Area of and volume enclosed by digital and
triangulated surfaces

Ingela Nystrom®, Jayaram K. Udupa?, George J. Grevera’ and Bruce E. Hirsch®

?Centre for Image Analysis, Uppsala University, Uppsala, Sweden
bMedical Image Processing Group, Dept. of Radiology, University of Pennsylvania,
Philadelphia, PA, USA
‘Dept. of Anatomy and Cell Biology, Temple University School of Medicine,
Philadelphia, PA, USA

ABSTRACT

We demonstrate that the volume enclosed by triangulated surfaces can be computed efficiently in the same
elegant way the volume enclosed by digital surfaces is computed by digital surface integration. Although digital
surfaces are good for visualization and volume measurement, their drawback is that surface area measurements
are inaccurate. On the other hand, triangulated surfaces give more accurate surface area measurements, but
volume measurements and visualization are less efficient. The T-shell data structure previously proposed retains
advantages and overcomes difficulties of both the digital and the triangulated approaches. We create a lookup
table with area and volume contributions for each of the 256 Marching Cubes configurations. When scanning
the shell (e.g., while creating it), the surface area and volume are incrementally computed by using the lookup
table and the current x co-ordinate, where the sign of the x component of the triangle normal indicates the
sign of the volume contribution. We have computed surface area and volume for digital and triangulated
surfaces for digitized mathematical phantoms, physical phantoms, and real objects. The computations show
that triangulated surface area is more accurate, triangulated volume follows digital volume closely, and that the
values get closer to the true value with decreasing voxel size.

Keywords: digital boundary, surface tracking, shell structure, marching cubes, isosurface, shape parameters,
boundary measurement, volume measurement, rendering

1. INTRODUCTION

Currently, a number of imaging devices that generate volumetric (3D) images are available and are extensively
used especially in medical imaging. There is usually an object of interest for which such an image is generated,
for example, an organ, a tissue component, a tumour, a physical phantom, or a mathematical phantom. The
3D imaging operations typically performed on these images may be classified into four groups: preprocessing,
visualization, manipulation, and analysis.! The preprocessing operations aim at improving and/or extracting
the object of interest. The purpose of visualization is to assist humans in perceiving and comprehending the
3D object. The manipulation operations allow humans to interactively change the objects. Finally, the analysis
operations are intended to quantify the object, e.g., geometrically and morphologically. In this paper, we touch
on some aspects of visualization, but concentrate mainly on analysis, particularly on estimating surface area
and volume.

An object may be represented by its 3D boundary surface. The two classical approaches in extraction
of geometric representations for visualization are digital surface tracking, as in the approach to boundary
detection,? and isosurface construction by polygonal surfaces, commonly triangulated by the Marching Cubes
(abbreviated from now on by MC) algorithm.>*  Actually, there is a close relationship between the two
approaches, since a digital surface can be transformed directly into a triangulated isosurface.?®
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Digital boundaries and surfaces have many elegant geometrical and topological properties that lead to
their efficient construction (from image data),” ultra fast rendering,®° manipulation,® and measurement,?
and to elegant generalizations of the concepts to higher dimensional spaces.'® The MC algorithm®* was an
attempt to bridge the gap between digital surface methods (which predate the MC family of algorithms) and
the traditional polygonal approaches established in computer graphics. The spirit of this bridging was identified
in Ref. 11, wherein it was recognized that the surfaces produced by MC algortihms have a digital embedding,
and therefore, can be cast within the same efficient framework, namely that of a shell,”? that is used for
efficiently representing, rendering, manipulating, and measuring digital surfaces. This recognition led to the
idea of the T-shell*! (short for triangulated shell) for dealing with triangulated surfaces.

In spite of their many desirable properties, one drawback of digital surfaces has been the lack of a simple
method to accurately estimate their area. The identity between the T-shell and the shell provides a natural
means to overcome this problem. The volume enclosed by a digital surface, on the other hand, can be computed
trivially by digital surface integration? while tracking the surface in a gray or binary image (or after its creation)
without having to visit (and count) any voxel in its interior. Conversely, while area computation of triangulated
surfaces is trivial, the computation of the volume enclosed by them is challenging. The main purpose of this
paper is to demonstrate that, via T-shell, we can combine the strengths and overcome the difficulties of both
approaches and compute surface area and volume trivially and efficiently, and still retain the digital setting.
We describe the basic concepts of the two methods of surface representation and of T-shells in Section 2 and
the new method of area and volume estimation in Section 3. Our experiments and results comparing the digital
and triangulated methods are presented in Section 4, and Section 5 states our conclusions.

