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ABSTRACT. In magnetic resonance angiography (MRA), large 3D data sets of
the vascular system are acquired. This paper deals with two techniques to
represent relevant information from such data sets in a more compact format.
After segmentation of the vessels, the curve skeleton is extracted by an algo-
rithm based on the distance transformation. Using the D% distance to the
background, the algorithm first reduces the original object to a surface skele-
ton and then to a curve skeleton, after which “pruning” can be performed to
remove irrelevant small branches. Applying this procedure to MRA data from
the pelvic arteries resulted in a good description of the tree structure of the
vessels with a much smaller number of voxels. To detect stenoses, 2D projec-
tions such as maximum intensity projection (MIP) are usually employed, but
these often fail to demonstrate a stenosis if the projection angle is not suitably
chosen. A new method combines the distance-labelled curve skeleton with the
reverse distance transformation to visualize stenoses independent of viewing
direction. Experiments with synthetic data indicate that stenoses invisible in
an ordinary projection may be seen with this technique.

1. Introduction

Both magnetic resonance angiography (MRA) [AET93, Pri94] and computed
tomography angiography (CTA) [NMR*92] are methods that can produce (3D)
volume images of the vasculature in the human body. MRA, which has been used
here, is a magnetic resonance imaging (MRI) method to assess vascular disease that
has spread widely into the clinical routine.

Volume imaging usually implies large amounts of data, and it is, in general,
a non-trivial problem how to present these volumes on 2D devices such as screens
and photographic film. When interpreting and analysing MRA images, results
are usually presented as maximum intensity projections (MIP), multi-planar re-
constructions (MPR), or volume renderings [DHW97]. The choice of viewing
direction for these (and other) projections is of great importance for the detection
of stenoses.

2000 Mathematics Subject Classification. Primary 68T10, 92C50; Secondary 57N99, 52C99.
Key words and phrases. pattern recognition, shape representation, 3D skeleton, reverse dis-
tance transform, MR angiography, arteries, stenosis detection.

©2000 (American Mathematical Society)



2 I. NYSTROM AND O. SMEDBY

Despite the large data volumes, the relevant information in an MRA or CTA
data set is rather limited. Usually, the diagnostic physician is interested in the
vessel anatomy, i.e., in the tree structure of the arteries, and in variations in vessel
calibre. If one can identify the vessels with their branching points and the stenoses
or narrow parts, this is usually an adequate description of the vessel system. In this
paper, we present a method to use a distance-labelled 8D curve skeleton to extract
this important information from a volume image of the vascular system. We will
also introduce a new presentation method aiming at visualizing variations in vessel
width independent of viewing direction.

Skeletonization, also referred to as thinning, is a process where objects are
reduced to structures of lower dimension while preserving topological properties
as well as the general shape of the object. Two main classes of skeletonization
methods for 2D images have been developed: iterative thinning and distance trans-
form analysis. In 3D, the published methods have almost exclusively been based
on iterative thinning, e.g., [Ber95] and [SCM97]. Some published methods pro-
duce surface skeletons, some of them reduce the objects to curve skeletons. Thin
elongated objects, such as blood vessels, are well suited for reduction to curve skele-
tons. Earlier work with the aim to obtain curve skeletons for applications can be
found, e.g., in [MS96], in [GSV96], where the skeleton concept from [LKC94] is
adopted, and in [PK99]. The methods were applied to visual analysis of computed
tomography (CT) lung data, interactive virtual colonoscopy rendered from spiral
CT scans, and ventricle extraction from MRI brain data, respectively.

The method used in this paper for reducing objects in binary volume images to
curve skeletons is described in detail in [BNSdB99]. It is a skeletonization based
on iterative thinning, but guided by a distance transform. After skeletonization,
the blood vessels consist of thread-like structures, which are one voxel thick and
located centrally in the vessel lumen, while containing the distance to the closest
background voxel from every voxel. These distances are utilized in our presenta-
tion method. For example, a stenosis reducing the anteroposterior diameter of a
craniocaudal vessel, which is normally seen only in the lateral projection, will then
become visible also in the frontal projection.

This work is a continuation of the work presented in [Nys98]. Here, we show
a useful application for our earlier work. MRA is briefly introduced in Section 2.
Distance transforms are briefly described in Section 3.1, including a method for
reversing the skeleton, while the skeletonization method is outlined in Section 3.2.
Resulting skeletons will be shown for synthetic and MRA images in Section 4. In
Section 5 we show how the curve skeletons may be utilized in a presentation method.

