
The Minimal Cost Reachability Problem in
Priced Timed Pushdown Systems

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman

Uppsala University, Sweden

Abstract. This paper introduces the model of priced timed pushdown
systems as an extension of discrete-timed pushdown systems with a cost
model that assigns multidimensional costs to both transitions and stack
symbols. For this model, we consider the minimal cost reachability prob-
lem: i.e., given a priced timed pushdown system and a target set of
configurations, determine the minimal possible cost of any run from the
initial to a target configuration. We solve the problem by reducing it to
the reachability problem in standard pushdown systems.

1 Introduction

Pushdown systems are one of the most widely used models for the study and
analysis of recursive systems [13]. Furthermore, several models have been intro-
duced in [8, 11, 7, 12, 18] which extend the model by introducing timed behaviors.

We consider a new model for Timed Pushdown Systems consisting of push-
down systems augmented with a finite set of (integer valued) clocks. Moreover,
the symbols that are pushed into the stack have integer ages measuring the time
that has elapsed since they were pushed. A clock can be set to zero simultane-
ously with any transition. At any moment, the value of a clock is the time elapsed
since the last time it was reset. With each transition we associate time-intervals
(whose bounds are natural numbers or ω) that restrict the clock values and ages
of the sequence of symbols (on the top of the stack) that can be popped.

In parallel, there have been several works on extending the model of timed
automata [4] with prices (weights) (see e.g., [10, 5]). Priced timed automata are
suitable models for embedded systems, where we have to take into consideration
the fact that the system behavior may be constrained by the consumption of
different types of resources. More precisely, priced timed automata extend clas-
sical timed automata with a cost function Cost that maps every location and
every transition to a nonnegative integer. For a transition, Cost gives the cost
of performing the transition. For a location, Cost gives the cost per time unit
for staying in the location. In this manner, we can define, for each run of the
system, the accumulated cost of staying in locations and performing transitions.

We study a natural extension of timed pushdown systems, namely Priced
Timed Pushdown Systems (PTPS). We allow the cost function to map transitions
and stack symbols of the pushdown system into vectors of integers (of some given
length k). Again, for a transition, Cost gives the cost of performing the transition;

2 P. A. Abdulla, M. F. Atig, and J. Stenman

while for a stack symbol, Cost gives the cost per time unit for the symbol to
stay in the stack. We consider the minimal cost reachability problem for PTPS
where, given an intial configuration c0 and a set F of final configurations, the
task is to compute the minimal accumulated cost of a run that reaches F from
c0. Here, we assume that F is regular (i.e., F can be described using a finite
state automaton). Since the set of costs within which we can reach F from c0
is upward closed (regardless of the form of F), the minimal cost reachability
problem can be reduced, using the construction of Valk and Jantzen [19], to the
cost-threshold problem. In the latter, we are given a cost vector v, and we want
to check if it is possible to reach F from c0 with a cost that does not exceed v.

In this paper, we prove that the cost-threshold problem for PTPS can be
reduced to the reachability problem for (unpriced) timed pushdown systems.
The idea consists of encoding the cost of a computation in the state of the timed
pushdown systems. Moreover, we show that the reachability problem for timed
pushdown systems can be reduced to the reachability for (unpriced and untimed)
pushdown systems which is decidable. Hence, we get the decidability of the cost-
threshold problem for PTPS (and consequently also solving the minimal cost
reachability problem for PTPS).

Related work. The works in [8, 11, 12] consider timed pushdown automata. How-
ever, the models in these works consider only global clocks which means that
the stack symbols are not equipped with clocks. In contrast, we associate with
each pushed stack symbol one clock (reflecting its age). In fact, our model can
be easily extended such that each stack symbol has several clocks.

In [18], the authors introduce recursive timed automata, a model where clocks
are considered as variables. A recursive timed automaton allows passing the val-
ues of clocks using either pass-by-value or pass-by-reference mechanisms. This
feature is not supported in our model since we do not allow pass-by-value com-
munication between procedures. Moreover, in the recursive timed automaton
model, the local clocks of the caller procedure are stopped until the called pro-
cedure returns. This makes the semantics of the models incomparable with ours,
since all the clocks in our model evolve synchronously.

In [7], the authors define the class of extended pushdown timed automata
which is a pushdown automaton enriched with a set of clocks, with an additional
stack used to store/restore clock valuations (which leads to the undecidability of
the reachability problem). In our model, clocks are associated with stack symbols
and store/restore operations are not allowed.

None of the above works considers prices in their models.
The minimal cost reachability problem has been addressed for several models:

priced timed automata (e.g., [10, 5]), and priced timed Petri nets ([2, 1]). To the
best of our knowledge, this is the first work that addresses the problem for PTPS.