2. OBJECT REPRESENTATION BY BOUNDARY

We refer to any gray-level volume (3D) image as a scene and represent it by a pair C = (C, f), where C, called
the scene domain, is a rectangular 3D array of cuboidal volume elements, called vozxels, and f is a function that
assigns a value f(v) to every voxel v € C called scene intensity. The range of f is usually a set of integers. When
this range is {0,1}, we call C a binary scene. Scenes contain information about certain objects of interest, which
are defined and delineated in the scene by a scene segmentation operation. The result sought very frequently is
either a binary scene or a surface representation of the object. For what we wish to accomplish in this paper,
it is the latter form that is relevant. In this section, we shall outline several common methods of representing
objects by surfaces, wherein object information is derived from scenes.

2.1. Digital Surface Representations

We will consider two digital surface representations: (i) by a set of voxels,® and (ii) by a set of oriented faces
of the voxels.!® In both cases the boundary elements are all of identical size and shape, which makes storage
in efficient and clever data structures (called shells) possible. Efficiency comes from the fact that the elements
need not be stored explicitly in terms of their co-ordinates since they are all identical in size and shape, and
have only a small number of distinct orientations.

In the first case, the digital surface is represented by a set of voxels in the object that have a 6-neighbor
(i.e., a face neighbor) in the background. This surface fulfills properties such as closure, orientedness, and
connectedness. The information that is associated with each boundary voxel, consists of the x co-ordinate of
the voxel (y and z co-ordinates are given implicitly by the data structure) and a code describing the configuration
of its 6-neighborhood (face connected). Hence, it is not only known that a voxel is facing the background, but
also whether it is facing the background in positive or negative (x,y, z) directions. This is useful when computing
the volume enclosed by the surface as will be described in Section 3.2.

In the second case, the surface is represented by the set of oriented faces of voxels. The number of boundary
elements becomes larger. The faces are assigned an orientation, which means that a face with the normal vector
pointing in the +x direction is distinguished from a face at the same location with the normal vector pointing
in the —x direction.



(a) Case 1 (b) Case 5 (c) Case 11

Figure 1. Three m-cubes of 2 x 2 x 2 voxels, where e voxels are inside the object (value 1) and the other voxels are
outside (value 0). The surfaces for these configurations consist of one, three, and four triangles, respectively. (Fourth e
not visible in (c).)

2.2. Polygonal Surface Representation

A commonly used approach to polygonal surface representation is by a set of triangles, as in the MC algorithm.3 4
An m-cube (to indicate an individual marching cube, sometimes also called a cell in the literature) in a given
scene domain, is the cube bounded by the centers of the eight voxels in a 2 x 2 x 2 neighborhood in the scene
domain. Hence, each corner of the m-cube corresponds to a voxel. The 6-, 18-, and 26-adjacency between two
voxels can be described in terms of the m-cube as follows: connected by an edge of the m-cube, having a face
of the m-cube in common, and having the whole m-cube in common, respectively.

If object and background are considered (i.e., the set of voxels with value 1 and 0, respectively), the pos-
sible number of configurations of the eight voxels forming an m-cube in a binary scene are 28 = 256. Each
configuration consists of zero to four triangles* constituting the surface passing through the specific m-cube.
See Figure 1 for examples. The configurations are commonly grouped into symmetry and complementary cases,
resulting in (14 or) 15 cases.*!® There are two configurations with no triangles, which is when the m-cube is
situated completely inside or completely outside the object.

The approximated surface in the m-cube is computed from some interpolation of the scene intensities of the
voxels. The interpolation results in intersection points on the edges of the m-cube for the triangle vertices. In
the simplest case, the intersection points are considered to be midway at the center of the m-cube edges. The
midway solution will be used in the rest of the paper for simplicity.