2. Magnetic resonance angiography

Magnetic resonance angiography is a technique, or rather a set of techniques,
to non-invasively image the flowing blood in vessels. The physical principles can
vary, and there are three methods in common clinical use today:

inflow angiography: also known as time of flight (TOF), which uses flow
effects on the signal amplitude,

phase contrast angiography: which uses flow effects on the phase of the
signal, and
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Gadolinium angiography: which does not rely on flow effects, but on the
effect on MR signal by a paramagnetic contrast material, Gadolinium (Gd),
which is given as an intravenous injection in order to enhance the arteries.

In all three cases, the most common situation involves acquiring a 3D data set,
and then presenting the data on a screen, either as a single 2D slice (which may
have a different orientation from the originally acquired slices) or using rendering
algorithms such as the most commonly used maximum intensity projection (MIP).
An important issue with all projection methods is the choice of viewing direction.

In our study, Gd-MRA images were taken from the pelvic arteries in a patient
with atherosclerosis. Figure 1 (top) shows one slice in the data set, showing only
parts of the vessel system. Figure 1 (bottom), presents the volume as a MIP, clearly
showing the vessel system, but with no depth information in it.

3. Image processing methods

Our method employs two central concepts from image processing: skeletoniza-
tion and (ordinary and reverse) distance transformation. It should be noted that
here we assume that binary images have been obtained, e.g., by segmentation into
object and background.

3.1. Distance transformation. Each object voxel can be labelled with (an
approximation of) the distance to the closest background voxel. In general, the
best metric to choose when computing the distance depends on the application.
The three simplest metrics for volume images are the “path-generated” distances
DS, D'8 and D?®, where the distance is defined as the number of steps in the min-
imal path between voxels with 6-, 18-, and 26-connectedness, respectively [Bor96].
In this paper we will use only D8, i.e., the 3D equivalent of the city-block distance,
where steps only to the six face-neighbours of a voxel are allowed. The D¢ dis-
tance transform of the object consists of values representing the number of steps
to the closest background voxel. These values are ordered in layers that you may
imagine can be peeled off one value at a time. All voxels with a face-neighbour in
the background will then have the same distance value. To compute the distances
in an image a distance transformation (DT) is used, here DTS. A distance trans-
formation relies on the same principle in the 3D case as in the 2D case [Bor84].
The DT® is computed by a forward and a backward scan through the image, prop-
agating increasing distances. Fach voxel is assigned the minimum of the value of
the current voxel and the values of the already visited face-neighbours added by
one.

The distance label of any voxel in the distance transform can be interpreted as
the radius of a digital ball — a solid sphere — centred on that voxel. Balls look
different for different metrics, e.g., the D ball is an octahedron. The definition of
the distance transform implies that each ball is as large as possible still included in
the object.

The reverse distance transformation starts from a number of seed voxels with
distance values [RP66]. Each distance value corresponds to the radius of a ball.
The result is an object with the shape of the union of the balls associated to the
distance values. The reverse DT can also (as the ordinary DT) be computed by
two raster scans, but this time decreasing distances are propagated. Each voxel
is assigned the maximum of the value of the current voxel and the values of the
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FIGURE 1. Two different presentations of an MRA image. Top:
sample 2D slice. Bottom: MIP.
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already visited face-neighbours subtracted by one. Pseudo-code for the forward
scan of the D reverse DT (the backward scan is similar) [NB95]:

LOOPXYZ (image) {
if (x<xLO || x>xHI || y<yLO || y>yHI || z<zL0 || z>zHI)
I(x, y, z) = 0; /* image border omitted */
else
I(x, y, z) = MAX(I(x,y,z-1)-1,
I(x,y-1,2)-1,
I(x-1,y,2)-1,
I(x, y, 2))

An object voxel is called a centre of a mazimal ball (CMB), if the associated
ball is not completely covered by any other single ball in the object. The union of
the maximal balls, which might be computed by applying the reverse DT using the
set of CMBs as seed values, coincides with the whole object. For DT, the CMBs
are equivalent to the local maxima. (The situation is more complex for other DTs.)

3.2. Skeletonization. The skeletonization method we have used starts with a
binary volume image. A number of skeletal properties are fulfilled for our skeletons:

They have the same topology as the object.
They preserve the general shape of the object.
They are centred in the object.

They are a thin subset of the object.

They allow reconstruction of the object.