2 Preliminaries

Let N denote the non-negative integers, and let Nk and Nkω denote the set of
vectors of dimension k over N and N ∪ {ω}, respectively (ω represents the first

Minimal Cost Reachability Problem in Priced Timed Pushdown Systems 3

limit ordinal). We use 0k (or simply 0, depending on the context) to denote the
vector of dimension k whose elements have all the value 0, and Intrv to denote
the set of intervals in N × Nω. In the context of vectors, less than means the
standard componentwise ordering ≤.

For sets A and B, we use f : A→ B to denote that f is a total function that
maps A to B. We use [A → B] to denote the set of all total functions from A
to B. Given a set A with an ordering � and a subset B ⊆ A, B is said to be
upward closed in A if b ∈ B, a ∈ A and b � a implies a ∈ B. Given a set B ⊆ A,
we define the upward closure B ↑ (resp. downward closure B ↓) to be the set
{a ∈ A | ∃b ∈ B : b � a (resp. a � b)}.

Let Σ be an alphabet. We denote by Σ∗ (resp. Σ+) the set of all words (resp.
non-empty words) over Σ, and by ε the empty word. A language is a (possibly
infinite) set of words. The length of a word w ∈ Σ∗ is denoted by |w|. (We
assume that |ε| = 0). For every i : 1 ≤ i ≤ |w|, let w(i) be the symbol at position
i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some
i : 1 ≤ i ≤ |w|. We use |w|a to denote the number of occurrences of a in w.

3 Priced Timed Pushdown Systems

The Timed Pushdown System (TPS) model is an extension of pushdown systems
augmented with a finite set of (integer valued) clocks. Moreover, the symbols that
are pushed into the stack have integer ages measuring the time that has elapsed
since they were pushed. A clock can be set to zero simultaneously with any
transition. At any moment, the value of a clock is the time elapsed since the last
time it was reset. With each transition we associate time-intervals (whose bounds
are natural numbers or ω) which restrict the clock values and ages of the sequence
of symbols (on the top of the stack) that can be popped. Then, we extend this
model to priced timed pushdown systems (PTPS) by assigning multidimensional
costs to both transitions (action costs) and stack symbols (storage costs). Each
firing of a discrete transition costs the assigned cost vector. The cost of a timed
transition depends on the stack content. For each stack symbol γ, if the stack
contains k1 occurrences of γ and the cost of storing γ per time unit is v, then
firing a timed transition will add k1v to the current accumulated cost.

Syntax. A Priced Timed Pushdown System (PTPS) is a tuple N = (X,Q,
Γ,∆, cost) where X is a finite set of clocks, Q is a finite set of states, Γ is the
stack alphabet, cost : (Γ ∪∆) → Nk is a function assigning (multidimensional)
firing costs to transitions and storage costs to stack symbols, and ∆ is a finite
set of transition rules of the form:

(q, (α1, J1) · · · (αm, Jm))
(φ ,R)−−−−−→(q′, (γ1, I1) · · · (γn, In))

where (1) q, q′ ∈ Q are two states, (2) α1 · · ·αm ∈ Γ ∗ is the word to be popped
such that the age of each symbol αi ∈ Γ should be in the interval Ji for all
i : 1 ≤ i ≤ m, (3) φ : X → Intrv is a clock constraint over X (i.e., the valuation
of a clock x ∈ X should be in φ(x)), (4) R ⊆ X is the set of clocks to be reset,

4 P. A. Abdulla, M. F. Atig, and J. Stenman

and (5) γ1 · · · γn ∈ Γ ∗ is the word to be pushed into the stack such that the initial
age of each symbol γj ∈ Γ should be in the interval Ij for all j : 1 ≤ j ≤ n.
Observe that the set ∆ of transition rules can be defined as a finite subset of(
Q× (Γ × Intrv)∗

)
×
(
[X → Intrv]× 2X

)
×
(
Q× (Γ × Intrv)∗

)
.

If for every γ ∈ Γ and δ ∈ ∆, cost(γ) = cost(δ) = 0 (i.e., the cost of any
transition or stack symbol is 0), then N is called a (unpriced) Timed Pushdown
System (TPS), which can be described by the tuple (X,Q, Γ,∆). Moreover, if
∆ ⊆

(
Q × (Γ × I0)∗

)
× ([X → I0] × 2X) × (Q × (Γ × I0)∗) with I0 = {[0..ω]},

then the TPS N is called an unpriced and untimed pushdown system, or simply
Pushdown System (PS), which can be described by the tuple (Q,Γ,∆).