The correct connection among intersection points for forming triangles is tricky for some configurations of
voxels. This problem in the original MC algorithm was pointed out by Diirst in 1988.14 If the same surfaces are
used for such m-cube configurations and for their complementary cases (i.e., when object and background are
inverted), closed surfaces are not produced. The problem requires careful consideration since any object with
finite support must be enclosed by a closed surface to make topological sense. Further, the act of measuring the
volume enclosed by a surface is meaningful only when the surface is closed. This problem has been examined
by numerous investigators in the literature.!® 1516 We have taken the approach where the problem is avoided
by using more complex surfaces for these cases,!® exemplified in Figure 2.

2.3. T-Shell Representation

In previous shell data structures, the elements have been voxels or oriented faces of voxels® !0 (Section 2.1).
In the T-shell,'! the elements are m-cubes as described in Section 2.2. In a manner similar to previous shell
structures, the T-shell contains only the m-cubes on the boundary of the object, which are stored row-wise.
This means that m-cubes completely inside or completely outside the object are not stored. With each element
the z co-ordinate of its front-upper-left voxel is stored (other co-ordinates can be derived from this information),
as well as the m-cube configuration code and the normal vector computed for the midpoint of the m-cube (one
normal per triangle or one normal per triangle vertex may also be stored).



(a) Case 6 (b) Case 6 (¢) Solution for
complementary closed surface

Figure 2. (a) A tricky m-cube configuration. (b) The complement of (a), which would result in surfaces that are not
closed. (c) A set of five triangles that will produce a closed surface for this example.'® (Fifth e not visible.)

3. SURFACE AREA AND ENCLOSED VOLUME

We are interested in the following measurements for any object defined in a given scene:

e true surface area, A (when known)

e area of the surface of the object approximated by a digital surface, DA

e area of the surface of the object approximated by a triangulated surface, T'A
e true enclosed volume, V' (when known)

e volume enclosed by a digital surface approximation of the object surface, DV

e volume enclosed by a triangulated surface approximation of the object surface, TV

We will describe the underlying idea in the 2D case first, where perimeter and area are computed in an
incremental fashion by scanning the boundary of the object. Understanding the 2D case helps when we later
extend the concepts to the 3D case. The intuitive idea extends easily, but as is usually the case when going
from two dimensions to three dimensions, it is not a pure generalization as m-cubes consist of contributions
from one or more triangles, unlike in the 2D case, where each configuration consists of only one contribution.

3.1. Surface Area

Surface area estimation has been studied earlier,'”"'® but not with the approach to simultaneously also compute
the volume enclosed by the same boundary representation. Our purpose is to use a boundary representation
giving accurate results for both measures simultaneously and with minimal computation.

Underlying Idea in Two Dimensions

In the 2D case, the goal is to compute the perimeter of an object, i.e., the boundary length. One approach is
to count how many horizontal, vertical, and diagonal steps are taken between pixel centers when scanning the
boundary. Each type of step can then be assigned a weight. Note that the weight 1 for horizontal and vertical
steps and weight /2 for diagonal steps are not optimal when measuring lengths of line segments.'?>20

In the purely digital case, one estimate of the perimeter is to count the number of pixel edges between
the object and the background. This results in an overestimate. This can be improved by finding a better
approximation to the boundary. One such improvement can be seen in Figure 3. An m-square is the 2D
analog to the m-cube, i.e., a square bounded by the centers of the four pixels in a 2 x 2 neighborhood. In this
representation, the contribution to the boundary length may be precomputed and stored in a lookup table for
the different configurations. This idea will now be extended to the 3D case.
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(a) 8 of 16 possible m-squares (b) A 2D object example

Figure 3. (a) Examples of configurations of marching cubes in two dimensions, i.e., m-squares. (b) Pixels are gray-
coloured. The boundary pixels are marked with e. Only the m-squares (dashed lines) need to be stored in the shell. The
boundary defined by the m-squares is delineated with solid lines.

Extending to Three Dimensions

In the purely digital case, where the surface is represented by the faces of the voxels at the boundary, the
number of faces gives an estimation of the surface area, DA. Similar to the 2D case, this is an overestimate. If
the surface is represented by triangles, a better surface area estimate, T A, is obtained.