Preserving the topology in this case means that the number of components, the
number of tunnels, and the number of cavities all remain the same. In 3D, one
must distinguish between two different types of “holes”, i.e., tunnels, like what
goes through a doughnut, and cavities, like what exists in a hollow ball. Also,
in contrast with the 2D case, it is not sufficient to count only the components of
the object, but it is necessary to count the components of the background as well.
On digital topology, see also [KR89, MBA93|.

The reconstruction property is true for the surface skeletons, and sometimes
also true for the curve skeletons (see below).

The skeletonization method is described in detail in [BNSdB99]. It is based on
a small number of simple neighbourhood operations; it is fairly time efficient. The
skeletonization consists of five parts, where Part I and Part II reduce the original
solid 3D object to a surface skeleton consisting of surfaces which are only one voxel
thick. In Part III and Part IV, we go further and reduce this surface skeleton to
a set of curves which are only one pixel wide. Part V, that may be added, is a
“pruning” process, which is performed to remove irrelevant branches.

The method we have used differs in some respects from [BNSdB99]. By com-
puting the DT of the object first of all, instead of iteratively identifying the border
voxels when computing the surface skeleton, we reduce computation time. Border
voxels can be directly defined on the DT® by the distance layers, which equals
the current iteration. Each successive border layer is 6-connected to the previous
layer, exactly as the layers are ordered in the DT®. Internal voxels are voxels with
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higher distance values. For details, see [BNSdB99]. The time reduction lies in the
iterative process, where now only three passes, instead of four, are needed in each
iteration:

Pass 1: Inspect voxels with the current iteration number. Mark those that
are multiple, i.e., CMBs and voxels necessary for preserving connectivity.
See [BNSdB99] for details.

Pass 2: Again, inspect voxels with the current iteration number. Mark those
that are tunnel voxels, which, if removed, would create a tunnel.

Pass 3: Remove all unmarked border voxels.

The process terminates when all border voxels are multiple, and hence no more
voxels can be removed.

The rules for detecting multiple voxels prevent disconnecting objects of all con-
nectivities, but they do not prevent creation of tunnels in thin complex surfaces.
Therefore, Pass 2 is necessary (see [BNSdB99]). The original object can be re-
constructed from the resulting surface skeleton by growing balls of radius equal to
the DT® values, e.g., by efficiently applying the reverse DT®, as all the CMBs are
included. This reconstructibility is lost in the following skeletonization parts.

Part I, which iteratively removes simple (or non-multiple) border voxels, typ-
ically results in something which is almost a surface skeleton but not quite, as it
may be up to two voxels thick where the original object had a width of an even
number of voxels. We therefore have a separate Part II in the algorithm to reduce
the thickness from two to one.

Similarly, in the curve skeletonization, Part III removes voxels from the outer
edges of the surface until the skeleton is at most two voxels wide:

Pass 1: Identify outer voxels of the surface, i.e., voxels whose removal would
not create tunnels.

Pass 2: Mark protrusion and break-point voxels. See [BNSdB99] for details.

Pass 3: Sequentially remove all unmarked outer voxels, unless that would dis-
connect the object.

In case the original surface is an even number of voxels in width, the curve
skeleton becomes two-voxel wide. It is reduced to unit thickness by iteratively
applying a thinning process in Part IV.

Finally, when the skeleton consists of thin curves, we may post-process the
resulting skeleton by removing short branches that are assumed to be caused by
noise in the original image. This “pruning” (Part V) is described in Section 4.3.
Zig-zags in the curve may also be straightened.

4. Resulting curve skeletons

The resulting curve skeleton will always be 26-connected, if the original object
was so [BNSdB99]. Below, we give two examples: one synthetic image and one
MRA image. The figures for our examples are rendered 2D projections of the
3D objects, i.e., segmented data.

4.1. Synthetic image. The results of skeletonization of a pyramid (base
85 x 85 and height 122 voxels) can be seen in Figure 2. The curve skeleton con-
sists of the meeting points of all surfaces in the surface skeleton, which results in
branches starting in each corner going inwards.
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FIGURE 2. A pyramid (top), its surface skeleton (middle), and its
curve skeleton (bottom).
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4.2. Magnetic resonance angiography image. A 512 x 512 x 50 image of
the arteries of the pelvis was obtained with Gadolinium MRA technique in a 1.5 T
magnet (Philips Gyroscan ACS-NT). The voxel size was 0.759 x 0.759 x 1.799 mm.