Configurations. A configuration c of N is a triple (q, ν, w) where q ∈ Q is a state,
ν : X → N is a clock valuation, and w ∈ (Γ × N)∗ is the stack content. Observe
that the stack contains a sequence of pairs representing the pushed symbols and
their ages. Let Conf (N) denote the set of all configurations of N .

A set of configurations C ⊆ Conf (N) is said to be regular if there are a
set Q′ ⊆ Q of states, a finite set Ψ ⊆ [X → N] of clock valuations, and a
regular language L over (Γ × Intrv) such that C = {(q, ν, w) | q ∈ Q′, ν ∈
Ψ,w satisfies some l ∈ L}. A language L over (Γ × Intrv) is regular if and only
if there is a finite state automaton A over the alphabet (Γ × Intrv) such that
the language accepted by A is precisely L.

Let c = (q, ν, (γ1, a1) · · · (γn, an)) be a configuration of N with q ∈ Q, ν ∈
[X → N], and (γi, ai) ∈ Γ × N for all i : 1 ≤ i ≤ n. Then, we use c+1 to
denote the configuration (q, ν′, w′) defined as follows: (1) ν′(x) = ν(x) + 1 for
all x ∈ X (i.e., the value of each clock is increased by one time unit), and (2)
w′ = (γ1, a1 + 1) · · · (γn, an + 1) (i.e., the age of each symbol γi in the stack is
also increased by one time unit). Note that (γ1, a1) is at the top and (γn, an) is
at the bottom of the stack.

Let γ1, . . . , γn ∈ Γ , a1, . . . , an ∈ N and I1, . . . , In ∈ Intrv . We say that
the stack content w = (γ1, a1) · · · (γn, an) satisfies the stack constraint r =
(γ1, I1) · · · (γn, In) (denoted by w ∈ r) if and only if ai ∈ Ii for all i : 1 ≤ i ≤ n
(i.e., the age of each symbol γi belongs to the interval Ii).

Transition relation. We define two transition relations on the set of configu-
rations of N : timed and discrete. The timed transition relation increases the
value of each clock and the age of each pushed stack symbol by one. Formally,
c−→time c

′ if and only if c′ = c+1.
We define the discrete transition relation −→D as

⋃
δ∈∆ −→δ where −→δ rep-

resents the effect of performing the discrete transition δ. More precisely, let us

assume that the transition δ is of the form (q, r)
(φ,R)−−−−→(q′, r′) where q, q′ ∈ Q

are states, r, r′ ∈ (Γ × Intrv)∗ are stack constraints, R ⊆ C is the set of clocks
to be reset, and φ : X → Intrv is a clock constraint over X. For configurations
c = (q, ν, w) and c′ = (q′, ν′, w′), we have c−→δ c

′ if and only if

– There are u, u′′ ∈ (Γ ×N)∗ such that w = u · u′′ and u ∈ r. The transition t
can be performed only if there is a word u, at the top of the stack, satisfying
the constraint r (i.e., u ∈ r), and if this is the case u can be popped.

Minimal Cost Reachability Problem in Priced Timed Pushdown Systems 5

– There is u′ ∈ (Γ ×N)∗ such that w′ = u′ · u′′ and u′ ∈ r′. The newly pushed
word u′ into the stack should satisfy the stack constraint given by r′.

– ν(x) ∈ φ(x) for all x ∈ X. The current clock value of x should satisfy the
time constraint imposed by φ.

– ν′(x) = 0 for all x ∈ R and ν′(x′) = ν(x′) for all x′ /∈ R. The clocks in
R are reset to 0, and thus start counting time with respect to the time of
occurrence of this transition.

We write −→N (or simply −→ when it is clear from the context) to denote the
transition relation given by −→time ∪−→D. We use −→∗ to denote the reflexive-
transitive closure of −→. It is easy to extend −→∗ to sets of configurations.

Let c, c′ ∈ Conf (N). A computation π of N from c to c′ is of the form
c0−→ c1−→· · ·−→ cn where c0 = c, cn = c′, and ci−→ ci+1 for all i : 0 ≤ i < n.
We write c π−→ c′ to denote that there is a computation π of N from c to c′. We
define Reach(c) := {c′′ | c−→∗ c′′} as the set of configurations reachable from c.

The cost of computations. The cost of a stack content w ∈ (Γ×N)∗ is defined
as Cost(w) =

∑
(γ,a)∈Γ×N |w|(γ,a) cost(γ). Intuitively, the cost of w corresponds

to the sum, over the stack symbols γ ∈ Γ , of the number of occurrences of γ in w
multiplied by its individual cost cost(γ). In the same way, we can define the cost
of stack constraints: Given a stack constraint r ∈ (Γ×Intrv)∗, Cost(r) = Cost(u)
for some u ∈ r. Notice that the function Cost over stack constraints is well-
defined since Cost(u) = Cost(u′) for all u, u′ ∈ r.