Let St be a T-shell that represents a 3D boundary surface of an object in a given scene. Let ¢ denote an
m-cube of St and let y(c) be the MC configuration of ¢. Our idea is to create a lookup table that stores the
contributions of the different MC configurations to surface area and then use this table to compute the area of
the surface represented by St. Given the vertices Pi, P>, and P3 of any triangle, its area A; can be computed

by the formula
1
A= 3 ‘PlﬁZ x PP/, (1)

where |.| is the length (the magnitude) of the normal vector to the plane defined by the triangle. Note that the
sign of the area will become positive or negative depending on whether the vertices are numbered clockwise or
counter-clockwise. Our surface area estimate, T A, is incrementally computed for each m-cube of the object:

TA=Y Y A. (2)

c€ST tev(c)

Treating the configurations one by one, according to Ref. 4, is: “possible but tedious and error-prone.” We,
however, found it more convenient to create a lookup table with entries for each of the 256 configurations (this is
done only once any way). Hence, we do not need to take rotation, symmetry, or complementary configurations
into account when scanning the T-shell. Recall that m-cubes completely inside or completely outside the object
are not stored in the T-shell; they will contribute neither to the area nor to the volume (sic/) measurements.
That is the beauty of the closed (Jordan) surfaces.



3.2. Enclosed Volume

In Ref. 21, Gauss’ theorem is used for volume computations: the integral of the normal component of any vector
over any closed surface equals the integral of the divergence of the vector over the volume enclosed. Their
volume calculations involve three summations along the z, y, and z directions with quite complex weighting of
the terms that reflect the orientation of the object. The volume is calculated by summing the vector product
of the centroid, area, and normal of all triangles in the mesh surface. We observe that summations along three
directions are not necessary. It is sufficient to sum along only one direction, exactly as in the purely digital
surface case.? We further simplify this process by reducing the computations along the only direction to table
lookup operations.

Underlying Idea in Two Dimensions

In the 2D case, the goal is to compute the area of the object. In the purely digital case, a simple way to
compute object area is to count all pixels of the object in a connected component labelling algorithm. However,
boundary tracking methods are more economical since they visit only elements in the vicinity of the boundary.
(Such methods can also label connected components! See Ref. 22.) Therefore it makes sense (even in the digital
case) to seek ways of estimating area (volume in the 3D case) from boundary information only. The area is
accumulated as a sum of z co-ordinates, where the contribution is —z if the boundary element is facing the
background in the negative direction, +z if the boundary element is facing the background in the positive
direction, and no contribution if the boundary element is facing the background in the y direction.

We described in Section 3.1 that the perimeter estimation is more accurate if it is computed from the m-
squares than if computed from pure pixels. For consistency, we believe that an area estimation should also be
computed for the same representation in a quantitative analysis. An m-square is represented by two entities —
the x co-ordinate of its upper-left pixel and the configuration of its pixels. In principle, the area contribution for
a certain row of the object is simply the z co-ordinate farthest to the right subtracted by the z co-ordinate of the
edge farthest to the left. See the 2D example in Figure 3. The contributed area for the different configurations
is precomputed and stored in a lookup table.

The edge passing through the m-square is projected onto the y axis. The length of this projection is multiplied
by the x co-ordinate at the midpoint of the edge. The sign of the  component of the normal vector for the edge
is sufficient to determine whether it is a positive or a negative contribution to the area. If the £ component of
the normal vector is positive (Figure 3(a) top), the incremental area contribution is positive. If this component
is negative (Figure 3(a) middle), the incremental area contribution is negative. If the z component of the normal
vector is equal to 0 (i.e., the edge is parallel to the z axis (Figure 3(a) bottom)), then such a configuration
will not contribute to the area (but contributes only to the perimeter). From Figure 3(b), it may appear that
m-squares (2) and (3) should really contribute to the area, but they will not. Their areas are accounted for by
m-squares (1) and (4), which have negative and positive normal components in the z direction, respectively.

Extending to Three Dimensions

In the purely digital case, where the surface is represented by the faces of the voxels at the boundary, the
volume DV enclosed by the digital surface can be computed similar to the 2D case by accumulating —z and +x
co-ordinate values of only those voxel faces that are orthogonal to the x axis, while scanning the boundary.?

For triangulated surface representation, we compute lookup table entries for each of the 256 (rather 254 since
the configurations of entirely inside and entirely outside may be disregarded) m-cube configurations. Hence,
both incremental area and incremental volume for each configuration will be known for the same representation.
We do not distinguish among rotational, symmetrical, and complementary cases. Actually, we take advantage
of the fact that some of the configurations do not contribute to the volume, while a rotation of the same
configuration does. This is specific to the scanning direction we have chosen, namely x (as opposed to y or z).
This is a good reason for storing all configurations instead of storing a reduced number of configurations.