The following image processing methods were performed in the analysis of the
blood vessels:

1. Interpolating the image to cubic voxels.
2. Segmentation of the blood vessels from the background:
(a) simple grey-level thresholding
(b) connected component labelling
(c) interactive removal of noise
(d) morphological smoothing operations
(e) cavity filling
. Surface skeletonization.
. Curve skeletonization.
. Skeleton pruning.
. Quantitative and qualitative skeleton analysis.

O O W

Computations are simpler if distances between layers are the same for all direc-
tions z, ¥, and z. Therefore, the anisotropy of the image is eliminated by performing
a linear interpolation of the image to cuberille voxels. There exist other (not as
simple) solutions to this problem. In this particular case the interpolated image is
of size 512 x 512 x 117 (approximately 30 Mbyte). This will make, among other
things, the distance calculations and connectivity aspects a lot easier.

In most cases, segmentation is a difficult task. If a correct segmentation of
the blood vessels from the background is not obtained, the results may be com-
pletely misleading. In our example, though, this problem was fairly easily solved.
Due to the GA-MRA technique, the contrast between the bright arteries and the
darker background was high enough to allow a simple grey-level thresholding. If the
segmentation would be more difficult the concept in, e.g., [US96] could be used.

However, the bright noise in the image is also thresholded, which is undesirable.
To eliminate noise, we applied a 3D connected component labelling, in which a vol-
ume threshold discards small objects. Hence, the main (largest) component was
selected, i.e., the blood vessels. Finally, a morphological closing operation (three
iterations of size 3 x 3 x 3) was performed to reduce artificial irregularities in the
vessel border.

Next, the skeletonization algorithm was applied. See Figure 3 (top-left). The
surface skeleton and the corresponding curve skeleton are shown for the MRA image
in Figure 3, at top-right and bottom-left, respectively.

4.3. Pruning. When we apply the skeletonization to volume images from the
real world and not only to synthetic ones, we soon find that the method is quite
sensitive to noise in the input data. Typically, the curve skeleton will be rather
“hairy”, i.e., it will have a large number of short branches. See Figure 3 (bottom-
left). Each of these branches corresponds to “unsmoothness” in the original object,
either resulting from significant variations or from noise. We remove these in a
pruning part (analogous to what is done to an apple tree). However, one must be
aware of the fact that this is a rather arbitrary decision. It may be that this irregu-
larity of the skeleton reflects an irregularity of the vessel wall, which might be due
to atherosclerosis. In other words, we risk to destroy clinically relevant information
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Fi1GURE 3. Rendered 2D projections of arteries of the pelvis (top-
left), the surface skeleton (top-right), the curve skeleton (bottom-
left), and the pruned curve skeleton (bottom-right).
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by making the skeleton too smooth in the “beautifying” process. Consequently,
there is a problem in deciding which branches to remove and which to preserve.

The simple pruning method we have used utilizes the distance values of the
curve skeleton. The principle is to cut away all short branches by iteratively remov-
ing voxels with distance values less than a certain threshold, unless a removal would
disconnect the skeleton. See Figure 3 (bottom-right), where threshold value = 5 has
been used for the distance labels. A significant improvement is obtained even with
this simple pruning. All branches are shortened by the same number of voxels,
so that all the short branches disappear. For the long main branches this little
shortening is usually of no importance.

After pruning we have an acceptable representation of the arteries and branches
in the pelvis. It may be of interest to study the number of voxels in each object.
The number of voxels in the pruned curve skeleton is less than 2.5 % of that of the
original object (150 000), but still it gives a fairly good impression of the general
shape of the arterial tree.

5. Presentation method

A problem with projection images for visualizing 3D angiographic data is that
non-circular stenoses are often seen only if the projection is made in a certain
direction. For example, a stenosis reducing mainly the anteroposterior diameter
of a vessel is difficult to perceive if the projection is made in the frontal plane,
simulating anteroposterior rays through the volume. To overcome this limitation,
MRA images are often presented as rotation sequences of 2D projections. This
approach, however, often implies practical problems in the clinical setting where
video display is not always available. One of our goals is to concentrate information
about stenoses into one single projection, independent of the viewing direction.
Our tool to obtain this is the distance-labelled curve skeleton described above.
The skeletal voxels are labelled with their distance to the original background. Each
distance value then represents the radius of a ball as large as possible still being
a subset of the object. For the surface skeleton, the union of all balls reconstruct
the original object. For the curve skeleton, the distance values correspond to the
minimum radius of the object at that point, which we will utilize in our presentation
method. By surrounding each voxel in the curve skeleton with a ball of radius equal
to the distance value, e.g., by applying the reverse DT, the object is displayed with
minimum diameter at each point.