The cost of a discrete transition δ is defined as Cost(c−→δ c
′) = cost(δ) and

the cost of a timed transition is defined as Cost(c−→time c
+1) = Cost(w) where

c is of the form (q, ν, w). The cost of a computation π = c0−→ c1−→· · ·−→ cn is

the sum of all transition costs, i.e., Cost(π) =
∑n−1
i=0 Cost(ci−→ ci+1).

The Cost-Threshold Problem. We study the problem of computing the minimal
cost for reaching a configuration in a given regular target set.

Cost-Threshold Problem

Instance: A PTPS N = (X,Q, Γ,∆, cost) with an initial configuration c0 ∈
Conf (N), a regular set F of final configurations and a vector v ∈ Nkω.

Question: Does there exist c ∈ F and c0
π−→ c such that Cost(π) ≤ v?

The cost-threshold problem is called the reachability problem when the PTPS
N is an unpriced (un)timed pushdown system. In fact, in the case of unpriced
(un)timed pushdown systems, the cost-threshold problem boils down to check-
ing whether there exist a configuration c ∈ F and a computation π such that
c0

π−→ c. Moreover, in the case of pushdown systems, the regular set F of final
configurations can be defined using the tuple Q′ × L where Q′ ⊆ Q and L is a
regular language over Γ .

Since all costs are non-negative (in the set Nk), the standard componentwise
ordering ≤ on costs is a well-quasi order and thus every upward closed set of
costs has finitely many minimal elements [14]. Moreover, if we have a positive
instance of the cost-threshold problem with some allowed cost v then any modi-
fied instance with some allowed cost v′ ≥ v will also be positive. Thus the set of

6 P. A. Abdulla, M. F. Atig, and J. Stenman

possible costs in the cost-threshold problem is upward-closed. In this case, the
Valk-Jantzen theorem [19] implies that the set of minimal possible costs can be
computed if the Cost-Threshold problem is decidable.

Theorem 1. [Valk and Jantzen [19]] Given an upward-closed set V ⊆ Nk, the
finite set Vmin of minimal elements of V is computable if for any vector v ∈ Nkω
the predicate v↓ ∩V 6= ∅ is decidable.

Computing Minimal Possible Costs

Instance: A PTPS N with an initial configuration c0 and a regular set F of
final configurations.

Question: Compute the minimal possible costs of reaching F , i.e., the finitely
many minimal elements of VF = {v ∈ Nk | ∃c ∈ F, π. c0 π−→ c ∧ Cost(π) ≤ v}.

Since VF is upward-closed and for any vector v, if F is reachable with a cost
less than v, then v ∈ VF , we have by Theorem 1:

Theorem 2. Let N be a PTPS with an initial configuration c0 and a regular set
of final configurations F . Then, computing the minimal possible costs of reaching
F can be reduced to the cost-threshold problem of reaching F from c0.

4 From Priced to Unpriced Timed Pushdown Systems

In this section, we show that it is possible to reduce the cost-threshold reacha-
bility problem for PTPS to the reachability problem for TPS.

Theorem 3. The cost-threshold reachability problem for priced timed pushdown
systems can be reduced to the reachability problem for timed pushdown systems.

The rest of this section is devoted to the proof of this theorem. Consider an
instance of the cost-threshold reachability problem for priced timed pushdown
systems. LetN = (X,Q, Γ,∆, cost) be a PTPS with cost(Γ)∪cost(∆) ⊆ Nk, c0 ∈
Conf (N) be the initial configuration, F be the regular set of final configurations,
and v = (v1, . . . , vk) ∈ Nkω.

First, for every i : 1 ≤ i ≤ k, if vi = ω then we replace vi by 0 and set the i-th
component of the cost function cost of each stack symbol γ ∈ Γ and transition
δ ∈ ∆ to 0. Hence, we can assume that v = (v1, . . . , vk) ∈ Nk.

In the following, we construct a TPS N ′ = (X ′, Q′, Γ ′, ∆′) such that the
cost-threshold reachability for N is reducible to the reachability problem for
N ′. The idea is to simulate any computation of N by a computation of N ′.
During the simulation, N ′ keeps track in its state of the current total cost of
the computation (performed so far) and the current cost of the stack content. So,
when a discrete transition δ is performed, N ′ adds the cost of δ to the current
total cost. (Observe that the total cost should always be less than the vector v
since we are only interested in computations whose total cost is less than v.)
Now, when a timed transition is performed, the cost of the stack content (if it
is less than v) will be added to the total cost.