The incremental contribution V, to the total volume from any m-cube ¢ of configuration y(c) can be ex-
pressed as

where z is the z co-ordinate of the particular m-cube in the T-shell, AV, ) is the volume contribution from
all triangles in configuration v(c), and §(-y(c)) is a constant that depends only on the configuration of ¢ and
not on ¢ per se. This can be further divided into incremental contribution for all triangles t for the specific
configuration (c). Hence, in a configuration «y(c), the net contribution V, is precomputed as:

Vo= AV, (2) +5(1(0) = Y [AVia) + 8] (4

tev(c)

Our enclosed volume estimate, TV, for any T-shell St, is incrementally computed for each m-cube of the object:

V=Y V.=3Y > V. (5)

cEST ceST tevy(c)

Similar to the 2D case, we compute the signed volume under a triangle. The volume V; under a triangle ¢
is the projected area of the triangle onto the y — z plane multiplied by the z co-ordinate of the centroid of the
triangle. See Section 3.3 for formulas.

The property that the sign and the magnitude of the normal vector describes the contribution is exactly the
same as for the digital surface approach.? The sign of the  component of the normal vector is sufficient to
determine whether it is a positive or a negative contribution to the volume. If the 2 component of the normal
vector is positive, the incremental volume contribution is positive for that triangle. If this component is negative,
the incremental volume contribution is negative. If the x component of the normal vector of the triangle is
equal to 0 (i.e., the triangle is parallel to the z axis), then the triangle will not contribute to the volume (but
contributes only to the area). The volume will be accounted for by other m-cubes that have triangles with
non-zero normal component in the = direction.

A rather complex example is the configuration with four voxels inside and four voxels outside the object,
as illustrated in Figure 1(c). In this particular configuration, two of the four triangles yield positive and the
other two triangles yield negative volume contribution, due to the direction of their normal vectors. Another
complexity is that the projected triangle areas are partially overlapping. However, this is not a problem,
since the net volume and the net area contribution for a configuration are only a summation of the respective
contributions for each triangle. In this specific case, the net volume contribution actually is 0(!), while for other
rotations of the same configuration of voxels this is not true.

3.3. Notes on Triangle Geometry
Given three triangle vertices P;, P, and P3, the following entities are needed and computed for any triangle ¢:

The centroid C for ¢, where the x component is given by

:P1m+P2:c+P3:c

C, 3 (6)
The normal vector for ¢
N=P1P2 XP1F3. (7)
The area of t 1
A = i‘PlﬁZ x P P, (8)

where |.| denotes the length (the magnitude) of the vector.



The area A, of the projection of the triangle along the 2 axis onto the y — z plane

N, 1

Ay= A2 =2
PN T 2

N, 9)

where the last expression certainly simplifies the computations.

Finally, the volume under ¢
AV = C A,. (10)

The above equations are valid if the voxels are of size 1 x 1 x 1, i.e., the m-cubes are real cubes. To incorporate
the proper resolution and handle anisotropic data, a scale vector 8 = (S;,S,,S.) is needed. S, and S, give the
pixel size and S, gives the slice spacing, i.e., the voxel size is S; x S, x S,. The normal vector N is modified
by scaling the components of the vectors in Eq. 7 above: S;(Pi; — P»z), Sy(Piy — Pay), and so on. Also, when
computing the volume under the triangle (Eq. 10), the scale in the z direction must be used to modify the
x component of the centroid: AV; =S,C,A,.

Equations 6-10 above are general for any triangle. We have computed a lookup table specifically for the
case where the triangle vertices are midway on the m-cube edges. Equations 8, 9, and 10 are summed for each
triangle in the specific configuration resulting in the three net contributions stored in the lookup table. The
projected area times the current  co-ordinate plus the volume under all triangles gives the volume contribution
for an m-cube. Remember to scale the x co-ordinate with the voxel size in the z direction when computing the
contribution for an m-cube configuration.

4. EXPERIMENTS AND RESULTS

We have measured surface area and volume for both digital surfaces as well as triangulated surfaces for mathe-
matically defined synthetic objects, physical phantoms, and real objects. This section describes our experiments
and presents the results.

