

(
T̃−T

)
+ ετ5P̄

−1
y D̄T

y Ēx,yN

(
T̃−T

)
+ ετ6P̄

−1
y Ēx,yN

(
κsD̄yT̃− κ̄D̄yT

) (A.12)

and the choices of penalty parameters such that the coupled scheme is stable is given
in

Theorem 2. The scheme (A.10) for coupling the Navier-Stokes equations with the
heat equation is stable with the SATs given by (A.11), (A.12) where the penalty
coefficients for the coupling terms are given by

r ∈ R,

σ4 = τ4 ≤ 0, σ5 = −κsr, σ6 =
−1 + rPr

Pr
, τ5 = − κ̄ (−1 + rPr)

Pr
, τ6 = r.

(A.13)
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Proof. We apply the energy method, using the modified discrete norms,

||w||2J1 = wT (P̄ ⊗ J1)w, ||T̃||2ν2 = ν2T̃
T P̄T, (A.14)

where J1 = diag[1, 1, 1, ν1] and ν1,2 are given in (A.8). Using appropriate penalty
terms for the inviscid part and the velocity components of the Navier-Stokes equation,
see [33, 26], we obtain the energy estimate

d

dt
||w||2J1 +

d

dt
||T̃||2ν2 ≤ 0 (A.15)

when using the penalty coefficients given in (A.13).
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and conservative high order multi-block method for the compressible Navier-
Stokes equations. Journal of Computational Physics, 228(24):9020–9035, 2009.
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nus Svärd, Ken Mattsson, Gianluca Iaccarino, and Jing Gong. A hybrid method
for unsteady inviscid fluid flow. Computers & Fluids, 38:875–882, 2009.

[16] Heinz-Otto Kreiss and Godela Scherer. Finite element and finite difference
methods for hyperbolic partial differential equations. In Mathematical Aspects
of Finite Elements in Partial Differential Equations, number 33 in Publ. Math.
Res. Center Univ. Wisconsin, pages 195–212. Academic Press, 1974.

[17] Heinz-Otto Kreiss and Godela Scherer. On the existence of energy estimates
for difference approximations for hyperbolic systems. Technical report, Uppsala
University, Division of Scientific Computing, 1977.

26



[18] Mark H. Carpenter, David Gottlieb, and Saul Abarbanel. Time-stable boundary
conditions for finite-difference schemes solving hyperbolic systems: Methodol-
ogy and application to high-order compact schemes. Journal of Computational
Physics, 111(2):220–236, 1994.

[19] Mark H. Carpenter, Jan Nordström, and David Gottlieb. A stable and conserva-
tive interface treatment of arbitrary spatial accuracy. Journal of Computational
Physics, 148(2):341–365, 1999.
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