Minimal Cost Reachability Problem in Priced Timed Pushdown Systems 7

The first main difficulty is that, during one time unit, the cost of the stack
content can be strictly greater than (or incomparable to) v. To overcome this
difficulty, N ′ keeps track of the cost of the stack content up to v, and uses the
special symbol > when the current cost of the stack content is not less than v.
Moreover, N ′ adds the cost of the current stack (stored in the state of N ′) to
each newly pushed stack symbol γ ∈ Γ . Hence, a stack symbol of N ′ is of one of
the following two forms: either (γ,v′) or (γ,>) where γ ∈ Γ and v′ ≤ v. Then,
every transition performed by N ′ preserves the invariant between the stack cost
stored in the current state of N ′ and the topmost stack symbol in the stack.
This means that if the current cost of the stack content stored in the state is s
and the topmost stack symbol is (γ, s′) then the following condition should be
satisfied: If s′ = > or cost(γ) + s′ � v then s = >; otherwise s = cost(γ) + s′.

The second difficulty is that timed transitions of N ′ are performed in a non-
deterministic manner. However, N ′ needs to know when a timed transition has
been performed in order to add the current stack content cost to the total cost
stored in its state. For this we add a new clock xnew which is used to detect if
one unit of time has elapsed (i.e., a timed transition has been performed) or not.
Then, discrete transitions of N can only be simulated by N ′ when the value of
the clock xnew is equal to 0. If the current value of xnew is 1, then N ′ will add
the current stack content cost (if it is less than v) to the total cost stored in its
state and reset xnew. Formally, N ′ is defined as follows:

– Let > be a symbol. The stack alphabet Γ ′ of N ′ is defined by the set Γ ×
(v ↓ ∪ {>}). Intuitively, a stack symbol of the form (γ,v′) (resp. (γ,>))
corresponds to the fact that the cost of the stack content before pushing the
stack symbol (γ,v′) (resp. (γ,>)) into the stack is v′ (resp. not less than v).

– A state of N ′ is of the form (q, t, s) where q ∈ Q is a state of N , t ∈ v↓
is the current accumulated total cost (which should be less than v), and
s ∈ (v↓ ∪ {>}) reflects the current cost of the stack content (if the current
cost v′ of the stack content is less than v then s = v′ otherwise s = >).

– The set of clocks of N ′ contains all the clocks of N and a new clock xnew
such that xnew /∈ X (i.e., X ′ = X∪{xnew}). The clock xnew is used to detect
when a timed transition is performed in order to add the cost of the current
stack content (if it is less than v) to the total cost.

– The set ∆′ is the smallest set of rules satisfying the following conditions:

1. Simulating a discrete transition of N : Let t, t′ ∈ (v↓) be two vectors
less than v and s, s′ ∈ (v↓ ∪ {>}). For every discrete transition δ ∈ ∆

of the form (q, (α1, J1) · · · (αm, Jm))
(φ,R)−−−−→(q′, (γ1, I1) · · · (γn, In)), the TPS

N ′ has a transition of the form ((q, t, s), r)
(φ′,R)−−−−→((q′, t′, s′), r′), with r =

((α1, a1), J1) · · · ((αm, am), Jm) and r′ = ((γ1, b1), I1) · · · ((γn, bn), In), if the
following conditions are satisfied:

• t′ := t+ cost(δ). The cost of the transition δ is add to the total cost t.

• φ′(x) = φ(x) if x ∈ X, and φ′(xnew) = [0..0]. The discrete transition
can be performed by N ′ only if the clock value of xnew is equal to 0.

8 P. A. Abdulla, M. F. Atig, and J. Stenman

• Let d = s if r = ε (i.e., m = 0) otherwise d = am. Intuitively, d represents
the stack cost after popping a word satisfying the stack constraint r.
∗ If d = > then s′ = > and bi = > for all i : 1 ≤ i ≤ n. In fact,

if the current cost of the stack after popping a word satisfying the
constraint r is not less than v (since d = >), then it is the case after
pushing any stack symbol (so, bi = > and s′ = >).

∗ If d ≤ v then for every i : 1 ≤ i ≤ n, let vi = d +
∑n
j=i cost(γj)

be the sum of d (i.e, the current stack cost after popping a word
satisfying the constraint r) and the cost of the sequence of stack
symbols γiγi+1 · · · γn. Then, if v1 ≤ v then s′ = v1, otherwise s′ =
>. Moreover, bn = d and for every i : 1 ≤ i < n, if vi+1 ≤ v then
bi = vi+1, otherwise bi = >.