4.1. Mathematical Phantoms

Our first object is a ball. The digitization of a ball centered at (zg,yo,20) € R® of radius r € R is generated by
the following equation:

_[ L if(@—20)®+ (y —y0)® + (2 — 20)* < 17, 3
flz,y,2) = { 0, otherwise, where (z,y,2) € Z°. (11)

We have studied the performance of surface area and volume estimation methods for 5,310 digitized balls with
varying radii. In this work, we chose 177 different sizes in the range from radius 0.45 to 79.65 voxels. For each
size, 30 balls were generated (by Eq. 11) with randomized alignment in the digitization grid. Thereafter, surface
area and enclosed volume were estimated using the digital and the triangulated approaches. The corresponding
mean values (over 30 data sets) are presented for each size in Figure 4. It can be noted that balls with radius
less than 10 voxels give unreliable measurements, urging us to be careful when measuring features of digitized
small objects. The digital volume, DV, and the triangulated volume, TV, both coincide well with the true
volume, TV always being slightly smaller than DV, due to the “cutting of corners” in convex objects. The
digital area, DA, is not shown in this plot, because of its large overestimate (close to 50%). The triangulated
area, T'A, on the other hand, is a much more accurate estimate. The plot shows convergence to an overestimate
of 8.8% for large balls. Ways to improve the surface area estimates by choosing different triangulations and
assigning optimized local weights have been reported.!®

The radius expressed in terms of the number of voxels has the same meaning as resolution. Imagine that
the ball is 10 ¢cm in diameter and is digitized at 10 different resolutions. Let the voxel size be in the interval
0.2-2.0 mm in z, y, and z directions. The resolution then varies from 250 voxels down to 25 voxels. We have
examined how our measurements for different voxel sizes compare with truth, A = 47r? = 314.16 ¢cm?, and
V = 4nr® = 523.60 cm?, see Figure 5.
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4.2. Physical Phantoms

The physical phantoms we have used in this work are five dry bone specimens of the talus, i.e., one of the bones
in the area of the hindfoot. Their surfaces were sealed with methacrylate and varnish. The true bone volumes
were then determined experimentally from water displacement measurements. The water displacement box is
filled with water until it flows from the spout coming out from it. The bones were then put inside one by one,
and the runoff was collected and measured.

Before scanning via MRI, the talus bones were suspended in the center of plastic boxes. Thereafter, the
boxes were filled with the contrast medium Omniscan™ (a gadodiamide solution) diluted 1:1000 in water. The
phantoms were scanned twice (in different orientations) at resolution 256 x 256, where the images obtain a
voxel size of 0.31 x 0.31 x 1.20 mm3. Three of the bones were also scanned twice (in different orientations) at
resolution 512 x 512, where the images obtain a voxel size of 0.16 x 0.16 x 1.00 mm?3.

The bones were thereafter segmented by using the interactive live-wire method.?® Digital and triangulated
measurements of the segmented bones are presented in Table 1. It can be noted that the digital volumes
are larger than the measured volumes, still being rather close to these values. The triangulated volumes are
a little smaller than the digital volumes, and hence are closer to the measured volumes. The triangulated
area measurements are never close to the digital area measurements, always smaller, but this is expected as a
summation of voxel faces results in an over-estimate.

Table 1. Talus bones in boxes of contrast medium. The true volumes are known by measuring water displacement.
Volumes are in milliliters. Areas are in square centimeters.

Talus || Enclosed volume in milliliters (cm®) | Surface area in cm® Image size Voxel size
Measured | Digital | Triangulated || Digital | Triangulated || in no. of voxels in mm?®

No. 1 37.3 39.0 38.4 109.2 89.3 256 x 256 x 47 | 0.31 x 0.31 x 1.20
39.0 38.4 106.7 87.4 256 x 256 x 46

No. 2 29.1 30.2 29.9 92.6 79.2 512 x 512 x 52 | 0.16 x 0.16 x 1.00
29.9 29.6 92.1 79.4 512 x 512 x 47
29.6 29.0 91.7 74.1 256 x 256 x 46 | 0.31 x 0.31 x 1.20
29.6 29.1 89.4 73.8 256 x 256 x 41

No. 3 25.1 25.4 25.2 81.9 70.5 512 x 512 x 43 | 0.16 x 0.16 x 1.00
25.4 25.1 83.0 71.6 512 x 512 x 55
25.1 24.7 80.1 65.0 256 x 256 x 44 | 0.31 x 0.31 x 1.20
25.1 24.7 80.1 65.2 256 x 256 x 45