The presentation method is first illustrated by a synthetic example. The binary
volume image (256 x 256 x 256 voxels) contains a cylinder of radius 10 voxels and
height 240 voxels. Three artificial “stenoses” have been introduced (called upper,
middle, and lower). In Figure 4 (left) the object is shown as rendered 2D projec-
tions for two different viewing directions. The upper stenosis is visible for the first
projection, but not for the second. The middle stenosis should be visible in any
projection. The lower stenosis can be seen in the second projection, but is hardly
visible in the first (in a MIP it would not be visible). The curve skeleton can be seen
in the middle of Figure 4, describing the shape of the original object well. As long
as the original surface is a smooth cylinder, the curve skeleton is a simple curve.
Where the shape changes skeletal protrusions are introduced. In this application
we do not remove any of these branches.
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FIGURE 4. A synthetic image with three artificial “stenoses”. Left:
rendered 2D projections of the object for two different viewing di-
rections. Middle: the corresponding curve skeleton. Right: re-
construction from the curve skeleton, showing that the choice of
viewing direction is no longer crucial for detection of the
“stenoses.”
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FI1GURE 5. Rendered 2D projections of the segmented left external
iliac artery before (left) and after (right) curve skeletonization and
reverse distance transformation. The lower part of the right image
is a possible location for a stenosis, which is not visible in the image
to the left.

Finally, the reconstruction is shown to the right in Figure 4. If the reconstruc-
tion was performed on the surface skeleton, we would obtain the original object.
But as the reverse DT is applied to the curve skeleton, this is not the case. One may
notice that the influence of the underlying metric, D%, is evident in the result; a
number of octahedra are added together giving the “diamond shape” of the cross-
section. More importantly, all three stenoses are now visible in both projections;
the reconstruction uses the minimum distance value to the original background at
each voxel.

An example of the application of the proposed presentation method on real
MRA data is found in Figure 5. Here, the segmented left external iliac artery
is shown before and after the process described above. In this case a segment
with reduced minimum radius is found in the lower part of the image only in the
processed version, indicating that this region should be studied in more detail in
the original data set.
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6. Discussion

It seems that the distance-labelled curve skeleton (after pruning) is a meaning-
ful representation of 3D vessel geometry. In addition to the overall tree anatomy,
they contain information about the calibre of the vessels, which is the most inter-
esting feature, at least for the diagnosis of atherosclerosis.

We have also described a method to display “stenoses” in 3D images indepen-
dent of the viewing direction by combining distance transform based skeletonization
with the reverse distance transformation. For example, a stenosis reducing the an-
teroposterior diameter of a craniocaudal vessel, which is normally seen only in the
lateral projection, will then become visible also in the frontal projection. It should
be emphasized that these rather diagrammatic sketches are not meant to replace
traditional rendering methods, but rather to focus the attention of the viewer on
certain regions which should be scrutinized with other methods, e.g., viewing the
original slices.

One of the advantages of having a distance transform based skeletonization
method, is that reversibility of the object might be possible (depending on the
method). Reversibility is important when characterizing objects, otherwise much
of the shape information is lost. The reversibility property has hardly been con-
sidered in the 3D literature. See [SNB99]. Other examples of methods based on
iterative thinning in distance transforms are [ST95] and [Pud98]. However, re-
versibility is not discussed in these references. Obviously, the dependence of the
vessel orientation relative to the coordinate system imposed by the D® metric is
undesirable. An important task for our future research is therefore to develop
a skeletonization method based on a less rotation dependent distance transform,
more closely approximating Euclidean distance. We are also working to find more
intelligent pruning methods which do not shorten main branches.

A serious limitation of this study is that segmented (thresholded) data have
been used, since the algorithm has so far been formulated only for binary images.
Even though Gd-MRA images are comparatively easy to segment, the difficulty in
finding a suitable threshold value must not be underestimated. We plan to com-
bine the presentation approach with the grey-scale connectivity concept developed
in a different project for MRA volume visualization [SSL99]. Furthermore, any
segmented volume image will inevitably contain less information than the grey-
scale original. Hence, it is clearly motivated to attempt to transfer the concepts
to the grey-scale images, possibly employing some kind of “fuzzy skeleton” built
on the concepts from fuzzy digital topology [Ros79]. Clearly, this would involve a
substantial part of theoretical development.
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