2. Simulating a timed transition of N : For every state q ∈ Q and
vectors t, t′, s ∈ (v↓) less than v, the TPS N ′ has a transition δtime of the

form ((q, t, s), ε)
(φ,R)−−−−→((q, t′, s), ε) if the following conditions hold:

• φ(x) = [0..ω] for all x ∈ X and φ(xnew) = [1..1]. This means that one
time unit has passed, and hence, a timed transition has been performed.

• t′ := t+ s. The current cost of the stack content is added to the current
total cost since a timed transition has been performed.

• R = {xnew}. Only the clock xnew is reset to 0.

Relation between N and N ′. Let w = ((γ1, a1), y1)((γ2, a2), y2) · · · ((γn, an), yn)
be a possible stack content of N ′ where γi ∈ Γ , ai ∈ (v ↓) ∪ {>}, and yi ∈ N
for all i : 1 ≤ i ≤ n. Recall that the symbol ((γn, an), yn) is in the bottom of the
stack and ((γ1, a1), y1) is the topmost stack symbol. For every i : 1 ≤ i ≤ n, let
vi =

∑n
j=i cost(γj) be the cost of the sequence of stack symbols γi · · · γn.

Then, w is a valid stack content ofN ′ if and only if an = 0 and for every i : 1 ≤
i < n, if vi+1 ≤ v then ai = vi+1, otherwise ai = >. Observe that the transition
relation of N ′ preserves the validity of the stack content in any configuration
reachable from a configuration whose stack content is initially valid.

Now, we define the mapping T that associates, for every configuration c =
(q, ν, (γ1, y1) · · · (γn, yn)) ofN and every vector t ≤ v, a configuration T (c, t,v) =
((q, t, s), ν′, w′) of N ′ such that the following conditions are satisfied:

– w′ is the unique valid stack content of the form:

((γ1, a1), y1)((γ2, a2), y2) · · · ((γn, an), yn)

Notice that such a valid stack configuration exists by definition and unique.
– If Cost(γ1 · · · γn) ≤ v then s = Cost(γ1 · · · γn), otherwise s = >.
– ν′(x) = ν(x) if x ∈ X and ν′(xnew) = 0.

Observe that T is a bijection. The definition of the mapping T is extended in
the straightforward manner to sets of configurations of N and costs less than v.
Finally, Theorem 3 is an immediate consequence of the following lemma:

Lemma 4. Let F ′ = T (F,v ↓,v). There exists a configuration c ∈ F and a
computation c0

π−→ c of N s.t. Cost(π) ≤ v iff there is a configuration c′ ∈ F ′
s.t. T (c0,0,v)−→∗N ′ c′. Moreover, the set F ′ of configurations of N ′ is regular.

Minimal Cost Reachability Problem in Priced Timed Pushdown Systems 9

5 From Timed Pushdown Systems to Pushdown Systems

In this section, we show that it is possible to reduce the reachability problem for
TPS to its corresponding problem for PS. Let us first show that the reachability
problem for TPS can be reduced to the reachability problem for TPS between
two configurations with empty stack and where the value of each clock is 0.

Lemma 5. Let N be a timed pushdown system, c0 ∈ Conf (N) be an initial
configuration, and F ⊆ Conf (N) be a regular set of final configurations. Then,
it is possible to construct a timed pushdown system N ′ = (X ′, Q′, Γ ′, ∆′) and two
configurations c′0 = (q0, ν, ε) and c′f = (qf , ν, ε) such that q0, qf ∈ Q′, ν(x) = 0
for all x ∈ X ′, and there is c ∈ F such that c0−→∗N c iff c′0−→∗N ′ c′f .

Proof. The proof of this lemma is similar to the case of standard pushdown
systems. In fact, any computation of N ′ will be divided in three phases. In the
first phase, the TPS N ′ performs some push and nop transitions in order to reach
the configuration c0. Then, N ′ starts to mimic the behavior of N . Finally, N ′

performs a sequence of pop and nop transitions to check, in a nondeterministic
way, whether the current reached configuration is in F , and then resets all clocks
to zero. This can be done since F is a regular set of configurations. ut

Let us now prove that it is possible to reduce the reachability problem for
timed pushdown systems to the reachability problem for pushdown systems.

Theorem 6. The reachability problem for timed pushdown system can be re-
duced to the same problem for pushdown systems.

The rest of this section is devoted to the proof of Theorem 6. Consider
an instance of the reachability problem for timed pushdown systems: Let
N = (X,Q, Γ,∆) be a timed pushdown system, c0 ∈ Conf (N) be an initial
configuration, F be a regular set of final configurations. From Lemma 5, we can
assume without loss of generality that c0 = (q0, ν, ε) and F = {(qf , ν, ε)} where
q0, qf ∈ Q and ν(x) = 0 for all x ∈ X.