No. 4 23.6 23.8 23.6 80.4 69.0 512 x 512 x 47 | 0.16 x 0.16 x 1.00
23.9 23.6 81.5 70.2 512 x 512 x 46
23.9 23.5 79.5 65.1 256 x 256 x 41 | 0.31 x 0.31 x 1.20
23.7 23.3 80.6 66.1 256 x 256 x 42

No. 5 35.2 35.7 35.2 103.7 85.5 256 x 256 x 39 | 0.31 x 0.31 x 1.20
35.7 35.1 107.4 87.5 256 x 256 x 38

4.3. Real Objects

We have tested our methods on real objects via clinical CT and MRI data sets obtained for various parts of the
human anatomy, e.g., head, skull, knee, and blood vessels. Surfaces were created from segmented scene data
obtained by applying a simple gray-level threshold specifically tailored to the respective data set. We chose
eight objects of different sizes and shapes, as described in Table 2. The triangulated volume estimates follow
the digital volume estimates closely, while the triangulated area estimates are not as close, but this deviation
can be expected, as described above.



Table 2. Real objects imaged at different resolutions. Volumes are in cubic centimeters. Areas are in square centimeters.

Data sets Enclosed volume in cm® | Surface area in cm? Image size Voxel size
Digital | Triangulated Digital | Triangulated || in no. of voxels in mm

CT head, skin 2416.4 2440.3 2436.5 2094.6 512 x 512 x 97 | 0.49 x 0.49 x 1.50
CT head, skull 396.5 404.4 3013.3 2555.7 512 x 512 x 97 | 0.49 x 0.49 x 1.50
CT head, skull 142.8 147.8 1193.4 991.5 512 x 512 x 32 | 0.49 x 0.49 x 1.50
MR head, skin || 2616.4 2607.9 4214.1 4038.3 256 x 256 x 53 | 0.86 x 0.86 x 3.00
CT child skull 314.4 313.8 2710.1 2132.7 351 x 465 x 145 | 0.41 x 0.41 x 1.00
CT dry skull 553.6 555.8 2796.0 2316.0 193 x 242 x 68 | 0.80 x 0.80 x 3.00
CT knee 92.3 91.4 1077.1 1089.4 171 x 193 x 69 | 0.68 x 0.68 x 1.00
MRA vessels 80.5 82.5 581.1 535.5 256 x 256 x 128 | 1.09 x 1.09 x 2.20

5. CONCLUDING REMARKS

It is known that triangulated surface representations give a more accurate area estimate for the original object
surface than digital surface representations. In this paper, we have demonstrated that volume enclosed by
triangulated surfaces can be computed efficiently in the same elegant way the volume enclosed by digital surfaces
is computed by digital surface integration. We have shown that our triangulated shell data structure retains
advantages and overcomes difficulties of both the digital and the triangulated approaches.

Because of the way the surface is scanned and the normal components are utilized, not only solid objects can
be handled, but also object cavities are dealt with correctly. Cavities are identified by having a negative volume.
It is also possible to obtain measurements from several objects in an image in one scan. For this purpose, the
described method is very efficient compared to, for example, connected component labelling, which is more
costly than surface tracking. See Ref. 22.

In this work, the vertices of the surface triangles have been positioned midway between adjacent voxels.
With a more sophisticated interpolation technique, the triangles would be closer to the true surface and the
estimates would likely become more accurate. The complexity of the method would increase, however, since
precomputed lookup tables may not be feasible to the same extent. Note that, by discretizing the possible
locations of the triangle vertices along the m-cube edges, the lookup table idea becomes feasible, although the
size of the table will increase. By using even the “hard” (midpoint) triangles, an improvement has been achieved
compared to using the voxel faces as was shown in Figures 4 and 5. These figures also indicate a trend that the
digital volume approaches the triangulated volume, which in turn approaches the true volume, with decreasing
voxel size.

The need to generate the marching cube configuration code while generating digital surfaces leads to future
work. A study of the relationship among digital surfaces, marching cubes representation, and T-shell is worth
pursuing. Another future study is to verify that our ideas from projective geometry can be utilized to compute
the volume enclosed by any polygonal surface.
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