Let max be the maximal natural number appearing in the time intervals of
the transition relation ∆. Observe that if the value of a clock or the age of a
stack symbol is strictly greater than max then we can assume without loss of
generality that it is ω.

In the following, we construct a pushdown system N ′ = (Q′, Γ ′, ∆′) such
that the reachability problem for N is reducible to the reachability problem in
N ′. The main idea is to simulate a computation of N by a computation of N ′.
During the simulation process, the pushdown system keeps track of the value
of each clock of N in its state up to the value max . In fact, if the value of a
clock of N is strictly greater than max , N ′ can assume without loss of generality
that the value of such clock is ω. Observe that this simulation process of the
clocks of N cannot be extended to the ages of the stack symbols in the stack,
since N ′ has limited access to its stack (it can only access the top part). To
overcome this problem, we add to each stack symbol γ ∈ Γ of N , its initial age,

10 P. A. Abdulla, M. F. Atig, and J. Stenman

and the time that has elapsed between the pushing of γ and the last time it
was the topmost symbol. As in the case of the clocks of N , we can assume that
the initial age and the time elapsed associated with each stack symbol of N ′ is
in [0 ..max] ∪ {ω}. Now, every performed transition in N ′ should preserve that
the age of the topmost stack symbol is given by the sum of its initial age and
the time elapsed so far. Hence, when a symbol is popped from the stack, the
elapsed time of the new topmost stack symbol must be updated by adding to it
the elapsed time of the popped symbol. Formally, the pushdown system N ′ is
defined as follows:

– The set Q′ of states of N ′ is Q × [X → ([0 ..max] ∪ {ω})]. A state of N ′

is then of the form (q, ν) where q ∈ Q is the current state of N and ν is a
mapping from X to [0 ..max] ∪ {ω}. If a clock x ∈ X has a value strictly
greater than max in N then ν(x) = ω in N ′, otherwise the value of the clock
x in N is ν(x).

– The stack alphabet Γ ′ is (Γ × ([0 ..max]∪{ω})2)∪{(⊥, 0, 0)} where (⊥, 0, 0)
is a special symbol used to mark the bottom of the stack. A stack symbol of
the form (γ, y, z) on the top of the stack of N ′ corresponds to the fact that
γ is the topmost stack symbol of N such that if its initial age i is strictly
greater than max then y = ω, otherwise y = i. Moreover, if e is the elapsed
time while γ is in the stack of N , then if e is strictly greater than max then
z = ω, otherwise z = e. Notice that the age of γ in N is (i+ e).

– The set ∆′ is the smallest set of rules satisfying the following conditions:

1. Simulating a discrete transition of N : Let (γ, y, z) ∈ Γ ′ be a stack
symbol of N ′. Then, for every discrete transition δ ∈ ∆ of N of the form

(q, (α1, J1) · · · (αm, Jm))
(φ,R)−−−−→(q′, (γ1, I1) · · · (γn, In)),N ′ has a transition of

the form: ((q, ν), (α1, y1, z1) · · · (αm, ym, zm)(γ, y, z))−→ ((q′, ν′), (γ1, y
′
1, z
′
1)

· · · (γn, y
′
n, z
′
n) (γ, y′, z′)) if the following conditions hold:

• For every clock x ∈ X, ν(x) ∈ φ(x). The valuation of each clock x should
satisfy the time constraint given by φ.

• For every clock x ∈ X, ν′(x) = 0 if x ∈ R, otherwise ν′(x) = ν(x). Since
no unit of time has been elapsed, only the clocks that are in R are reset.

• For every i : 1 ≤ i ≤ m, we have (yi +
∑i
j=1 zj) ∈ Ji. This means that

the age of the stack symbol αi is given by the sum of the time elapsed
at each stack symbol αj with j : 1 ≤ j ≤ i and its initial age yi when it
was pushed.

• If (γ, y, z) = (⊥, 0, 0) then (γ, y′, z′) = (⊥, 0, 0). This means that the
bottom stack symbol can never be popped.

• If γ ∈ Γ then let e = z +
∑m
j=1 zj . If e ≤ max then z′ = e, otherwise

z′ = ω. The elapsed time of the new topmost stack symbol γ must
be updated using the elapsed time of each individual symbol αi with
j : 1 ≤ j ≤ m. Moreover, we have y′ = y since the initial age of γ
remains the same.

Minimal Cost Reachability Problem in Priced Timed Pushdown Systems 11

• For every i : 1 ≤ i ≤ n, we have y′i ∈ ([0 ..max] ∪ {ω}) ∩ Ii and z′i = 0.
The newly pushed stack symbol γi has an initial age in Ii. Moreover, the
elapsed time of γi is 0 since it is newly pushed into the stack.

2. Simulating a timed transition of N : For every state q ∈ Q, ν, ν′ ∈
[X → ([0 ..max] ∪ {ω})], and (γ, y, z), (γ, y′, z′) ∈ Γ ′, the pushdown system
N ′ has a transition δtime of the form ((q, ν), (γ, y, z))−→ ((q, ν′), (γ, y′, z′)) if
the following conditions hold:

• For every clock x ∈ X, if ν(x)+1 ≤ max then ν′(x) = ν(x)+1, otherwise
ν′(x) = ω. Since a timed transition is performed, the pushdown system
N ′ should update the valuation of all its clocks accordingly.

• If (γ, y, z) = (⊥, 0, 0) then (γ, y′, z′) = (⊥, 0, 0). This means that the
bottom stack symbol can never be popped or modified.

• If γ ∈ Γ then let e = z + 1. If e ≤ max then z′ = e, otherwise z′ = ω.
Moreover, we have y′ = y. The elapsed time of the topmost stack symbol
must be updated since one time unit has passed.

Finally, the relation between N and N ′ is given by the following lemma:

Lemma 7. (q0, ν, ε)−→∗N (qf , ν, ε) iff ((q0, ν), (⊥, 0, 0))−→∗N ′ ((qf , ν), (⊥, 0, 0)).

Since the reachability problem for pushdown systems is decidable (see for
example [15, 9]), and from Theorem 3 and Theorem 6, we can conclude that the
cost-threshold problem is also decidable.

Corollary 8. The cost-threshold problem for PTPS is decidable.

Moreover, from Theorem 2 and Corollary 8, we obtain:

Corollary 9. Let N be a priced timed pushdown system with an initial configu-
ration c0 ∈ Conf (N) and a regular set F of final configurations. Then, it possible
to compute the minimal possible costs of reaching F .

6 Conclusion

We introduced the model of (discrete) timed pushdown systems which is an ex-
tension of pushdown systems. We showed that the reachability problem for timed
pushdown systems is decidable and can be reduced to the reachability problem
for standard pushdown systems (which is a decidable problem). Moreover, we
have considered priced timed pushdown systems which is an extension of timed
pushdown systems with a cost model. We proved that the cost-threshold prob-
lem is decidable (by a reduction to the reachability problem for timed pushdown
systems). As a consequence of this result, the minimal cost reachability problem
for priced timed pushdown systems is decidable.

A challenging problem which we are currently considering is to extend our
results to the case of dense-timed pushdown systems.

12 P. A. Abdulla, M. F. Atig, and J. Stenman

References

1. P. A. Abdulla and R. Mayr. Minimal cost reachability/coverability in priced timed
petri nets. In FOSSACS, LNCS 5504, pages 348–363. Springer, 2009.

2. P. A. Abdulla and R. Mayr. Computing optimal coverability costs in priced timed
petri nets. In LICS, 2011.

3. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In ICALP, LNCS 3142, pages 122–133. Springer, 2004.

4. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

5. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
Theor. Comput. Sci., 318(3):297–322, 2004.

6. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. W. Vaandrager. Minimum-cost reachability for priced timed automata. In
HSCC, LNCS 2034, pages 147–161. Springer, 2001.

7. M. Benerecetti, S. Minopoli, and A. Peron. Analysis of timed recursive state
machines. In TIME, pages 61–68. IEEE Computer Society, 2010.

8. A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of
systems with continuous variables and unbounded discrete data structures. In
Hybrid Systems, LNCS 999, pages 64–85. Springer, 1994.

9. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR, LNCS 1243, pages 135–150.
Springer, 1997.

10. P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In FSTTCS, LNCS 3328, pages 148–160. Springer, 2004.

11. Z. Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary reachability
analysis of discrete pushdown timed automata. In CAV, LNCS 1855, pages 69–84.
Springer, 2000.

12. M. Emmi and R. Majumdar. Decision problems for the verification of real-time
software. In HSCC, LNCS 3927, pages 200–211. Springer, 2006.

13. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In FoSSaCS, LNCS 1578, pages 14–30. Springer, 1999.

14. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3), 2(7):326–336, 1952.

15. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

16. T.W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their appli-
cation to interprocedural dataflow analysis. In SAS, LNCS 2694, pages 189–213.
Springer, 2003.

17. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München, 2002.

18. A. Trivedi and D. Wojtczak. Recursive timed automata. In Proceedings of the 8th
international conference on Automated technology for verification and analysis,
ATVA, pages 306–324, 2010.

19. R. Valk and M. Jantzen. The residue of vector sets with applications to decidability
problems in petri nets. Acta Inf., 21:643–674, 1985.

